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Abstract

The properties of specific and universal Fermat moduli are investi-
gated, from both a numerical and a theoretical point of view.

1 Introduction and Motivation1

The most popular pastime of amateur mathematicians the world over, at least
during the last few centuries, has been to attempt to prove Fermat’s Last The-
orem,2 namely, that

an + bn = cn (1)

has no solutions in natural numbers for n > 2.3 Despite proofs for the truth
of this statement for an infinite number of values of n, no general (and correct)
proof has, to date, been found. This report, unfortunately, has nothing to offer
on this question. We shall, rather, investigate just a couple of the mathemat-
ical offshoots that have arisen from such investigations, which have somewhat
intriguing properties.

1Disclaimer: The author of this report is not a professional mathematician, but is rather
only an amateur, and a poor one at that. It is therefore most likely that the conclusions arrived
at in this report have been previously obtained and reported in the professional literature.
The current report should therefore be considered to be merely an introduction to that field
(whatever it happens to be) for the layman.

2Some mathematicians claim that Fermat never had a proof for his Last Theorem, and
therefore it should not be called a theorem at all. We shall not enter into the historical debate,
but will rather simply refer to his conjecture by its popular name.

3See, for example [1], ch. 3.
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It is obvious that Fermat’s conjecture need only be verified for prime n (other
than 2, of course) and for n = 4.4 An interesting observation (which a priori
may be of absolutely no use at all in the proof of the theorem) is the fact that,
for prime n, the Fermat equation (1) is particularly simple modulo n, namely

a + b ≡ c (mod n). (2)

Of course, this provides but a very weak condition on the possible solutions of
the Fermat equation. The reason that this observation is interesting is that its
proof was first provided by Fermat himself—probably after writing his famous
marginal note—via his Little Theorem,5 which states that, for p prime,6

b p−1 ≡ 1 (mod p) (3)

for all b, except if b ≡ 0 (mod p), for which it obviously equals zero. Multiplying
both sides by b, we then have

b p ≡ b (mod p), (4)

which, of course, turns (1) into (2) modulo p. Writing Fermat’s Little Theorem
in the form (4) is arguably simpler than its conventional expression (3),7 since it
is obvious that we no longer have to treat the case b ≡ 0 (mod p) in any special
way.

Now, as noted, relation (4) may be completely irrelevant in proving Fermat’s
Last Theorem. But is is quite intriguing in its own right. Obviously, if we test
(4) for some b and p, and find that it does not hold, then it shows that p cannot

4To see that this would be sufficient to prove the theorom for all n, take, as a simple case,
n = 6. If Fermat’s equation, (1), did have a solution with natural a, b and c for n = 6, i.e.

a6 + b6 = c6,

or, equivalently, (
a2

)3
+

(
b2

)3
=

(
c2

)3
,

then we could simply define the three new numbers x = a2, y = b2 and z = c2 which would
then satisfy the equation

x3 + y3 = z3.

It is clear that we could carry out this sort of procedure whenever n is not prime, and it implies
that if Fermat’s equation did have a solution for any composite n, then it would necessarily
have at least one solution for every divisor of n. Obviously, this does not help us for n = 4,
since we know there are solutions for n = 2; therefore, we need to prove n = 4 separately
(which has, of course, been done). Once we have shown n = 4, then all other composite n > 4
follow, since every such n has at least one factor that is not equal to 2. For n a power of 2,
we use the fact that 4 is a divisor; for all other n, we choose one of the prime factors of n.
Thus, if we prove the theorem for all prime n except 2, as well as n = 4, then it will also hold
true for all composite n. The trick, then, is to prove it for prime n!

5Or simply “Fermat’s Theorem” to mathematicians, who, as noted, do not consider his
Last Theorem a theorem.

