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Abstract

This thesis addresses various issues in relativistic electrodynamical frameworks
describing systems containing only a single particle—namely, classical electrody-
namics, and single-particle relativistic quantum mechanics. The main emphasis
is on clearing up several outstanding problems in the classical theory of pointlike
particles carrying dipole moments; the Dirac equation also considered, but only to
verify that particular results are in accord with the quantum theory.

There are three major results presented in this thesis:
Firstly, the fully relativistic classical equations of motion are obtained for a

point particle carrying electric charge and electric and magnetic dipole moments,
ignoring the effects of radiation reaction. Most of the terms of the nonrelativistic
limits of these equations have been been suggested previously, but one term of
subtle origin is new. Furthermore, some of the physical arguments used by previous
authors to explain the deviation of the magnetic dipole force from the standard
textbook result have been incorrect; these issues are discussed and clarified.

Secondly, simple yet explicit expressions are obtained for the retarded classical
electromagnetic fields, at arbitrary positions in space, generated by a point particle
carrying electric charge and electric and magnetic dipole moments, in arbitrary
relativistic motion. The manifestly covariant field expressions have been obtained
previously, but their simple and explicit expression is, to the author’s knowledge,
new. The results are comprehensively verified by means of a computer algebra
program written for the purpose.

Thirdly, the preceding results are brought together to obtain the complete
classical radiation reaction equations of motion for point particles carrying electric
charge and electric and magnetic dipole moments, in arbitrary relativistic motion.
Such an analysis has, to the author’s knowledge, only been attempted twice before,
under differing sets of assumptions; the fully classical results herein are presented
in terms of concepts that have been found to be of most use in modern electrody-
namical applications. The results are applied to the specific example of reaction
due to spontaneous M1 magnetic dipole radiation; the successes and limitations of
the completely classical analysis are discussed.
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This work has serious difficulties in it. There are many quantities appear-

ing in the theory which turn out to be infinite although they ought to be finite;

and physicists have followed all sorts of tricks to avoid these difficulties, but

the result is that the theory is in rather a mess. The departures from logic

are very serious and one really gives up all pretense of logical development in

places. I propose to follow different lines, which avoid some of the difficulties.

I won’t be able to avoid all of them, but I will avoid some of the worst ones

and I will, at any rate, be able to preserve some semblance of logic. By that

I mean that I will neglect only quantities that one can have some physical

feeling to count as small, instead of doing what people often do in this kind of

work: neglect something that is really infinitely great. It will not be possible

for me to set things out rigorously. I shall neglect things I shan’t be able

to prove are really small, but still I hope you’ll have some feeling that these

things are small.

The system of approximations I shall use will be somewhat similar to the

approximation that engineers use in their calculations. Engineers have to get

results and there are so many factors occurring in their problems that they

have to neglect an awful lot of them; they don’t have time to study everything

seriously and they develop a sort of feeling as to what can be neglected and

what can’t. I believe that physicists will have to develop a similar sort of

feeling as to what can be neglected and what can’t. The final test is whether

the resulting theory is coherent and in reasonable agreement with experiment.

—— P. A. M. Dirac (1966),

electrical engineer and physicist,

on renormalisation [70].
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Chapter 1

Overview of this Thesis

My interest in classical electromagnetism has waxed and waned, but
never fallen to zero. The subject is ever fresh.

—— J. D. Jackson (1974) [113]

1.1 Introduction

Most physicists do not share Jackson’s relative enthusiasm. Not only is inter-

est in classical electrodynamics not generally positive-definite, it frequently

crosses the axis altogether: the antipathy can be palpable.

Classical electrodynamics is not “trendy”. It is, in the minds of many,

a dead subject—a vein that was mined out long ago. Its reputation is not

helped by the disturbing tendency for “new” results to be so revolutionary

as to be incredible—literally. Many seasoned veterans of the field can re-

late to Feynman’s description [86] of another area of classical physics, since

improved:

I am getting nothing out of the meeting. I am learning noth-

ing. Because there are no experiments this field is not an active

one, so few of the best men are doing work in it. The result

is that there are hosts of dopes here and it is not good for my
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blood pressure: such inane things are said and seriously discussed

that I get into arguments outside the formal sessions (say, at

lunch) whenever anyone asks me a question or starts to tell me

about his “work”. The “work” is always: (1) completely un-

understandable, (2) vague and indefinite, (3) something correct

that is obvious and self-evident, but worked out by a long and dif-

ficult analysis, and presented as an important discovery, or (4) a

claim based on the stupidity of the author that some obvious

and correct fact, accepted and checked for years, is, in fact, false

(these are the worst: no argument will convince the idiot), (5) an

attempt to do something probably impossible, but certainly of no

utility, which, it is finally revealed at the end, fails, or (6) just

plain wrong. There is a great deal of “activity in the field” these

days, but this “activity” is mainly in showing that the previous

“activity” of somebody else resulted in an error or in nothing

useful or in something promising. It is like a lot of worms trying

to get out of a bottle by crawling all over each other. It is not

that the subject is hard; it is that the good men are occupied

elsewhere.

Given the frequent disappointments, it is all the more rewarding when a new

piece of classical physics shows itself to be a real gem. Unfortunately, they

are just as rare.

The author, being young and enthusiastic, has generated numerous “dis-

coveries” falling into one or more of Feynman’s six categories. It is thanks

to those of wiser years, listed explicitly in the Acknowledgments, who have

weathered the author’s pronunciations on these revelations, that the worst

violations of common sense have been eradicated; the most suspect assump-

tions redrafted; the most dubious arguments rigourised; and the elegance of

the resulting conclusions buffed to a high polish. The inevitable inaccuracies
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and oversights surviving this process, both in form and in substance, the

author claims ownership for.

It must be noted, from the outset, that the author is an engineer, not

a physicist or mathematician. The author’s prime objective is to obtain the

correct mathematical description of the real physical world . Elegance of such

a correct description is, by the very nature of Nature, assured; but elegance

in the particular path travelled by the author during this quest is of no

import: let others, more capable, derive the results contained herein on the

back of an envelope, by means of wonderfully beautiful techniques, secure in

the knowledge that the author’s cumbersome yet intuitively understandable

derivation rests safely on their shelves.

