Analytical Proof that $g_{A} \rightarrow 0$ in the Ultra-Relativistic Limit for the Harmonic Oscillator Relativistic Constituent Quark Model *

John P. Costella and Bruce H. J. McKellar
School of Physics, The University of Melbourne, Parkville, Victoria 3052, Australia (6 February 1994)

Abstract

We show analytically that $g_{A} \rightarrow 0$ in the ultrarelativistic limit for the harmonic oscillator relativistic constituent quark model.

I. PROOF

Our notation essentially follows Berestetskii and Terent'ev [2-4]. Upon application of the Melosh transformation [5] one finds that g_{A} is reduced from its non-relativistic value by a factor

$$
Z \equiv \int d \Gamma\left|\Phi\left(M_{0}^{2}\right)\right|^{2}\left\{1-2 \frac{Q_{\perp}^{2}}{Q_{\perp}^{2}+\left[m+(1-\eta) M_{0}\right]^{2}}\right\} .
$$

(This same result-without the factor of 2 in the second term-holds for the reduction in electric dipole moment [1] and the contribution of the quark anomalous magnetic moment [6].) We parametrise the harmonic oscillator potential by

$$
\Phi\left(M_{0}^{2}\right)=A \exp \left(-\frac{M_{0}^{2}}{12 \alpha^{2}}\right) .
$$

The ultra-relativistic limit, $\alpha / m \rightarrow \infty$, can be realised here by taking $m=0$ with α fixed. We then have

$$
\begin{equation*}
Z=1-2 \frac{I}{N} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
I \equiv & \frac{4}{(2 \pi)^{2}} \int \frac{d^{2} q_{\perp} d \xi}{\xi(1-\xi)} \frac{d^{2} Q_{\perp} d \eta}{\eta(1-\eta)} \frac{Q_{\perp}^{2}}{Q_{\perp}^{2}+(1-\eta)^{2}\left(\frac{Q_{\perp}^{2}}{\eta(1-\eta)}+\frac{q_{\perp}^{2}}{\eta \xi(1-\xi)}\right)} \\
& \times \exp \left\{-\frac{Q_{\perp}^{2}}{12 \alpha^{2} \eta(1-\eta)}-\frac{q_{\perp}^{2}}{12 \alpha^{2} \eta \xi(1-\xi)}\right\}
\end{aligned}
$$

[^0]and
$$
N \equiv \frac{4}{(2 \pi)^{2}} \int \frac{d^{2} q_{\perp} d \xi}{\xi(1-\xi)} \frac{d^{2} Q_{\perp} d \eta}{\eta(1-\eta)} \exp \left\{-\frac{Q_{\perp}^{2}}{12 \alpha^{2} \eta(1-\eta)}-\frac{q_{\perp}^{2}}{12 \alpha^{2} \eta \xi(1-\xi)}\right\}
$$

The quantity N takes care of the normalisation of Φ; the common factors of $4 /(2 \pi)^{2}$ are introduced for later convenience. Converting Q_{\perp} and q_{\perp} to plane polar coördinates, the angular integrations are trivially equal to 2π, and hence

$$
\begin{aligned}
I & =4 \int \frac{q Q d q d Q d \xi d \eta}{\xi(1-\xi) \eta(1-\eta)} \frac{Q^{2}}{\frac{Q^{2}}{\eta}+\frac{(1-\eta)^{2} q^{2}}{\eta \xi(1-\xi)}} \exp \left(-\frac{Q^{2}}{12 \alpha^{2} \eta(1-\eta)}-\frac{q^{2}}{12 \alpha^{2} \eta \xi(1-\xi)}\right) \\
N & =4 \int \frac{q Q d q d Q d \xi d \eta}{\xi(1-\xi) \eta(1-\eta)} \exp \left(-\frac{Q^{2}}{12 \alpha^{2} \eta(1-\eta)}-\frac{q^{2}}{12 \alpha^{2} \eta \xi(1-\xi)}\right)
\end{aligned}
$$