6See, for example, [1], p. 18.
7Except when one is making contact with its generalisation by Euler.
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be prime;8 therefore, using (4) is a useful way, in practice, to eliminate the
possibility of a given number p being prime.9

Let us leave aside the question of primality, for the moment, and instead look
at relation (4) in a somewhat different way. Rather than taking the modulus
to be fixed , what if we simply specified the base and exponent, and asked the
following question: For which moduli x does

bn ≡ b (mod x) (5)

hold true, for a given choice of b and n? Obviously, from the above, we know
that x = n must be one such modulus when n is prime; it may or may not be so
when n is composite. Nevertheless, regardless of the primality of n, there may
well be other moduli x for which the equation (5) is satisfied. Now, consider the
fact that Fermat’s Little Theorem itself is extremely easy to prove,10 but is not
trivially obvious (as witnessed by the fact that noöne before Fermat noted it).
We should therefore be justified in assuming that the solutions x of (5) (which
encompass those of the Little Theorem) will probably not be too difficult to
prove either; on the other hand, they must, of course, be at least as unobvious
as those of the Little Theorem. We shall therefore endeavour to investigate such
solutions, at least in an elementary way, to see what they reveal.

2 Specific and Universal Fermat Moduli

Our first task in investigating the solutions for x in (5) is to consider the prac-
tical problem of how one actually goes about finding these possible solutions,
numerically, given specific values for b and n. As an example, we might want to
find those x for which

37 ≡ 3 (mod x). (6)

Now, if we simply subtract 3 from both sides of this congruence, we have

37 − 3 ≡ 0 (mod x).

But equality of a quantity to zero modulo x simply means that the quantity
is some multiple of x; in our example, we require 37 − 3 to be a multiple of
x. Turning this around, this simply means that x is any divisor of the number
37 − 3. Therefore, all we need to do is cut up the number 37 − 3 into its prime
factors, i.e.

37 − 3 = 2184 = 23 · 3 · 7 · 13. (7)

8Of course, the converse is not true.
9There are apparently more elaborate forms of this test that work more efficiently; see [1],

ch. 2.
10Ref. [1], p. 18.
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We thus find that the only x for which (6) holds true are

x = 1, 2, 3, 4, 6, 7, 8, 12, 13, 14, 21, 24, 26, 28,

39, 42, 52, 56, 78, 84, 91, 104, 156, 168, 182,

273, 312, 364, 546, 728, 1092 and 2184, (8)

where each value is simply a divisor of (7). As promised by the Little Theorem,
the value 7 is one of the solutions listed in (8)—and, of course, being prime, is
also displayed explicitly in (7). But (8) shows that there are also another thirty-
one moduli for which (6) holds; therefore, we can already see that the more
general question (5) reveals more than the Little Theorem alone. Of course, it
is sufficient for this task to simply know what the value of bn − b is—or, more
precisely, its divisors—and in this sense there is nothing extraordinary about
(7) or (8). But it will be seen, in the remainder of this report, that it is precisely
our splitting up this number into prime factors that is most intriguing, taking
into account the fact that there is (to the author’s knowledge) no a priori way
of writing down the prime factorisation of the number bn − b,11 other than by
prime factorising it explicitly.

At this point, we shall, unfortunately, need to introduce a few pieces of
notation and nomenclature, to simplify the following discussions.12 We shall
refer to the number bn−b as the specific Fermat modulus of base b and exponent
n,13 with symbol F (n; b), i.e.

F (n; b) = bn − b.

For the above example, we have

F (7; 3) = 2184.

As such, these numbers F (n; b) are nothing more than particular numbers that
the author has decided would be interesting to investigate. However, we now ask
a more subtle question: Given a certain value for the exponent, n, are there any
moduli x for which (5) is satisfied for all bases b? This question is, of course,
inspired by the result (4) of the Little Theorem, which answers this question
in the affirmative when n is prime, and provides at least one answer x = n.

11Or, more precisely, bn−1 − 1, since bn − b itself obviously has the divisors of b among its
divisors.

12However, the author shall endeavour to explain the spirit of all symbolic state-
ments in words, so that the following sections do not become completely symbolic and
ununderstandable.

13Named after Fermat since it is quite likely that he would have investigated their nature
to some extent (witness his Little and Last Theorems), and the fact that it is quite unlikely
that anyone before him did so (again by consideration of the priority of the above Theorems).
This terminology should not be confused with the existing term Fermat number , used for any
number of the form 22n

+ 1; in practice, these two types of object would rarely, if ever, be
mentioned in the one breath anyway.
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However, it is again not a priori obvious (at least to the author) whether there
are, in fact, any other values of x that have this universal nature for prime n,
or, indeed whether any such values of x exist at all for composite n.