It should also be noted that the results obtained in this thesis are not

revolutionary. No well-known law of physics is challenged. Some gener-

ally accepted answers, of sometimes dubious origin, are put on a somewhat

more secure footing—or, at the very least, are given several additional dubi-

ous origins. Some existing results that are mathematically undeniable, but

somewhat perplexing intuitively, are viewed from a new direction, or in some

instances from several new directions; whether the eye of the beholder ap-

proves is beyond the author’s control. Some previously incomplete lines of

investigation are taken to their logical conclusion; the result is often surpris-

ingly simpler than the existing terminus. And finally there are the completely

new results, obtained after the traversing of much uncharted territory, which

may or may not be ultimately accepted as physically correct, but which, for

the moment, are the only candidates we have available to us.

If the reader finds, among these investigations, just a single paragraph

that raises the mist of one’s understanding of the physical world, then the

author has succeeded.
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1.2 What do I need to read?

If the reader wishes to find a particular result, or set of results, rumoured to

be contained within this thesis, then they should consult either the Table of

Contents, or the more detailed descriptions in the sections following this one,

to pinpoint the topic or topics of interest to them. They should also, however,

cast a glance at Appendix A, which describes the notations, conventions, etc.,

that the author has used throughout this thesis.

If, on the other hand, the reader wishes to read the entire thesis, then they

should proceed with the five non-appendical chapters following this one. Each

chapter draws on results established in the previous chapters, as a general

rule; but each may also be considered separately, if one is willing to accept

the preceding results, sight unseen. Chapters 2 and 3 review the formalism

that will be used by the author; no major new results are presented; and the

style is somewhat more didactic than that of the chapters that follow. The

major new results found by the author are presented in Chapters 4, 5 and 6,

each of which deals with one of the three problems listed in the Abstract of

this thesis.

The notations and conventions listed in Appendix A should be consulted

as and when the need arises; the material therein has been compiled and

written most carefully, to avoid ambiguity or confusion; but as a result the

style of the text is necessarily more clinical and pedantic than the discussions

contained in the other chapters of this thesis.

Material relegated to the appendices may or may not be of interest, but

in any case is not required reading. Some readers may be interested in the

computer algebra programs written by the author, whose output is contained

in Appendix G, which were used to verify and complete the algebraic consid-

erations of this thesis. Due to length restrictions, the corresponding ANSI C

source code files are not listed in this thesis; they are, however, contained in

digital copies of this thesis (see Section A.2.2).
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The following sections summarise the remaining chapters and appendices

contained in this thesis.

Chapter 2: Classical Particle Mechanics

Section 2.1: Introduction

Chapter 2 briefly reviews the various formulations of classical particle me-

chanics.

Section 2.2: Point particles

The notion of a point particle is discussed.

Section 2.3: Newtonian mechanics

Newtonian mechanics is reviewed, with an emphasis placed on those aspects

of the formalism that are frequently confused in the literature.

Section 2.4: Lagrangian mechanics

A similar review is provided of the Lagrangian and Hamiltonian formulations

of classical mechanics.

Section 2.5: The canonical–mechanical challenge

The author challenges the reader to discover how many times mechanical and

canonical quantities are confused in the volumes sitting on their bookshelves.

Section 2.6: Relativistic mechanics

The notations and quantities used by the author for relativistic analyses

are briefly introduced. Subtleties of the use of relativistic kinematics are

commented on.
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Section 2.7: Classical limit of quantum mechanics

The extent to which classical results are the limit of the corresponding quan-

tum mechanical analyses is briefly discussed.

Section 2.8: Pointlike trajectory parametrisation

Quantitative expressions are found, in a given Lorentz frame, for the fully

relativistic trajectory of a point particle around the instant that it is at rest.

Chapter 3: Relativistically Rigid Bodies

Section 3.1: Introduction

Chapter 3 discusses the problems involved in defining rigidity in the presence

of relativistic requirements, and shows that, with suitable care, they are not

insurmountable.

Section 3.2: Notions of rigidity

The Galilean and Einsteinian notions of rigidity are reviewed.

Section 3.3: Trajectories of rigid body constituents

The notion of a “constituent” is discussed. Quantitative expressions are

obtained for the trajectories of the constituents of a relativistically rigid

body. The accelerative redshift factor is derived and discussed. The spin

degrees of freedom for the constituents of the rigid body are also defined.
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Chapter 4: Dipole Equations of Motion

Section 4.1: Introduction

Chapter 4 obtains the classical relativistic equations of motion for pointlike

particles carrying electric charge and electric and magnetic dipole moments.

Radiation reaction is not included at this stage; this is investigated in Chap-

ter 6.

Section 4.2: Newtonian mechanics

Electric and magnetic dipoles are analysed using Newtonian mechanics.

Section 4.3: Lagrangian mechanics

Electric and magnetic dipoles are analysed using Lagrangian mechanics.

Section 4.4: What does the Dirac equation say?

The Dirac equation is analysed, in the Newton–Wigner representation, for

both a pure Dirac and an anomalous Pauli magnetic moment, and the result-

ing equations of motion compared to those found in the preceding sections.

Chapter 5: The Retarded Fields

Section 5.1: Introduction

Chapter 5 obtains both manifestly covariant and explicit expressions for the

retarded electromagnetic fields generated by pointlike particles carrying elec-

tric charge and electric and magnetic dipole moments.
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Section 5.2: History of the retarded dipole fields

A brief historical review is given of the work undertaken by previous authors

to obtain the retarded dipole fields. The author’s motivation, and rôle in the

saga, are noted.

Section 5.3: The Liénard–Wiechert fields

A review is provided of the derivation of the standard Liénard–Wiechert

electromagnetic fields generated by a point charge in arbitrary motion. Con-

cepts, techniques and notation to be generalised in the next section to the

case of dipole moments are emphasised.

Section 5.4: The retarded dipole fields

The retarded fields from a point particle carrying electric and magnetic dipole

moments are derived. The manifestly-covariant results are reëxpressed in

explicit, non-covariant notation, using several new convenient quantities in-

troduced by the author; the results are surprisingly simple.

Section 5.5: The static fields

The static fields generated by a spherical body of uniform charge and po-

larisation density are reviewed, with two aspects particularly emphasised:

the behaviour of the fields in the vicinity of the source volume; and the me-

chanical self-energy, mechanical self-momentum and mechanical self-angular

momentum contained within the fields.

