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Abstract

I describe a simple kitchen-table construction that allows one to get a good feel for the
field of view of the human eye.

In considering the design and construction of head-mounted, immersive display devices,
it is useful to know how much solid angle is actually viewable by the eye—the “field of
view”. Over the decades, the capabilities of the human visual system have been investigated
by researchers in meticulous detail; and we may call on this research to give us precise
quantitative answers to almost any question that we might wish to ask. But it can be difficult
for designers of virtual worlds to track down this information in the published medical
literature; and, even when found, it can be difficult for non-experts to “get a good feeling”
for the tables and graphs presented. To do so, one needs an accurate way of portraying
solid angles . Unfortunately, it is intrinsically impossible to represent solid angles without
distortion on a flat sheet of paper, much less by describing it in words. Seeing as that we
are still far from having “virtual reality on every desk”, it is also not currently possible to
use the technology itself to portray this information.

The reader is therefore asked to procure the following pieces of hardware so that a
mathematical construction may be carried out: a mathematical compass—preferably one
with a device that locks the arms after being set in position; one red and one blue ballpoint
pen, that both fit in the compass; a texta (thick-tipped fibre marker), or a whiteboard
marker; a ruler, marked in millimetres (or, in the US, down to at least sixteenths of an inch);
a simple calculator; a pair of scissors, or a knife; an orange, or a bald tennis ball; a piece of
string, long enough to circumnavigate the orange or tennis ball; and a roll of sticky tape.

The first task is to wrap a few turns of sticky tape around the sharp point of the compass’s
“pivot” arm, slightly extending past the point. This is to avoid puncturing the orange or
tennis ball (as appropriate); orange-equipped readers that like orange juice, and do not have
any objections to licking their apparatus, may omit this step.

The next task is to verify that the orange or tennis ball is as close to spherical as possible
for objects of their type, and suitable for being written on by the ballpoint pens. If this
proves to be the case, pick up the piece of string and wrap it around the orange or ball; do
not worry if the string does not yet follow a great circle. Place your right thumb on top
of the string near where it overlaps itself (but not on top of that point). With the fingers
of your left hand, roll the far side of the string so that the string become more taut; let
it slip under your right thumb only gradually; but make sure that no parts of the string
“grab” the surface of the orange or ball (except where your right thumb is holding it!). After
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the rolled string passes through a great circle, it will become loose again (or may even roll
right off). Without letting go with the right thumb, mark the point on the string where it
crosses its other end with the texta. Now put the orange or ball down, cut the string at the
mark, and dispose of the part that did not participate in the circumnavigation. Fold the
string in half, pulling it taut to align the ends. At the half-way fold, mark it with the texta.
Then fold it in half again, and mark the two unmarked folds with the texta. On unravelling
the string, there should be three texta marks, indicating the quarter, half and three-quarter
points along its length. Now pull the string taut along the ruler and measure its length.
This is the circumference of the orange or ball; store its value in the calculator’s memory (if
it has one), or else write it down: we will use it later.

We now define some geographical names for places on our sphere, by analogy with the
surface of the Earth. For orange-equipped readers, the North Pole of the orange will be
defined as the point where the stem was attached. For tennis-ball-equipped readers, a mark
should be made arbitrarily to denote the North Pole. Mark this pole with a small ‘N’ with
the blue ballpoint pen. Similarly, the small mark 180◦ from the North Pole on an orange’s
surface will be termed the South Pole. Tennis-ballers, however, will need to use the piece of
string to find this point, as follows: Wind the string around the ball, placing the two ends
at the North Pole, and, as before, roll it carefully until it is taut; inspect it from the side
to ensure that it appears to “dissect” the ball into equal halves. The half-way texta mark
on the string is now over the South Pole; mark this spot on the ball with the blue ballpoint
pen.