Let us, therefore, investigate how one might go about calculating such values
of x, given some exponent n. Basically, we need to test (5) for all integers b,
and find those values of x which satisfy them all. This does not, on the surface
of it, appear to be a very palatable task at all. However, if we follow the same
procedure as taken above for any one specific choice of b, we see that it is not
all that hopeless after all. We first note that, naturally, (5) is satisfied for all
n > 0 and x ≥ 0 if b = 0 or b = 1, since

0n ≡ 0 (mod x)

and
1n ≡ 1 (mod x)

are always true in these cases. The first integer b that might give us non-trivial
information, therefore, is 2. Inserting this into (5), we require

2n ≡ 2 (mod x).

Now, we have already seen that, for a given exponent n, the solutions x of this
equation are simply the divisors of the specific Fermat modulus F (n; 2); for
example, if our chosen value of n were 7, then we would have

F (7; 2) = 126 = 2 · 32 · 7.

Similarly, the value b = 3, or

3n ≡ 3 (mod x),

has as solutions x the divisors of the specific Fermat modulus F (n; 3); for the
example n = 7, we have already seen that

F (7; 3) = 2184 = 23 · 3 · 7 · 13.

If we now require that x be a modulus solution of both of these equations, then
it must, by the above, be a divisor of both F (n; 2) and F (n; 3). There are, of
course, a number of such solutions that satisfy both equations, but it is obvious
that these solutions all share the property that they are themselves divisors
of the greatest common divisor (gcd) of F (n; 2) and F (n; 3). For our specific
example case n = 7, the above prime factorisations show that the gcd of F (7; 2)
and F (7; 3) is

gcd [F (7; 2), F (7; 3)] = 2 · 3 · 7;

or, in other words, the only values of x that simultaneously satisfy both

27 ≡ 2 (mod x)
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and
37 ≡ 3 (mod x)

are the divisors of 2 · 3 · 7, namely

x = 1, 2, 3, 6, 7, 14, 21, 42.

Already, we see that insisting on the congruence (5) for two different bases b
has cut down the number of solutions for x quite dramatically.

OK, then, we have not, so far, hit upon any insuperable obstacles. Let us
continue our investigations to the next step, and look for those values of x for
which (5) is satisfied not just for b = 2 and b = 3, but for b = 4 as well.
Obviously, the same considerations as above hold again; we now simply need to
find the greatest common divisor of all three specific Fermat moduli, namely

gcd [F (n; 2), F (n; 3), F (n; 4)] .

In a practical case, we can, however, use our previous knowledge if

gcd [F (n; 2), F (n; 3)]

to compute this result, since

gcd [F (n; 2), F (n; 3), F (n; 4)] = gcd [ gcd [F (n; 2), F (n; 3)] , F (n; 4)] .

For our specific example, we first note that14

F (7; 4) = 16380 = 22 · 32 · 5 · 7 · 13.

Obviously, the gcd of this and 2·3·7 is just 2·3·7, as the above prime factorisation
of F (7; 4) shows.

We therefore increment our base again, and try b = 5. We now have

F (7; 5) = 78120 = 23 · 32 · 5 · 7 · 31,

so that, yet again, the number 2 ·3 ·7 comes through the gcd process unscathed.
At this stage, it is starting to look as if 2 · 3 · 7 is going to satisfy this procedure

14It should be noted that all perfect squares, b = a2, are somewhat special cases, since for
such bases

F (n; b) = b
(
bn−1 − 1

)
= a2

(
a2(n−1) − 1

)

= a2
(
an−1 − 1

) (
an−1 + 1

)
= a

(
an−1 + 1

)
F (n; a).