The extra Maxwell contribution to the point magnetic dipole field is also

obtained, in manifestly-covariant form, for arbitrary relativistic motion of

the dipole.
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Chapter 6: Radiation Reaction

Section 6.1: Introduction

Chapter 6 obtains the radiation reaction equations of motion for a pointlike

particle carrying electric charge and electric and magnetic dipole moments.

Section 6.2: Previous analyses

The previous attacks on this problem by Bhabha and Corben, and Barut and

Unal, are briefly reviewed.

Section 6.3: Infinitesimal rigid bodies

Various issues arising when the relativistically rigid bodies of Chapter 3 are

of infinitesimal size are described.

Section 6.4: The sum and difference variables

The sum and difference constituent variables are introduced, and the neces-

sary mathematical groundwork for their use developed.

Section 6.5: Retarded kinematical quantities

The kinematical quantities of the generating constituents are evaluated at

their respective retarded times, and from these quantites the self-fields are

computed.

Section 6.6: Divergence of the point particle fields

The three-divergences of the fields of a point particle in arbitrary motion

are evaluated, around the worldline of the particle, with particular attention

given to the electromagnetic moment source terms implied by these diver-

gences via the Maxwell equations.
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Section 6.7: Inverse-cube integrals

Divergent integrals in rd-space are regularised using the methods of the previ-

ous section. The logarithmically divergent terms are identified and labelled,

allowing the finite contributions to the equations of motion to be extracted.

Section 6.8: Computation of the self-interactions

All of the results of this thesis are finally brought together to obtain the

radiation reaction equations of motion for point particles carrying electric

charge and electric and magnetic dipole moments.

Section 6.9: Discussion of the final equations

The final equations of motion of the previous section are discussed.

Section 6.10: Sokolov–Ternov and related effects

The Sokolov–Ternov and Ternov–Bagrov–Khapaev effects (spin-flip due to

emitted radiation) are briefly reviewed, and a subset of the author’s equations

are used to analyse the phenomena classically. The successes and limitations

of the completely classical analysis are brought into stark relief.

Appendix A: Notation and Conventions

Section A.1: Introduction

Appendix A describes in detail all the notational and other conventions fol-

lowed throughout this thesis, and should be glanced at before one reads the

body of this thesis.

Section A.2: Physical format of this thesis

It is explained that this thesis is available in both paper and digital formats.
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A description is given of the files included in digital copies of this thesis,

and instructions are given for the digital processing of the whole thesis, or

any single chapter or appendix.

The computer algebra programs included in digital copies of this thesis

are described in more detail in Appendix G.

Section A.3: Language and typography

Descriptions are given of the document preparation system used to prepare

this thesis, the spelling and punctuation choices made, the system of units

used, and the symbols used to represent quantities.

Special or ambiguous notation or nomenclature, that is either of a uni-

versal nature or is not specifically mentioned elsewhere, is defined here.

Section A.4: Enumeration sets

The terminology surrounding enumerations is borrowed from the field of

computer programming. The extra nomenclature serves to simplify the de-

scription of other mathematical operations in the following sections.

Section A.5: Special functions

Notation and physical interpretation is supplied for the Kronecker and Dirac

delta functions, and the Heaviside step function. The sign convention used

in this thesis for the alternating function is specified.

Section A.6: Associativity and commutativity

Various functions and pieces of nomenclature are established to deal with the

associativity and commutativity of quantities.
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Section A.7: Matrices

Notation and nomenclature are defined for matrix quantities.

Section A.8: Relativistic mechanics

Various issues surrounding the use of relativistic mechanics are addressed.

A substantial amount of nomenclature is given a precise definition for the

purposes of this thesis. Notation for Lorentz-covariant quantities is described

in detail, as are the operations between them, and the notation used to denote

such operations.

Notation for the kinematical quantities of a point particle’s motion is

established. Particular attention is given to the notation for the proper-time

derivatives of kinematical quantities, for which there are two subtly different

definitions (see Chapter 2).

Section A.9: Euclidean three-space

As with the previous section, a substantial amount of nomenclature is given

a precise definition, and notations are specified for various operations on

three-vectors.

Appendix B: Supplementary Identities

Section B.1: Introduction

Appendix B is a convenient collection of various mathematical identities that

are used throughout this thesis, that are either of common knowledge or can

be derived simply. Identities that require substantial argument on the part

of the author to establish their veracity are derived elsewhere in this thesis.
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Section B.2: The electromagnetic field

The definition of the electromagnetic field strength tensor F (x) in terms of

the four-potential A(x) is given. The Maxwell equations are listed in various

forms. The dual field strength tensor F̃ (x) is defined. Explicit components

are listed for F and F̃ .

Various quadratic identities involving products of F and F̃ , that are not

commonly known, are listed.

Section B.3: Three-vectors

Various identities are listed for three-vector operations. These are a copy of

those given in the front cover of Jackson [113], and are listed here only for

convenience.

Section B.4: Alternating functions

The connection between the three- and four-dimensional alternating func-

tions, according to the sign convention established in Section A.5.4, is listed.

The contractions of two four-dimensional alternating functions over one, two,

three and four indices are given explicitly.

Section B.5: Four-vector cross-product

Explicit components for the four-vector cross-product operation, defined in

Section A.8.10, are given. Cyclic invariance of the four-cross-product is il-

lustrated.

Section B.6: Radiation reaction gradients

Various explicit expressions are given for the gradients of field expressions in

some given direction. These are used for the gradient-force radiation reaction

calculations in Chapter 6.
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Appendix C: Supplementary Proofs

Section C.1: Introduction

Appendix C contains various explicit proofs that are not of sufficient impor-

tance to be included in the body of the thesis, but whose inclusion may be

of use to some readers.

Section C.2: Mechanical field excesses

The excess in mechanical energy and mechanical momentum of the electro-

magnetic field due to the bringing of an electric charge into the vicinity of

other electric sources are computed.

Section C.3: Electromagnetic field identities

Proofs are supplied for various identities listed in Section B.2.12.

Appendix D: Retarded Fields Verification

Section D.1: Introduction

Appendix D shows that the manifestly covariant retarded dipole fields ob-

tained by the author in Chapter 5 agree with the expressions previously

obtained by Cohn and Wiebe in 1976.