From this point, it will be assumed, for definiteness, that the object is an orange; posses-
sors of tennis balls can project a mental image of the texture of an orange onto the surface
of their ball, if so desired. Place the string around the orange, making sure the North and
South Poles are aligned. (If possessors of oranges find, at this point, that the mark on the
orange is not at the half-way point on the string, then either mark a new South Pole to
agree with the string, or get another orange.) Now find the one-quarter and three-quarter
points on the string, and use the texta to make marks on the orange at these two points.
Put the string down. Choose one of the two points just marked—the one whose surrounding
area is most amenable to being written on. This point shall be called Singapore (being a
recognisable city, near the Equator, close to the centre of conventional planar maps of the
world); write a small ‘S’ on the orange with the pen next to it. (This mark cannot be
confused with the South Pole, since it is not diametrically opposite the North!) The marked
point diametrically opposite Singapore will be called Quito; it may be labelled, but will not
be used much in the following. Next, wind the string around the orange, so that it passes
through all of the following points: the two Poles, Singapore and Quito. Use the blue ball-
point pen to trace around the circumference, completing a great circle through these points,
taking care that the string is accurately aligned; this circle will be referred to henceforth as
the Central Meridian. (If the pen does not write, wipe the orange’s surface dry, get the ink
flowing from the pen by scribbling on some paper, and try again. Two sets of ballpoint pens
can make this procedure easier.) Now wrap the string around the orange, through the poles,
but roughly 90◦ around from Singapore and Quito; i.e., if viewing Singapore head-on, the
string should now look like a circle surrounding the globe. This alignment need not be exact;
the most important thing is that the string start and end on the North Pole, and pass over
the South Pole. Make a small ballpoint mark at the one-quarter and three-quarter positions
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of the string. Now wind the string around the orange so that it passes over both of these
two new points, as well as over both Singapore and Quito. Trace this line onto the orange.
This is the Equator.

We are now in a position to start to relate this orangeography to our crude mapping
of the human visual system. We shall imagine that the surface of the orange represents
the solid angle seen by the viewer’s eye, by imagining that the viewer’s eye is located at
the centre of the orange; the orange would (ideally) be a transparent sphere, fixed to the
viewer’s head, on which we would plot the extent of her view. Firstly, we shall consider the
situation when the viewer is looking straight ahead at an object at infinity, with her head
facing in the same direction. We shall, in this situation, define the direction of view (i.e., the
direction of foveal view—the most detailed vision in the centre of our vision) as being in the
Singapore direction (with the North Pole towards the top of the head). One could imagine
two oranges, side by side, one centred on each of the viewer’s eyes, with both Singapores in
the same direction; this would represent the viewer’s direction of foveal view from each eye
in this situation. Having defined a direction thus, the oranges should now be considered to
be fixed to the viewer’s head for the remainder of this section.

We now concentrate solely on the left eye of the viewer, and the corresponding orange
surrounding it. We shall, in the following, be using the calculator to compute lengths on
the ruler against which we shall set our compass. The compass will then be used to both
measure “distances” between points inhabiting the curved surface of the orange, as well as
to actually draw circles on the thing.

The first task is to compute how long 0.122 circumferences is. (For example, if the
circumference of the orange was 247 mm, punch “247 × 0.122 =” on the calculator, which
yields the answer 30.134; ignore fractions of millimetres. Readers using Imperial units will
need to convert back and forth between fractions of an inch.) Put the red ballpoint pen into
the compass, and set its arms, with tips against the ruler, so that the tips are separated
by this length of 0.122 circumferences (whatever the calculator gave for that answer). Now
centre the pivot of the compass on Singapore, and draw a circle on the orange with the
red pen (which is often easier said than done, but is possible). The solid angle enclosed by
this red circle (subtended, as always, at the centre of the orange—where the viewer’s eye
is assumed to be located) indicates, in rough terms, all of the possible directions that our
viewer can “look directly at”; in other words, the muscles of her eye can rotate her eyeball
so that any direction in this solid angle is brought into central foveal view.