Since, following the method above, we are “counting up” the integer b, by the stage we reach
b = a2 we must have already calculated the case b = a. It is then clear that taking the gcd
of F (n; a) and F (n; a2) will simply yield F (n; a), i.e. it is unnecessary to test F (n; a2), since
it cannot possibly yield any new information. However, to make the arguments in the text
most transparent and uncluttered as possible, we have simply ignored this fact for b = 4; in
practical calculations, on the other hand, one may like to skip over perfect squares to speed
up the process.
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for arbitrary b. Are we doomed to continue this process forever? Fortunately,
we are not; by the following reasoning: Imagine that 2 · 3 · 7 = 42 does satisfy
(5) with n = 7 for arbitrary b.15 That would mean that, in particular,

b7 ≡ b (mod p) for all b,

where p equals 2, 3 or 7; conversely, if it does hold for these prime factors, then it
will necessarily hold for x = 42 also. Now, if we have verified this statement for
all b < 7, where 7 is the largest prime factor p, then we know from the theory of
congruences that it will automatically be satisfied for all b ≥ 7 too. Therefore,
we need only need test the relation for values of b up to 7. In the general
case, rather than our specific example n = 7, what we do is this: calculate the
“running gcd”, as above, of the quantities

F (n; 2), F (n; 3), F (n; 4), F (n; 5), . . . , F (n; b).

If, at any stage, we find that the base b that we are testing is greater than or
equal to the greatest prime factor of the “running gcd”, then we know we can
stop—the gcd thus obtained will then be our answer. We shall call this quantity
the universal Fermat modulus of exponent n, and denote it by the symbol F (n),
so that

F (n) =
∞

gcd
b=2

[F (n; b)] .

Given these definitions, and the above algorithm, it is a fairly simple task, in
principle, to compute the universal Fermat moduli for various exponents n,
since the gcd operation (via the Euclidean algorithm) is quite efficient. The
only hassle we have, in practice, is the fact that we must handle numbers of
rather long length, indeed far too long for a handheld calculator. (Consider,
as a relatively simple example, the specific modulus F (101; 41), which is a 163-
digit number.) We also cannot apply the various tricks that are usually available
when one is computing numbers congruent to some modulus, since the whole
point of the current report is to find the moduli for which certain equations are
satisfied. The only alternative16 is to sit down and write a few routines for one’s
computer to handle integer arithmetic for arbitrarily17 long integers.18

Having overcome the above technical problems, it is then a fairly simple task
to compute the first few universal Fermat moduli.19 All of the F (n) for n < 100
are listed in table 1. There are two facts that immediately stand out, that are so
simply stated that it seems likely that even the author should be able to prove

15The author does not believe that this is the question that Douglas Adams was referring
to.

16Unless there is some trick that the author has not woken up to.
17Limited by the resources of the computer in question, of course.
18This is, unfortunately, most likely a deterrent to the interested layman who might other-

wise like to investigate the numerical results which follow. To offset this deterrent, the author
will readily give any interested reader a copy of the C source files that perform these tasks, if
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n F (n) n F (n) n F (n) n F (n)

2 2 27 6 52 2 77 30
3 6 28 2 53 1590 78 2
4 2 29 870 54 2 79 3318
5 30 30 2 55 798 80 2
6 2 31 14322 56 2 81 230010
7 42 32 2 57 870 82 2
8 2 33 510 58 2 83 498
9 30 34 2 59 354 84 2
10 2 35 6 60 2 85 3404310
11 66 36 2 61 56786730 86 2
12 2 37 1919190 62 2 87 6
13 2370 38 2 63 6 88 2
14 2 39 6 64 2 89 61410
15 6 40 2 65 510 90 2
16 2 41 13530 66 2 91 272118
17 510 42 2 67 64722 92 2
18 2 43 1806 68 2 93 1410
19 798 44 2 69 30 94 2
20 2 45 690 70 2 95 6
21 330 46 2 71 4686 96 2
22 2 47 282 72 2 97 4501770
23 138 48 2 73 140100870 98 2
24 2 49 46410 74 2 99 6
25 2730 50 2 75 6
26 2 51 66 76 2

Table 1: The universal Fermat moduli F (n) for all n < 100. As noted in the
text, this explicit listing shows three distinctive features: (a) F (n) = 2 for even
n; (b) F (n) is even for all n; and (c) the values of the magnitudes of the F (n),
as they are displayed here, do not show any apparent pattern.
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them rigorously. The first observation is that F (n) = 2 for all even n. Despite
some work, the author is ashamedly unable to report having found any proof of
this statement on elementary grounds, although our later findings will lead to
an “explanation” (of sorts) of the phenomenon. On the other hand, the second
noteworthy feature of table 1—that all F (n) are even—is easy to prove, since
it simply imples that

bn ≡ b (mod 2).