Section D.2: The Cohn–Wiebe field expressions

The final potential and field expressions obtained by Cohn and Wiebe are

listed, together with comments about their conventions and notation.
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Section D.3: Conversion of conventions

The Cohn–Wiebe potential and field expressions are transformed to take into

account the differences between their basic conventions, and those used in

this thesis.

Section D.4: Conversion of notation

The notation used for the quantities appearing in the potential and field

expressions of the previous section is converted to the notation used for the

equivalent quantities in this thesis.

Section D.5: Verification of the retarded potentials

It is shown that the Kolsrud–Leer four-potential agrees with that extractable

from the author’s derivation in Chapter 5.

Section D.6: Verification of the retarded fields

The Cohn–Wiebe field expressions are converted into the notation used in

this thesis. It is shown that results obtained by the author in Chapter 5

agree with the converted Cohn–Wiebe expressions.

Appendix E: The Interaction Lagrangian

Section E.1: Introduction

Appendix E provides a brief derivation of the most general electromagnetic

interaction Lagrangian possible for a spin-half particle, and obtains its clas-

sical limit.
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Section E.2: Quantum field theory

The most general electromagnetic interaction vertex possible for a spin-half

particle is obtained from the point of view of quantum field theory, and

reduced to its simplest form.

Section E.3: The classical limit

The Lagrangian corresponding to the general interaction vertex function is

obtained, in the classical limit, and the electromagnetic moments identified.

Section E.4: Source-free regions

The classical interaction Lagrangian is examined in source-free regions; it is

found that the equations of motion derived therefrom simplify considerably.

Appendix F: Published Paper

Section F.1: Introduction

Appendix F contains a verbatim copy of the published paper that arose from

the work described in Chapter 4.

Appendix G: Computer Algebra

Section G.1: Introduction

Appendix G contains all of the information about the computer algebra pro-

grams written by the author to compute and verify the algebraic results

contained in this thesis.
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Section G.2: Description of the programs

Descriptions are given of each of the five computer algebra programs written

by the author: what they do, how they do it, and why they were written in

the first place.

Section G.3: Running the programs

Detailed instructions are given for running the five ANSI C programs written

by the author, and viewing the output, on one’s local computer system.

(Needless to say, the programs are only included in digital copies of this

thesis.)

Section G.4: kinemats: Kinematical quantities

Herein is the full-LaTEXed output of the program kinemats, which computes

various kinematical quantities required in this thesis.

This section serves as an appendix in its own right: much reference mate-

rial is contained here that is not listed elsewhere. The fact that this section

was in fact written by a computer, and not a human, should be ignored: the

author has “written through” the C code with explanatory text, so as to

make the output understandable.

(To watch this section being written before your very eyes, refer to Sec-

tion G.3.)

Section G.5: retfield: Retarded fields

As with the previous section, this section contains the fully LaTEXed output of

the program retfield, which verifies the explicit retarded field expressions

obtained by the author in Chapter 5.

The material in this section is not, however, of great reference value—the

main purpose of the program being the verification of manually-computed
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results, not the establishment of new results.

Section G.6: radreact: Radiation reaction

This section contains the fully LaTEXed output of the program radreact,

the most complex program of the five written by the author for this thesis. It

verifies the pointlike particle trajectory parametrisation of Chapter 2, and the

relativistically rigid body constituent trajectories of Chapter 3. It then uses

the results of the program retfield to compute the self-fields generated

by an infinitesimal relativistically rigid body. From these expressions, the

radiation reaction self-interaction equations of motion are obtained.

As with Section G.4, the contents of this section serve as an appendix in

their own right: much material contained here is not fully listed anywhere

else.

Again, although this section was written by a computer, the author’s

parenthood is manifest.

Section G.7: test3int: Testing of 3-d integrations

This section contains a copy of the ASCII text output of the program test-

3int, which verifies explicitly the correct functioning of the 3-d integration

routines used in the program radreact.

Section G.8: checkrs: Checking of inner integrals

This section contains a copy of the ASCII text output of the small pro-

gram checkrs, which performs a rudimentary numerical integration used

to explicitly verify the integrity of the inner (rs) integral results, derived

analytically in Chapter 6.
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Bibliography

As with any area of classical physics, the compilation of an exhaustive bib-

liography is probably not only impossible, but also futile. The Bibliography

included by the author in this thesis is therefore a compromise between utility

and practicality.

The works that the author has used as a basis for his investigations are

listed without fail. Important works with a direct bearing on or relevance

to the topics covered in this thesis are also included, especially where they

themselves contain an important list of references. Works of only subsidiary

or passing importance are sometimes included, but sometimes not, depending

on the whims of the author; if a number of works cover essentially the same

ground, a subset may be selected as more suiting the author’s tastes than the

others. Textbooks are referred to where necessary, but the author has not

felt the need to compare the merits of the coverage of every topic in every

textbook available; in practice, Jackson [113] and Goldstein [96] are used by

default, except where a particular topic is covered in noticeably more depth

elsewhere.

Of course, there always exists the possibility, despite vigorous efforts to

the contrary, that entire lines of investigation by previous workers, into the

topics covered in this thesis, have evaded the author’s detection altogether;

the sheer volume of literature covering the decades of relevance to this the-

sis, together with the lack of computerised search systems for such ageing

tomes, makes this a serious concern. If any such major works do exist in the

literature, somewhere, then the author may confidently state that they are

not well-known—or, at any rate, not well-cited—by contemporary workers;

and hence it may reasonably be argued that any controversy that may erupt

over the author’s omission of such a work from his Bibliography would be

quite a healthy contribution to the current state of awareness of the physics

community. Regardless, it is hoped that any omissions, major or minor, will
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be forgiven by their respective authors (where still living).

To make the Bibliography most user-friendly, in its paper form, the entries

are sorted alphabetically on the surname of the first author, and then by year

of publication; but also, for each and every co-author, a cross-reference entry

has been inserted. (This only applies if there are five or less authors; if

there are more than five, only the first is listed, and “et al.” appended; there

are no cross-references in this case.) Thus, for example, if one recalls that

Telegdi wrote an important paper on spin precession, but one cannot recall

the reference, then the entry Telegdi (1959) directs the reader to the Barg-

mann–Michel–Telegdi paper, without one having to recall that Bargmann

was the first author. This means that the total number of entries in the

Bibliography is actually the sum of the products of the number of publications

contained therein by the number of authors of each publication—rather than

simply the number of publications, as is usually the case; it is felt that the

convenience of this method to the reader outweighs the additional few pages

it adds to the length of this thesis.