It will be noted that, all in all, this solid angle of foveal view is not too badly “curved”,
when looked at in three dimensions. Place a flat plane (such as a book) against the orange,
so that it touches the orange at Singapore. One could imagine cutting out the peel of the
orange around this red circle, and “flattening it” onto the plane of the book without too
much trouble; the outer areas would be stretched (or, if dry and brittle, would fracture),
but overall the correspondence between the section of peel and the planar surface is not
too bad. (Readers possessing multiple oranges, who do not mind going through the above
procedure a second time, might actually like to try this peel-cutting and -flattening exercise.)
The surface of the plane corresponding to the flattened peel corresponds, roughly, to the
maximum (apparent) size that a traditional, desk-mounted graphics screen can use: any
larger than this and the user would need to move her head to be able to focus on all parts
of the screen—a somewhat tiring requirement for everyday computing tasks. Thus, it can
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be seen that it is the very structure of our eyes that allows flat display devices to be so
successful: any device subtending a small enough solid angle that all points can be “read”
(i.e., viewed in fine detail) without gross movements of one’s head cannot have problems of
“wrap-around” anyway.

Virtual reality systems, of course, have completely different goals: the display device is
not considered to be a “readable” object, as it is in traditional computing environments—
rather, it is meant to be a convincing, completely immersive stimulation of our visual senses.
In such an environment, peripheral vision is of vital importance, for two reasons. Firstly, and
most obviously, the convinceability of the virtual reality session will suffer if the participant
“has blinkers on” (except, of course, for the singular case in which one is trying to give
normally-sighted people an idea of what various sight disabilities look like from the sufferer’s
point of view). Secondly, and quite possibly more importantly, is the fact that, although
our peripheral vision is no good for detailed work, it is especially good at detecting motion.
Such feats are not of very much use in traditional computing environments, but are vital
for a virtual reality participant to (quite literally) “get one’s bearings” in the spatially-
extended immersive environment. We must therefore get some sort of feeling—using our
orange-mapped model—for the range of human peripheral vision, so that we might cater for
it satisfactorily in our hardware and software implementations.

The following construction will be a little more complicated than the earlier ones; a
“check-list” will be presented at the end of it so that the reader can verify that it has been
carried out correctly. Firstly, set the compass tip-separation to a distance (measured, as
always, on the ruler) equal to 0.048 circumferences (a relatively small distance). Place the
pivot on Singapore, and mark off the position to the east (right) of Singapore where the pen
arm intersects the Equator. We are now somewhere near the Makassar Strait. Now put the
blue ballpoint pen into the compass, and set its tip-to-tip distance to 0.2 circumferences;
this is quite a large span. Now, with the pivot on the new point marked in the Makassar
Strait , carefully draw a circle on the orange. The large portion of solid angle enclosed by
this circle represents, in rough terms, the range of our peripheral vision. To check that the
construction has been carried out correctly, measure the following distances, by placing the
compass tips on the two points mentioned, and then measuring the tip-to-tip distance on the
ruler: From Singapore to the point where this freshly-drawn circle cuts the Central Meridian
(either to the north or south): about 0.18 circumferences; from Singapore to the point
where the circle cuts the Equator to the west : about 0.16 circumferences; from Singapore
to the point where the circle cuts the Equator to the east : about 0.23 circumferences. If
these are roughly correct, one can, in fact, also check that the earlier , foveal construction
is correct, by measuring the tip-to-tip distance between the red and blue circles where they
cross the Equator and Central Meridian. To the west, this distance should be about 0.04
circumferences; to the east, about 0.13 circumferences; to the north and south, about 0.08
circumferences.

There are several features of the range of our peripheral vision that we can now note.
Firstly, it can be seen that our eyes can actually look a little behind us—the left eye to the
left, and the right eye to the right. (Wrap the string around the orange, through the poles,
90◦ east of Singapore; the peripheral field of view cuts behind the forward hemisphere.) To
verify that this is, indeed, correct, it suffices to stand with one’s face against a tall picket
fence; with one’s nose between the pickets, and looking straight ahead, you can still see

4



things going on on your side of the fence! That our field of vision is configured in this way is
is not too surprising when it is noted that one’s nose blocks one’s field of view in the other
direction (but which is, of course, picked up by the other eye); hence, our eyes and faces
have been appropriately angled so that our eyes’ fields of vision are put to most use. But
this also means that it is not possible to project the view from both eyes onto one single
plane directly in front of our faces. Of course, we would intend to use two planar displays
anyway, to provide stereopsis; but this observation is important when it comes to clipping
objects for display (for which a single planar clip, to cover both eyes, is thus impossible).