where $Q \equiv\left|Q_{\perp}\right|$ and $q \equiv\left|q_{\perp}\right|$ are integrated from 0 to ∞. Now change to the variables

$$
\begin{aligned}
X & \equiv Q^{2}, \\
Y & \equiv q^{2}
\end{aligned}
$$

and define the quantities

$$
\begin{aligned}
& \beta \equiv 12 \alpha^{2} \eta(1-\eta) \\
& \gamma \equiv 12 \alpha^{2} \eta \xi(1-\xi)
\end{aligned}
$$

to obtain

$$
\begin{aligned}
I & =\int_{0}^{1} d \xi \int_{0}^{1} d \eta \int_{0}^{\infty} d X \int_{0}^{\infty} d Y \exp \left(-\frac{X}{\beta}-\frac{Y}{\gamma}\right) \frac{1}{\xi(1-\xi) \eta(1-\eta)}\left(\frac{1}{\eta}+\frac{(1-\eta)^{2}}{\eta \xi(1-\xi)} \frac{Y}{X}\right)^{-1}, \\
N & =\left\{\int_{0}^{1} d \xi \int_{0}^{1} d \eta \frac{1}{\xi(1-\xi) \eta(1-\eta)}\right\} \cdot\left\{\int_{0}^{\infty} \exp \left(-\frac{X}{\beta}\right) d X\right\} \cdot\left\{\int_{0}^{\infty} \exp \left(-\frac{Y}{\gamma}\right) d Y\right\} .
\end{aligned}
$$

The X and Y integrals for N can be done immediately, leaving

$$
N=\int_{0}^{1} d \xi \int_{0}^{1} d \eta \frac{\beta \gamma}{\xi(1-\xi) \eta(1-\eta)}
$$

substituting back in the values of β and γ gives

$$
N=144 \alpha^{4} \int_{0}^{1} d \xi \int_{0}^{1} d \eta \eta
$$

N can now be finished off completely, with the ξ-integration giving 1, and the η-integration giving $1 / 2$, yielding

$$
\begin{equation*}
N=72 \alpha^{4} \tag{2}
\end{equation*}
$$

Returning, now, to I, concentrate on the X and Y integrations first. To this end, define the quantities

$$
\begin{gathered}
\delta \equiv \frac{1}{\eta}, \\
\varepsilon \equiv \frac{(1-\eta)^{2}}{\eta \xi(1-\xi)}, \\
\phi \equiv \frac{1}{\xi(1-\xi) \eta(1-\eta)},
\end{gathered}
$$

which simplifies the integral to

$$
I=\int_{0}^{1} d \xi \int_{0}^{1} d \eta \int_{0}^{\infty} d X \int_{0}^{\infty} d Y \frac{\phi}{\delta+\varepsilon \frac{Y}{X}} \exp \left(-\frac{X}{\beta}-\frac{Y}{\gamma}\right)
$$

Concentrating on the Y-integral,

$$
I_{Y} \equiv \int_{0}^{\infty} d Y \frac{\exp \left(\frac{-Y}{\gamma}\right)}{\delta+\varepsilon \frac{Y}{X}}
$$

define a new variable

$$
W \equiv \frac{1}{\gamma}\left\{Y+\frac{\delta X}{\varepsilon}\right\}
$$

which gives [7, Eq. 5.1.1]

$$
\begin{aligned}
I_{Y} & =\frac{X}{\varepsilon} \exp \left(\frac{\delta X}{\gamma \varepsilon}\right) \int_{\frac{\delta X}{\gamma \varepsilon}}^{\infty} \frac{e^{-W}}{W} d W \\
& \equiv \frac{X}{\varepsilon} \exp \left(\frac{\delta X}{\gamma \varepsilon}\right) E_{1}\left(\frac{\delta X}{\gamma \varepsilon}\right),
\end{aligned}
$$

where $E_{1}(z)$ is the exponential integral. Defining another two convenient quantities

$$
\begin{gathered}
\zeta \equiv \frac{\delta}{\gamma \varepsilon}, \\
\omega \equiv \frac{1}{\beta \zeta}-1,
\end{gathered}
$$

one can now simplify the format of the X-integral:

$$
I_{X} \equiv \frac{1}{\varepsilon \zeta^{2}} \int_{0}^{\infty} d X e^{-\omega X} X E_{1}(X)
$$