Now, let the Games begin.
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Chapter 2

Classical Particle Mechanics

I derive from the celestial phenomena the forces of gravity with which
bodies tend to the sun and the several planets. Then from these forces,
by other propositions which are also mathematical, I deduce the mo-
tion of the planets, the comets, the moon, and the sea. I wish we could
derive the rest of the phenomena of Nature by the same kind of rea-
soning from mechanical principles, for I am induced by many reasons
to suspect they all may depend upon certain forces by which the parti-
cles of bodies, by some causes hitherto unknown, are either mutually
impelled towards one another, and cohere in regular figures, or are
repelled and recede from one another. These forces being unknown,
philosophers have hitherto attempted to search Nature in vain; but I
hope the principles laid down here will afford some light either to this
or some truer method of philosophy.

—— I. Newton (1686) [158]

2.1 Introduction

Three hundred and eight years later, a truer method of philosophy has not

yet become apparent. We still understand Nature by tearing it into smaller

and smaller pieces, and trying to understand the interactions between the

most fundamental constituents we find.

To date, we have not been able to tear the electron into smaller pieces.

The muon and tauon decay, but appear to be as structureless as the elec-
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tron. The proton and neutron clearly have structure—arguably described

quite well by quarks and gluons,—but may in many situations be considered

approximately “elementary”.

These are the “particles” the author has in mind when talking of “Single-

Particle Electrodynamics”—although they will rarely be referred to by name

again. Rather, this thesis considers the question of obtaining the correct

theoretical equations of motion, according to classical electrodynamics, for

idealised pointlike particles, carrying various electromagnetic moments. Al-

though practical applications are at all times uppermost in the author’s mind,

the explicit consideration of such applications lies, in general, outside the

scope of this thesis.

In this chapter, we review various aspects of classical particle mechanics

that will be used in the remainder of this thesis. Emphasis is placed on

those aspects of the mathematical framework that are, in the view of the

author, either contentious, not widely appreciated, or cumbersomely formu-

lated; results that are well-known, and not under challenge, are simply listed

for convenience—the reader being referred to standard texts (e.g., [96, 113])

for elaboration.

2.2 Point particles

For simplicity and practicality, this thesis is, ultimately, concerned with

the classical behaviour of point particles : particles of zero spatial extent.

(See Section A.3.15.) Following the guidelines of Section 2.1, we do not con-

cern ourselves with the question of whether any physical particles are, in

fact, pointlike, but rather simply note that concentrating our attention to

point particles both leads to considerable simplification of the equations of

motion, and is found to be in practice a most useful approximation.

It should be noted, in passing, that it is not correct to use the adjec-

tives pointlike and structureless interchangeably, and such practice should
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be eradicated. For example, one may quite validly consider a classical model

of an electric dipole as two electric charges on the ends of a stick; if this is

shrunk to infinitesimal size, then it is pointlike, but arguably not structure-

less . Mathematically, equating these two adjectives correponds to deeming

that any non-trivial function of zero extent be a delta function; but one may

also have derivatives of delta functions (as with the point dipole example

above) that are of zero extent.

However, the converse generalisation is arguably a reasonable one: any

object that is not pointlike must have some sort of “structure” keeping it a

finite size, even if, in some cases, this structure might be rather featureless.

2.3 Newtonian mechanics

The formulation of mechanics that is arguably the simplest to understand is

that originally set out by Newton, summarised at the head of this chapter.

In Newton’s way of reckoning, each body possesses a “quantity of matter”,

which we now refer to as its mass, m, and a “quantity of motion” [158],

p ≡ mv (2.1)

(where v is the velocity of the body), which does not change unless some

sensible force is applied to the body. This definition of force would be circular,

except for the fact that Newton prescribed the forces that should apply to

objects, as Laws of Nature. Of course, Newton himself only laid down a

law for gravitation, not one for electrodynamics, nor the laws by which the

“particles of bodies cohere in regular figures”; but from his comments above

we see that he believed that ultimately all of physics could be described in

terms of a few universal forces between elementary types of object.

We shall now review various elementary aspects of the Newtonian for-

mulation of mechanics. In some cases we shall make definitions that do not

accord with popular practice; these definitions are those the author feels are
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most appropriate in the task of removing some of the confusion that often

surrounds the concepts involved.

2.3.1 Mechanical momentum

Today, we refer to Newton’s “quantity of motion”, p, by the term mechanical

momentum. In what may at first appear to be pedantry, the author will never

delete the adjective “mechanical” from the term “mechanical momentum”, in

this thesis; and, furthermore, the author will always use the symbol p for the

mechanical momentum, and will not use this symbol for any other quantity .

The reason for the author’s insistence on this point will be manifestly

clear by the end of Chapter 4.

If one trades-in Galilean mechanics in favour of Einsteinian mechanics

(to be discussed in more detail shortly), the definition of the mechanical

momentum is simply upgraded:

p ≡ mγv,

where every appearance of a velocity v implies the definition of a correspond-

ing gamma factor ,

γ ≡ 1√
1− v2

,

and where our choice of units is described in Section A.3.4.

2.3.2 Mechanical energy

Of a supplementary but useful rôle in Newtonian physics is the mechanical

energy of a particle, which, in Galilean mechanics, is given by

W ≡ 1

2
mv2. (2.2)

Again, the author shall always refer to the quantity (2.2) using the adjective

mechanical , and shall always use the symbol W .

42



In upgrading to Einsteinian mechanics, one finds that the mechanical

energy is in fact given by the expression

W ≡ mγ. (2.3)

Expanding (2.3) as a power series in v, one finds

W = m +
1

2
mv2 + O(v4). (2.4)

The first term in (2.4), m, is referred to as the mechanical rest-energy . The

second term shows that the Galilean result (2.2) is the first correction to the

mechanical energy, i.e., the lowest-order term that has a velocity dependence.

The full mechanical energy, minus the rest-contribution, is often referred to

as the kinetic energy ,

Wk ≡ m(γ − 1).