But this just states that an odd number to any power is odd, and that an even
number to any power is even, which is of course obviously true.

The third most noticeable feature of table 1 is that, if there is some pattern
to the F (n) for odd n, then writing the F (n) as per table 1 isn’t going to reveal
it! Indeed, the only thing to be gleaned from that table about the F (n) for odd
n is that—unlike the case of even n—none of them are equal to 2.20 We can,
however, glean some insight into their apparently random pattern by returning
to the example treated above—namely,

F (7) = 42 = 2 · 3 · 7.

Now 42 is not, in itself, an obviously meaningful number. But its prime factors,
2, 3 and 7, seem much simpler, because no prime factor is repeated, and the
largest is equal to 7—the value of n that we are testing. It is therefore plausible
that the universal Fermat moduli would look much simpler if we broke them all
down into their prime factors.21 To this end, we have listed all the F (n) (for
odd n) in table 2, broken up into their prime factors.

There are several features of table 2 that hit one in the face immediately.
The first is that, not only are all the F (n) (for odd n) even, they are in fact
multiples of six . Secondly, the largest prime factor F (n) is no larger than
n itself. But the most remarkable feature of table 2 of all is the fact that
none of them have repeated prime factors (i.e. they are squarefree). Now, if
Fermat’s Little Theorem is not a trivially obvious statement, then the above

requested and supplied with a 3.5 inch IBM diskette for the purpose.
19In fact, one finds that, when computing the universal Fermat moduli, the gcd algorithm

only reduces the “running gcd” for prime bases b; furthermore, the number of primes necessary
to reduce the gcd to its final value is extremely small—in fact, the author has not found any
case (for exponents less than a few hundred) for which the “work” is done by numbers other
than 2, 3, 5, 7 and 11. Thus, it suffices, in practice, to keep an eye on the gcd algorithm and
quit it after the gcd does not reduce further, rather than test the more excessive number of
values suggested by the earlier analysis (i.e. the largest prime factor of the “running gcd”). It
will be seen shortly that the universal Fermat moduli do, in fact, follow a rather remarkable
set of rules; one can use this knowledge to test the gcd algorithm and see how quickly it
homes in on the correct answer, and to actually verify that only prime bases b give any new
information in the process—at least, for some finite number of cases!

20The reason for this will be seen to be elementary shortly.
21Note that performing prime factorisation after obtaining the moduli by gcd methods is

not a difficult task, since most of the prime factors are eliminated in the gcd process. This
will be clearer shortly.
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n F (n) n F (n)

3 2 · 3 53 2 · 3 · 5 · 53
5 2 · 3 · 5 55 2 · 3 · 7 · 19
7 2 · 3 · 7 57 2 · 3 · 5 · 29
9 2 · 3 · 5 59 2 · 3 · 59
11 2 · 3 · 11 61 2 · 3 · 5 · 7 · 11 · 13 · 31 · 61
13 2 · 3 · 5 · 7 · 13 63 2 · 3
15 2 · 3 65 2 · 3 · 5 · 17
17 2 · 3 · 5 · 17 67 2 · 3 · 7 · 23 · 67
19 2 · 3 · 7 · 19 69 2 · 3 · 5
21 2 · 3 · 5 · 11 71 2 · 3 · 11 · 71
23 2 · 3 · 23 73 2 · 3 · 5 · 7 · 13 · 19 · 37 · 73
25 2 · 3 · 5 · 7 · 13 75 2 · 3
27 2 · 3 77 2 · 3 · 5
29 2 · 3 · 5 · 29 79 2 · 3 · 7 · 79
31 2 · 3 · 7 · 11 · 31 81 2 · 3 · 5 · 11 · 17 · 41
33 2 · 3 · 5 · 17 83 2 · 3 · 83
35 2 · 3 85 2 · 3 · 5 · 7 · 13 · 29 · 43
37 2 · 3 · 5 · 7 · 13 · 19 · 37 87 2 · 3
39 2 · 3 89 2 · 3 · 5 · 23 · 89
41 2 · 3 · 5 · 11 · 41 91 2 · 3 · 7 · 11 · 19 · 31
43 2 · 3 · 7 · 43 93 2 · 3 · 5 · 47
45 2 · 3 · 5 · 23 95 2 · 3
47 2 · 3 · 47 97 2 · 3 · 5 · 7 · 13 · 17 · 97
49 2 · 3 · 5 · 7 · 13 · 17 99 2 · 3
51 2 · 3 · 11