It will be noted that I_{X} is now in the form of a Laplace transform, i.e.

$$
\tilde{f}(s) \equiv \mathcal{L}\{f(t)\} \equiv \int_{0}^{\infty} d t e^{-s t} f(t)
$$

Using the fact the Laplace transform of the exponential integral is given by [8, Eq. 19.1]

$$
\mathcal{L}\left\{E_{1}(t)\right\}=\frac{1}{s} \ln (s+1),
$$

and that

$$
\mathcal{L}\{t f(t)\}=-\frac{d}{d s} \mathcal{L}\{f(t)\}
$$

one then finds that

$$
I_{X}=\frac{\ln (\omega+1)}{\varepsilon \zeta^{2} \omega^{2}}-\frac{1}{\omega(\omega+1)}
$$

Expanding the quantities ω, ζ and ε back out in terms of ξ and η, one has

$$
\begin{gathered}
\varepsilon \equiv \frac{(1-\eta)^{2}}{\eta \xi(1-\xi)}, \\
\zeta \equiv \frac{1}{12 \alpha^{2} \eta(1-\eta)^{2}}, \\
\omega \equiv-\eta
\end{gathered}
$$

giving

$$
I_{X}=144 \alpha^{4} \xi \eta^{3}(1-\xi)(1-\eta)^{2}\left\{\frac{\ln (1-\eta)}{\eta^{2}}+\frac{1}{\eta(1-\eta)}\right\}
$$

Returning now to the full expression including the ξ and η integrals, we have

$$
I=144 \alpha^{4} \int_{0}^{1} d \xi \int_{0}^{1} d \eta \eta^{2}(1-\eta)\left\{\frac{\ln (1-\eta)}{\eta^{2}}+\frac{1}{\eta(1-\eta)}\right\}
$$

As ξ has now dropped out of our equations, it can be trivially integrated to yield a factor of 1. Expanding out the braces, one finds that

$$
I=144 \alpha^{4} \int_{0}^{1}(1-\eta) \ln (1-\eta) d \eta+144 \alpha^{4} \int_{0}^{1} \eta d \eta
$$

Noting that

$$
\frac{d}{d x}\left\{-\frac{1}{2}(1-\eta)^{2} \ln (1-\eta)+\frac{1}{4}(1-\eta)^{2}\right\}=(1-\eta) \ln (1-\eta)
$$

one finally obtains the desired result

$$
\begin{equation*}
I=36 \alpha^{4} \tag{3}
\end{equation*}
$$

Inserting (2) and (3) into (1) gives the final result of

$$
\begin{aligned}
Z & =1-2 \frac{36 \alpha^{4}}{72 \alpha^{4}} \\
& =0
\end{aligned}
$$

(It should be noted that, for the equivalent electric dipole moment and anomalous magnetic moment calculations, the result is $1 / 2$, rather than zero.)

REFERENCES

[1] J. P. Costella, Honours Research Report, The University of Melbourne (November 1990).
[2] V. B. Berestetskii and M. V. Terent'ev, Yad. Fiz. 25 (1977) 653.
[3] M. V. Terent'ev and V. B. Berestetskii, Yad. Fiz. 24 (1976) 1044.
[4] M. V. Terent'ev, Yad. Fiz. 24 (1976) 207.
[5] W. Melosh, Phys. Rev. D 9 (1974) 1095.
[6] I. G. Aznauryan and N. L. Ter-Isaakyan, Yad. Fiz. 31 (1980) 1680.
[7] M. Abramowitz and I. E. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964).
[8] G. E. Roberts and H. Kaufman, Table of Laplace Transforms (W. B. Saunders, 1966).

[^0]: *This paper is taken directly from Appendix D of ref. [1].