The mechanical energy and mechanical momentum in fact constitute a

four-vector in relativistic physics:

p ≡ mU = (mγ, mγv),

where we are applying the notation and conventions of Section A.8.

2.3.3 Forces

As described above, the fundamental concept in Newtonian mechanics is the

force. For a body of mass m, the force due to some outside agent is defined

to be the time rate of change of the mechanical momentum, when the force

in question is the only force applied to the body:

F ≡ dtp. (2.5)

To upgrade from Galilean to Einsteinian mechanics, the only changes

required in (2.5) are that the lab-time derivative is converted into the proper-

time derivative, and the left-hand side needs to be given a distinguishing label
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(see Section A.8):

f ≡ dτp. (2.6)

Note that (2.5) (or (2.6)) is the only definition of force admitted in this

thesis.

It is an assumption of Newtonian mechanics that forces are superposable:

the net force on a body is the vectorial sum of the various forces applicable

to it. (This applies to Galilean and Einsteinian mechanics equally.) This of

course implies that the mechanical momentum of a body is a quantity that

is “collected” by the body in a linear fashion.

2.3.4 Free particles

In Newtonian mechanics, a particle is “free” if it is not under the influence of

any known force. The Newtonian description of a free particle is thus simply

that the force on it vanishes:

F = 0,

so its mechanical momentum is a constant:

dtp = 0. (2.7)

Of course, this definition is quite circular, albeit intuitively understand-

able: one only knows that a particle is free because it travels in a straight

line at constant speed.

2.3.5 The electromagnetic field

In classical physics, one takes the electromagnetic field to be a classical,

continuous c-number field.

It does not really make any sense to talk about the electromagnetic field in

terms of Galilean kinematics: since the photon is massless, there is no “non-

relativistic limit” in which the field transforms even approximately correctly

via the Galilean transformations.
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In Einsteinian mechanics, the electromagnetic field satisfies Maxwell’s

equations :

∇·B ≡ 0, (2.8)

∇×E + ∂tB ≡ 0, (2.9)

∇·E ≡ ρ, (2.10)

∇×B − ∂tE ≡ J . (2.11)

The homogeneous Maxwell equations (2.8) and (2.9) tell one that the six

components of the fields E and B may in fact be completely specified in

terms of four quantities Aµ ≡ (ϕ, A):

E ≡ −∇φ− ∂tA,

B ≡ ∇×A. (2.12)

However, the Aµ are not directly manifested physically. They are also arbi-

trary up to a gauge transformation:

Aµ −→ Aµ + ∂µΛ.

The electromagnetic field also possesses mechanical energy, mechanical

momentum and mechanical angular momentum densities . These are given

by

Wρ(x) =
1

2

{
E2(x) + B2(x)

}
, (2.13)

pρ(x) = E(x)×B(x), (2.14)

sρ(x) = x×pρ(x). (2.15)

The former two densities are a part of the electromagnetic mechanical stress-

energy tensor , T µν :

T 00 =
1

2

{
E2 + B2

}
,
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T 0i ≡ T i0 = E×B,

T ij =
1

2
(E2 + B2)δij −EE −BB. (2.16)

The mechanical stress-energy tensor T µν is always symmetric—not just for

the electromagnetic field, but in complete generality. We shall always use the

symbol T µν for the mechanical stress-energy tensor, and not for any other

quantity; and we shall always use the adjective “mechanical”.

The mechanical angular momentum density (2.15) is likewise contained

in the mechanical angular momentum density rank-3 tensor :

Mαβγ ≡ Tα[βxγ].

We shall always use the symbol Mαβγ for the mechanical angular momentum

tensor, and not for any other quantity; and shall always use the adjective

“mechanical”.

2.3.6 Electrically charged particles

If a particle possesses an electric charge q, then the corresponding Law of

Nature for its Newtonian force is the Lorentz force law :

F = q(E + v×B), (2.17)

where E and B are the electric and magnetic field at the position of the

particle respectively.

The power into the electric charge,

P ≡ dtW,

is, for an electric charge, simply given by

P = q(v ·E), (2.18)
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which simply corresponds to the change in mechanical energy implied by the

Lorentz force (2.17); there is no power into a stationary electric charge.

In Einsteinian mechanics, the Lorentz force (2.17) is actually still correct,

if F is taken to be dtp; in manifestly covariant terms, the result is

f = qF ·U.

The vanishing of the power (the zero-component of f) for v = 0 then tells

us that the mass of an electric charge is a constant of the motion:

ṁ ≡ f ·U = 0. (2.19)

The result (2.19) may seem trivial, but it is not the case for an arbitrary

dipole moment (see Chapter 4), which may gain mechanical rest-energy, in

the general case.

2.3.7 Conservation laws

It is a postulate of Newtonian physics that, for a closed system, mechani-

cal energy, mechanical momentum and mechanical angular momentum are

always conserved .

It was primarily to ensure that these conservations laws were satisfied that

the electromagnetic field was ascribed the mechanical densities (2.13), (2.14)

and (2.15). Thus, in one sense, the satisfaction of the conservation laws was

“rigged” after the fact; but one must also note that it is a non-trivial feature

that such conservation can be achieved by defining mechanical field densities

that are local , and involve only the quantities E(x) and B(x).

2.3.8 Conservation derivation of the Lorentz force

If one examines the situation carefully, one finds that the definitions made

above for the Lorentz force law, the Maxwell equations, the mechanical field
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densities and the conservation laws contain a redundancy: given any three

definitions, the fourth actually follows as a consequence.

The choice of which definition is “consequential” is of course arbitrary. In

practice, either the mechanical field density or the Lorentz force is generally

derived from the other three. Let us illustrate the latter, with a simplified but

indicative outline of the argumentation required: If one considers a system

of just two electric charges , of finite separation, then, when they are both at

rest, it is simple to show that the excess in the mechanical field energy , com-

pared to the case when the two charges are infinitely separated, is simply the

Coulomb-gauge scalar potential of either particle, evaluated at the position

of the other particle, and multiplied by this other particle’s charge:

∆Wfield = q1ϕ2(z1) = q2ϕ1(z2).