Table 2: The universal Fermat moduli F (n) for all odd n < 100, as given in
table 1, but broken up into their prime factors. The remarkable squarefree
nature of each modulus is evident, as is the fact that none of the prime factors
of F (n) are greater than n. For prime n, n is itself a prime factor (and, by the
above observation, the largest), as it must be by Fermat’s Little Theorem. (The
exact structure of each F (n) is detailed in the text.)
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considerations are even less so; in particular, the author cannot think of any
good intuitive argument why the last such phenomenon—the squarefree nature
of the moduli—should hold.

Remarkable as the above may seem (at least to the author), we can, in fact,
go even further in our analysis of the universal Fermat moduli for odd exponents.
To do this, one should first note some suspicious-looking largest prime factors
in table 2 for odd n that are not prime. (For prime n, F (n) must, by the Little
Theorem, contain n as a factor; the above observations show that it is also the
largest.) One of these is F (57),

F (57) = 2 · 3 · 5 · 29.

The prime factor 26 seems to stick out like a sore thumb, since

57− 1 = 2(29− 1).

In fact, we find that this occurs for the largest prime factor of F (n) for a
number of other composite n in table 2—namely n = 9, 21, 25, 33, 45, 57, 81
and 93. Now, these “cöıncidences” should raise our suspicions even further—
unexplainable cöıncidences being a rare animal in mathematics. Let us, then,
investigate in more detail one n for which F (n) seems to have an inordinately
large number of prime factors—say, n = 61 in table 2. For this case, one notes
immediately that

F (61) = 2 · 3 · 5 · 7 · 11 · 13 · 31 · 61

can be rewritten

F (60 + 1) = (1 + 1) · (2 + 1) · (4 + 1) · (6 + 1)
· (10 + 1) · (12 + 1) · (30 + 1) · (60 + 1), (9)

where, of course, the numbers 1, 2, 4, 6, 10, 12, 30 and 60 are all divisors of 60—
the number on the left hand side. This, surely, cannot be a cöıncidence, so
let us look at the question a little more closely. Take, for example, the prime
factor 7 = 6 + 1 in the above. Let us, first, introduce another trivial piece of
terminology, to avoid an excess of words in further descriptions, and call the
number a + 1 the increment of the number a, and likewise for the decrement of
a. Now, we know that Fermat’s Little Theorem assures us that

b6 ≡
{

1 if b 6≡ 0 (mod 7),
0 if b ≡ 0 (mod 7).

But raising both sides of this to the tenth power (where 10 = 60/6) we then
find that

b60 ≡
{

1 if b 6≡ 0 (mod 7),
0 if b ≡ 0 (mod 7),

since 1 and 0 remain unchanged by this operation. Multiplying through by an
extra factor of b, at this last stage, we find that, of course, b61 ≡ b (mod 7)
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must hold for all b. Now, we could repeat this for any of the divisors of 60, as
long as the increment of the divisor is prime—since Fermat’s Little Theorem
says nothing at all about numbers that are not prime.22 Since this (single)
congruence for b61 would then hold for all these various moduli, then by the
previous explanations it should be clear that these moduli must all be prime
factors of F (61).