Secondly, we note that a reasonable approximation is to consider the point near the
Makassar Strait to be the “centre” of a circle of field of view for the left eye. (This unproved
assertion by the author may be verified as approximately correct by an examination of ocular
data.) The field of view extends about 75◦–80◦ in each direction from this point, or about a
150◦–160◦ “span” along any great circle. This is, of course, a little shy of the full 180◦ that
a hemispherical view provides, but not by much (as an examination of the orange reveals).
Now imagine that one was to cut the peel of the orange out around the large (blue) circle
of peripheral vision, and were then to try and “flatten it” onto a plane. It would be a mess!
An almost-hemisphere is something that does not map well to a flat plane.

Let us reconsider, nevertheless, our earlier idea of placing a planar display device in front
of each eye (with appropriate optics for focusing). How would such a device perform? Let
us ignore, for the moment, the actual size of the device, and merely consider the density of
pixels in any direction of sight. For this purpose, let us assume that the pixels are laid out
on a regular rectangular grid (as is the case for real-life display devices). Let the distance
between the eye and the plane (or the effective plane, when employing optics) be R pixel
widths (i.e., we are using the pixel width as a unit of distance, not only in the display plane,
but also in the orthogonal direction). Let us measure first along the x axis of the display,
which we shall take to have its origin at the point on the display pierced by a ray going
through the eye and the Makassar Strait point (which may be visualised by placing a plane,
representing the display, against the orange at the Makassar Strait). Let us imagine that
we have a head-mountable display of resolution (say) 512 × 512, which we want to cover
the entire field of view (with a little wastage in the corners). Taking the maximum field of
view span from the Makassar Strait to be about 80◦, we can now compute R from simple
trigonometry. Drawing a triangle connecting the eye, the Makassar Strait and the extremum
pixel on the axis, and insisting that this extrumum pixel be just at the edge of the field of
view (viz. 80◦ away), we obtain

tan 80◦ =
256

R
,

where we have noted that half of the display will extend to the other side of the origin, and
hence the centre-to-extremum distance in the plane is 256 pixels. Computing the solution
to this equation, we have

R =
256

tan 80◦
≈ 45.1 pixels.

For a planar device of resolution 512×512 to just cover the entire field of view, this eye–plane
distance is absolute; virtual reality displays, unlike traditional computing environments,
by their nature specify exactly how far away the display plane must be; this is no longer
a freedom of choice. The most important question then arises: how good a resolution
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does this represent, if we simply look straight ahead? Well, in this direction, we have the
approximation dx ≈ R dθ, where dθ is the linear angle (in radians) subtended by the pixel
of width dx. Since the pixel width dx is, by definition, 1 pixel-width (our unit of distance),
we therefore find that

dθ ≈ dx

R
≈ 1

45.1
≈ 0.0222 radians ≈ 1.27◦.

So how big is a 1.27◦-wide pixel? Let us compare this with familiar quantities. The pixel at
the centre of the 640×480 VGA display mode, viewed on a standard IBM 8513 monitor from
a distance of half a metre, subtends an angle of about 2.2 arc-minutes , which is approaching
the limit of our foveal vision. Thus, our planar-display wrap-around central pixel looks about
the same as a 35 × 35 square does on a VGA 640 × 480 display—it is huge! But why is it
so huge? After all, 512 pixels of a VGA display subtend about 18.6◦ of arc at the same
half-metre viewing distance; stretch this out to cover 160◦ instead and each pixel should
get bigger in each direction by a factor of about 160/18.6 = 8.6. So why are we getting an
answer that is four times worse in linear dimensions (or sixteen times worse in terms of area)
than this argument suggests?