(See, e.g., Jackson [113, Sec. 1.11]; a copy of this proof is supplied in Sec-

tion C.2.1.) In the general case, the second charge may be replaced by an

arbitrary number of generating charges (see Section C.2.1); one then has

Wexcess = qϕ(z),

where we write q for the charge being brought into the midst of the other

charges generating ϕ(r); z is the position of the charge q. Similarly, when a

charge is brought into the vicinity of a magnetic field distribution B(r), the

excess in the mechanical field momentum can be shown to be the Coulomb-

gauge vector potential of the sources generating the B(r), evaluated at the

position of the charge brought in:

∆pfield = qA(z).

(A proof of this result is supplied in Section C.2.2.) Now, the elementary

“conservation of mechanical energy” derivation of the force on an object (see,

e.g., [96]) shows that the mechanical momentum p of the object must satisfy

dtp +∇Wexcess = 0,
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in order to conserve energy. But this elementary derivation assumes that only

the mechanical energy of the system is affected by the position and velocity

of the object. Its extension to the case where the mechanical momentum is

also affected is straightforward: one simply finds, for the case of the electric

charge above,

dt

{
p + qA(z)

}
+ q∇

{
ϕ(z)− v ·A(z)

}
= 0, (2.20)

in order that the total mechanical energy and mechanical momentum of the

system be conserved. By noting the vector identities of Section B.3, one can

quickly show that the equation of motion (2.20) yields simply the Lorentz

force law , (2.17).

The author does not believe he has seen an analysis such as the one above

for the case of arbitrarily accelerated particles (since then the arbitrarily

violent effects of retardation are not to be ignored), in arbitrarily relativistic

motion, but one would expect that the same result would hold, since we

know that the Lorentz force does work, experimentally, regardless of the

particular motion of the source of the electric and magnetic fields experienced.

Furthermore, we shall find, shortly, a method of derivation of the Lorentz

force quite similar to the one reviewed above, but which is in fact a local

formulation of the problem, which can therefore be assumed to hold for

arbitrary motion of the particles involved.

Any derivation of a force equation of motion using such “conservation of

mechanical four-momentum” principles must be performed extremely care-

fully, since one must integrate expressions over all space, and take into ac-

count all variations in the motion of the particles involved. One must also, of

course, ensure that one deals solely with the mechanical quantities as defined

above; this seems like a trivial warning, but it has been ignored a surprising

number of times. However, if all subtleties are given due respect, this method

of derivation is most definitely valid.
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2.4 Lagrangian mechanics

An alternative, and most fruitful, formulation of classical mechanics is that

due to Lagrange and Hamilton. One postulates a Lagrangian function, L,

that depends on some number n of generalised coördinates of the system,

labelled qa (where a runs from 1 to n); their first time-derivatives, denoted

q̇a; and the time t. One then further postulates that the motion of the system

from time t1 to time t2 is such that the line integral

I ≡
∫ t2

t1
L dt, (2.21)

referred to as the action, has a stationary value for the actual motion of the

system, where the two end-points are fixed. From this principle, it a merely

mathematical problem to show [96] that the system evolves according to the

Euler–Lagrange equations :

dt

(
∂q̇aL

)
− ∂qaL = 0. (2.22)

Because the end-points of the variation are fixed, the Euler–Lagrange equa-

tions are unchanged if a total time derivative is added to the Lagrangian:

L −→ L + dtΓ .

We thus seen that, in Lagrangian mechanics, the fundamental mathemat-

ical quantity is the Lagrangian function; equally important is a knowledge of

the appropriate degrees of freedom, qa, for the physical system in question.

We shall now describe various definitions and specifications, for the use

of the Lagrangian formulation of mechanics in this thesis, as was done in

Section 2.3 for the Newtonian formulation.
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2.4.1 Generalised velocities

If the degree of freedom qa is a “generalised coördinate” for the physical

system in question, then it is clearly suitable for one to refer to the quantity

q̇a (2.23)

as the “generalised velocity” for that degree of freedom. However, no particu-

lar symbol will be assigned to this quantity other than the explicit expression

(2.23), except where it happens to cöıncide with another quantity that does

possess a special symbol.

2.4.2 Canonical momentum

It is convenient to refer to the quantity

∂q̇aL (2.24)

appearing in the Euler–Lagrange equation (2.22) by a new name and nota-

tion. Unfortunately, due to historical reasons, this quantity has generally

been referred to by a symbol already reserved by the author above; and by a

term confused with one used by the author above. To avoid any possibility of

confusion or error, in this thesis, the author shall always refer to the quantity

(2.24) as the canonical momentum conjugate to the coördinate qa, or simply

a canonical momentum coördinate; but under no circumstances will the ad-

jective “canonical” be omitted. He will furthermore assign a new symbol to

this quantity, with no particular historical precedent to justify his choice,—

and indeed no particular justification at all for the choice, other than the

fact that it is as easy to write and print as the conventional symbol—being

simply a spatial reflection of it,—while being unambiguously distinguishable

from the quantities already defined in the previous sections; but most impor-

tantly being the symbol the author has simply become used to using for the
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canonical momentum:

ba ≡ ∂q̇aL. (2.25)

Readers who work exclusively in the field of Quantum Mechanics will no

doubt protest at the author’s choice of symbol for the canonical momentum,

running contrary to the popular choice p; but readers who work exclusively in

the field of General Relativity will without an equal amount of doubt welcome

it with open arms—the symbol p being standard notation for the mechanical

momentum; and readers who work in both fields are probably simply glad

the author realises that a notational conflict exists at all ;—gladder still that

the author will scrupulously avoid any pathetic confusion between p and b in

the remaining pages of this thesis.

To summarise, the definition (2.25) states the following, according to the

author’s notation and nomenclature: the canonical momentum coördinate ba,

conjugate to the generalised coördinate qa, is given by the derivative of the

Lagrangian L with respect to the generalised velocity q̇a of that coördinate.

2.4.3 The Hamiltonian function

The Euler–Lagrange equations of motion (2.22) above are obtained from

the Lagrangian L, which is a function of the generalised coördinates, the

generalised velocities, and the time. We may alternatively seek a description

of the system in terms of the generalised coördinates, the canonical momenta,

and the time. It may be shown (see, e.g., [96]) that the equations of motion

of the system can be so framed, and are encapsulated in the Hamiltonian

function,

H(qa, ba, t) ≡ q̇aba − L(qa, q̇a, t), (2.26)

where we are employing the Einstein summation convention of Section A.3.8.