The above reasoning, therefore, tells us what prime factors must appear in
F (61). But that argument does not , however, say anything about what other
prime factors might appear in F (61). For example, let us look more closely at
the list of the divisors of 60:

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

Now, not all of these divisors were actually used in F (61)—recall, only 1, 2, 4,
6, 10, 12, 30 and 60 were used. What about the others? For example, imagine
that the congruence

b21 ≡ b (mod 21)

happened to hold for all b (it doesn’t, in actual fact, but for the purposes of
argument ignore the fact that we know this).23 By the above arguments, we
would then (again, hypothetically) find that

b61 ≡ b (mod 21)

so that F (61) would then have to be a multiple of 21. But F (61) is already
a multiple of 21 = 3 · 7, by virtue of the (somewhat cöıncidental) fact that
2 = 3− 1 and 6 = 7− 1 are divisors of 60. The question that then arises is this:
would F (61) then contain the squares of 3 and 7 as prime factors, or would it
somehow know that it “should be” squarefree? And if it did “know” to keep
itself squarefree, how would it “know” what to do if those prime factors (3 and
7, in the above example) were not already present?

Of course, it is a little silly to use the above numbers as an example, since
we know that 21 is not a Carmichael number anyway, so we cannot answer the
questions one way or the other. Let us, therefore, use the fact that we know that
561 = 3 · 11 · 17 is a Carmichael number (the smallest, in fact), and construct
an example that would test the various choices offered above. A good test case
is the number F (1121), which we have rigged by noting that

1121 = 2 · 560 + 1.

Now, since we know that

b561 ≡ b (mod 561)
22More precisely, there are an abundant number of examples of non-prime numbers n (most

of them, in fact) such that an−1 ≡ 1 (mod n) does not hold for all b; on the other hand, the
so-called “Carmichael numbers” ([1], p. 21) are composite n such that this congruence does
hold for all b.

23Of course, 21 would be a Carmichael number if this were true, and we know that it is not.
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holds for all b, then it follows from the above that

b1121 ≡ b (mod 561)

must too. Therefore, F (1121) must be a multiple of 561 = 3 · 11 · 17. On the
other hand, we also know that, by Fermat’s Little Theorem, the other factor of
2 in 2 · 560 separately leads to the result

b3 ≡ b (mod 3)

since 3 is a prime; therefore, it follows that

b1121 ≡ b (mod 3)

must too—and, thus, we “independently” know that F (1121) must be a multiple
of 3. The question raised above is then the following: will the prime factor 3
appear once or twice in F (1121)? Well, it is a fairly straightforward24 to check
this, using the gcd algorithm described earlier, and in fact one finds that

F (1121) = 2 · 3 · 5 · 11 · 17 · 29 · 41 · 71 · 113 · 281,

so that, in fact, F (1121) “decides” that it will remain squarefree, despite the
two “sources” of the prime factor 3 that one might, a priori , imagine might
appear.25 Thus, as far as the Fermat modulus is concerned, the only relevant
property of 561 is the fact that 560 has the divisors it has; the fact that 561
itself satisfies Fermat’s Little Theorem, despite the fact that it is not prime, is
merely a by-product of the cöıncidence that (3−1), (11−1) and (17−1) happen
to divide (561− 1).26

It will also be noted that, so far, we have only looked into the question of
why there are no repeated prime factors in F (n). Of an altogether different
nature is the question of why there are no other prime factors in F (n) that do
not follow the “increment–divisor” rule above. For example, why should the
equation

b1121 ≡ b (mod x)

never be satisfied for all b if x were, say, 89, or 167, or in general any prime whose
decrement is not a divisor of 1120? If it is satisfied, as it is, for the large modulus

24Warning: this involves manipulating integers up to 784 digits in length!
25Note that there is no a priori reason why b1121 ≡ b (mod 9) could not be satisfied for

all b—Fermat’s Little Theorem says nothing on this question. The proof of this result must,
therefore, be based on deeper results than simply the Little Theorem.