The answer comes from considering, as a simple example, the very edgemost pixel in the
x-direction on the display—the one that is 80◦ away from the Makassar Strait point, just
visible on the edge of our viewer’s peripheral vision. How much angle does this pixel subtend?
An out-of-hat answer would be “the same as the one in the middle”—after all, the rectangular
grid is regularly spaced. But this reasoning relies, for its approximate truth, on the fact that
conventional planar displays only subtend a small total angle anyway. On the contrary, we
are now talking about a planar device subtending a massive angle; paraxial approximations
are rubbish in this environment. Instead, consider the abovementioned relation,

x = R tan θ,

where R = 45.1 pixels in our example, and θ is the angle between the pixel’s apparent
position and the Makassar Strait. Inverting this relationship we have

θ = arctan
(

x

R

)
,

and, on differentiation,

dθ =
dx√

x2 + R2
.

For dx = 1 at x = 0 we find dθ ≈ 1/45.1 ≈ 0.0222 radians, or 1.27◦, as before; this only
applies at x = 0. For dx = 1 at x = 256, on the other hand, we find that

dθ =
1√

2562 + 45.12
≈ 0.00385 radians ≈ 0.22◦.

Thus, the pixels at the outermost edges of the visible display are subtending a linear angle
nearly six times smaller than at the centre of the display—or, in other words, it would take
about 33 extremity-pixels to subtend the same solid angle as the central pixel! But this is
crazy! We already know that the peripheral vision, outside the range of foveal tracking (the
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red circle on the orange), is sensitive to significantly less detail that the fovea! Why on earth
are we putting such a high pixel density out there? Who ordered that? Sack him!

The reason for this waste of resolution, of course, is that we have tried to stretch a planar
device across our field of view. What is perhaps not so obvious is the fact that no amount
of technology, no amount of optical trickery, can remove this problem: it is an inherent flaw
in trying to use a planar display as a flat window on the virtual world . This point is so
important that it shall be repeated in a slightly different form: Any rendering algorithm that
assumes a regularly-spaced planar display device will create a central pixel 33 times the size
of a peripheral pixel under virtual reality conditions. This is not open for discussion; it is a
mathematical fact.

Let us, however, consider whether we might not, ultimately, avoid this problem by simply
producing a higher-resolution display. Of course, one can always compensate for the factor
of four degradation by increasing the linear resolution of the device in each direction by this
factor. However, there is a more disturbing psychological property of the planar display:
pixels near the centre of view seem chunkier than those further out; it becomes psychologi-
cally preferable to look askew at objects, using the eye muscles together with the increased
outer resolution to get a better view. This property is worrying, and could, potentially,
cause eye-strain. To avoid this side-effect, we would need to have the entire display of such
a high resolution that even the central pixel (the worst one) is below foveal resolution. We
earlier showed that a 512-pixel-wide planar display produces a central pixel angular length
of about 1.27◦. Foveal resolution, however, is about 1 arc-minute at best—about what one
can get from a Super-VGA display at normal viewing distance. To achieve this, we could
simply “scale down” our pixel size, providing a greater number of total pixels to maintain
the full-field-of-vision coverage; performing this calculation tells us that we would need

512× 1.27

1/60
≈ 39000

pixels in each direction for this purpose. No problems—just give me a 39000× 39000 head-
mountable display device, and I’ll shake your hand (if I can find it, behind the 4.5 GB of
display memory necessary for even 24-bit colour, with no z-buffering or other sophistica-
tion . . . ). And all this just to get roughly Super-VGA resolution . . . do you think you have
a market?

The clear message from this line of thought is the following: planar-display rendering
has no future in virtual reality . Assumption of a planar view-plane is, in traditional com-
puter graphics applications, convenient: the perspective view of a line is again a line; the
perspective view of a polygon is also a polygon. Everything is cosy for algorithm-inventors;
procedures can be optimised to a great extent. But its performance is simply unacceptable
for wrap-around display devices. We must farewell an old friend.
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