26For this to be true in general, it would require all Carmichael numbers to be simply
“by-products” of the fact that the decrements of their prime factors divide the decrement of
themselves, i.e. that no composite number satisfying Fermat’s Little Theorem exists apart
from those of this form. The author, having access only to a handful of Carmichael numbers,
knows not whether it has been shown that they are, in fact, all of this form, or indeed whether
contrary examples are known.
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5 · 11 · 29 · 41 = 65395, then why shouldn’t it be satisfied for the prime 65393?
One might argue that this would imply 65393 irreducible solutions, which does
not really work well with only an 1121-th order equation (if the normal rules of
algebra apply here), and, if that were so, then it would follow that F (n) could
have no prime factor larger than n. But that still does not answer the previous
question—why prime factors smaller than n but not following the above rules
never appear. It seems as if there is a type of “minimalist” approach taken with
these numbers, in that only those solutions required by Fermat’s Little Theorem
are accommodated in the Fermat moduli, and no more.

If we conjecture that the above conclusions about the Fermat moduli are
true in general, and not just for the rather small number of numerical cases
investigated here, then we can go on and write down an exact formula for F (n),
that has nothing to do with the way we have computed the moduli above (i.e.
via an infinite gcd operation), but is rather based on the prime numbers. To do
this, we must first define a simple primality function θ(n) such that

θ(n) =
{

1 if n is prime,
0 if n is composite.

(Of course, one of the problems with prime numbers is the fact that evaluating
θ(n) is, in general, not a trivial task. For this reason, it is interesting to find any
relation that uses θ(n) in a non-trivial way, since it might conceivably tell us
something about the prime numbers that we didn’t already know.)27 Employing
the commonly used notation that d|n means that d is a divisor of n, and that,
for example, ∑

d |n

implies a sum over all of the divisors d of n,28 then our above observations
27For example, the number of primes less than x,

π(x) =
∑
n<x

θ(n),

and the Riemann zeta function ([1], p. 125),

ζ(z) =

∞∑
n=1

n−z =

∞∏
n=1

(
1− θ(n)n−z

)−1
,

both seem to be of some importance in a number of areas of mathematics, some quite unrelated
to prime numbers.

28And similarly for products, etc.
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suggest the general formula29

F (n) =
∞

gcd
b=2

[F (n; b)] =
∏

d |n−1

(d + 1)θ(d+1), (10)

where, recall, the specific Fermat modulus function F (n; b) is simply given by30

F (n; b) = bn − b. (11)

Ignoring, for the moment, our reasons for constructing the Fermat moduli in the
first place, then the result (10)—which relates an infinite set of gcd operations
to the properties of primality and divisibility—is, at least to the author, an
unexpected and intriguing connection. Finally, returning to the problem which
we originally posed—namely, to find those moduli for which (5) is satisfied for
all integers b—we now have the answer that

bn ≡ b (mod d |F (n)) for all b, (12)

where F (n) is given by (10) and (11), and, most importantly, such divisors d
are the only moduli for which this congruence holds for all integers b, if the
conjectures above are, in fact, true.

It should again be emphasised that the results (10), (11) and (12) are, most
likely, plainly obvious to any professional mathematician, and their proof can
undoubtedly be written on the back of an envelope by any such expert. Never-
theless, the author hopes that this account is as entertaining for any amateur
number theorist reading this report as it has been for himself; the strange and
beautiful properties that numbers themselves can throw our way never cease to
amaze.
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29It should be noted that our numerically-observed result that F (n) = 2 for even n is implied
by this formula, since, for n even, the number n − 1 is odd, whose divisors must therefore
also be odd, and thus d + 1 is even. Then, since no even number greater than 2 is prime, the
θ function in (10) will simply kill them all off except 2 (which is, of course, always present,
since 1 is a divisor of every number).

30It should be noted at this point that it is strictly not permissible to replace F (n; b) by

F (n; b)/b, i.e.
(
bn−1 − 1

)
, in the gcd operation in (10), since if one did do so, then all of the

factors of F (n) would simply disappear. To see why these factors would disappear, one only
need note that the quantity bn−1 − 1 ≡ −1 (mod b), and therefore it cannot be a multiple of
b (if b > 1). Consider, now, those values of b which are equal to one of the prime factors of
F (n); by the above, such a prime factor will not be contained in the quantity bn−1 − 1. If we
were then to replace F (n; b) by bn−1 − 1, then the gcd operation would, upon hitting each
of these particular bases in turn, eliminate every prime factor if F (n; b); the corresponding
infinite gcd would therefore give the meaninigless result 1 for all n.
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