Starting from the Euler–Lagrange equations (2.22) one then finds that the

generalised coördinates and canonical momenta evolve according to

q̇a = ∂baH, (2.27)
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−ḃa = ∂qaH, (2.28)

and the partial time derivatives of the Lagrangian and Hamiltonian functions

are themselves related by

−∂tL = ∂tH.

When one examines the Hamiltonian formalism from the point of view of

relativistic mechanics, one finds that the Hamiltonian function is in fact the

zero component of a four-vector , the spatial parts of which are the canoni-

cal momentum coördinates conjugate to the spatial translational degrees of

freedom of the system as a whole. This four-vector is always referred to as

the canonical four-momentum in this thesis, and is always denoted

bµ ≡ (b 0, b) ≡ (H, bx, b y, b z). (2.29)

In quantum mechanics, one computes eigenvalues of the Hamiltonian op-

erator H. These are referred to as canonical energy eigenvalues in this the-

sis, or simply canonical energies ; the adjective “canonical” is never omitted.

They are always denoted by the symbol

E,

and this (scalar) symbol is never used for any other quantity.

2.4.4 Free particles

The case of a free particle is not as trivial in Lagrangian mechanics as it is in

Newtonian mechanics: we must determine the degrees of freedom applicable

to a free particle, as well as a suitable Lagrangian function. For the former

consideration we take the three components of the spatial position of the

particle,

z, (2.30)
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to be the appropriate degrees of freedom qa. For the free-particle Lagrangian,

one simply postulates the function

L =
1

2
m(dtz)2 ≡ 1

2
mv2. (2.31)

The Euler–Lagrange equations (2.22) for the three degrees of freedom z then

yield

dt(mv) = 0. (2.32)

To provide a more explicit (albeit in this case quite trivial) comparison

with the result of Newtonian mechanics, we can alternatively write the re-

sult (2.32) in terms of the mechanical momentum p—keeping uppermost in

our minds that mechanical quantities are not actually native to Lagrangian

mechanics—to yield

dtp = 0,

which is of course identical to (2.7).

We can also analyse the free particle in the Hamiltonian formalism. From

the Lagrangian (2.31), we find that the canonical momentum components b

conjugate to the degrees of freedom z are given by

bi ≡ ∂vi
L = mvi;

in other words,

b = mv. (2.33)

Thus, for a free particle, the canonical momentum and mechanical momen-

tum are equal. But it should be most carefully noted that, out of all the

systems considered in this thesis, this equality of canonical and mechanical

momentum only holds true for the case a free particle; it is in large part

due to this equivalence in one special case that these two quantities have,

historically, been erroneously equated in general situations.
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Let us return to the expression (2.33) for the free-particle canonical mo-

mentum. Using this in (2.26), we find

H = v ·(mv)− 1

2
mv2;

hence, the value of the Hamiltonian is simply given by

H =
1

2
mv2.

However, we must now eliminate the generalised velocity coördinates v in

favour of the canonical momentum coördinates b, since H must be expressed

as a function of the qa and ba (and t) only, not the q̇a. We can perform this

elimination by using the relation (2.33), yielding

H(z, b, t) =
b2

2m
.

We can now use the Hamiltonian H as a starting point , pretending that

we had not seen its method of derivation above. The first set of Hamilton’s

equations (2.27) yield

v =
b

m
, (2.34)

which seems trivial, but which is (in more general situations) a vitally im-

portant piece of information. The second set of Hamilton’s equations (2.28)

yields

dtb = 0, (2.35)

or, on using (2.34),

dt(mv) = 0,

again the elementary Newtonian result.

2.4.5 The electromagnetic field

We must now consider the question of obtaining a description of the classical

electromagnetic field in Lagrangian terms. This is not, a priori , a trivial
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task. Firstly, we need to select appropriate degrees of freedom for the elec-

tromagnetic field. We then need to postulate a suitable Lagrangian function

that reproduces the Maxwell equations.

Fortunately, this problem has been around for a long time, and a suitable

formulation found: one treats the four components of the four-potential Aµ

as the degrees of freedom for the field, at each and every spacetime point x.

It is straightforward to verify (see, e.g., [113, Sec. 12.8], or [96, Chap. 12])

that an action principle for a continuous field of degrees of freedom φ(x),

over some space x, yields Euler–Lagrange equations of motion

∂α

(
∂∂αφL

)
− ∂φL = 0, (2.36)

where L is a Lagrangian density in the space x.

For the electromagnetic field, a suitable Lagrangian density is given by

[113, Sec. 12.8]

L = −1

4
FαβFαβ − JαAα, (2.37)

where Jα(x) is the electromagnetic source current density,

J(x) ≡ (ρ(x),J(x)),

and where the notation Fαβ in (2.37) is, in this case, merely a shorthand way

of writing the derivatives of the four-potential components:

Fαβ ≡ ∂αAβ − ∂βAα. (2.38)

Applying the Euler–Lagrange equations (2.36) to the Lagrangian (2.37) with

the identification (2.38), one finds

∂ ·F = J,

the covariant expression of the inhomogeneous Maxwell equations. (The ho-

mogeneous Maxwell equations are axiomatic if we assume the four-potential

A(x) to be fundamental.)
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The electromagnetic field also possesses canonical energy, canonical mo-

mentum and canonical angular momentum. These are most simply written

in terms of the canonical stress-energy tensor , Θ µν , which, for a set of con-

tinuous field φa(x), is defined as [113, Sec. 12.10]

Θ αβ ≡ ∂βφa · ∂∂αφaL − gαβL. (2.39)

(We use a different notation to that of Jackson, whose use of T µν for two

different quantities is confusing.) The canonical stress-energy tensor Θ αβ is

the covariant field generalisation of the definition (2.26) of the Hamiltonian

function H (which is, as noted, simply the canonical energy of the system).

For the electromagnetic field, one finds [113, Sec. 12.10]

Θ αβ = −F α
µ∂

βAµ +
1

4
gαβFµνF

µν + gαβJµAµ. (2.40)

One can similarly define the canonical angular momentum rank-3 tensor :

Ξ αβγ ≡ Θ α[βxγ]. (2.41)

We shall always use the adjective “canonical” when referring to the ten-

sors (2.39) and (2.41), and will always use the symbols Θ µν and Ξ αβγ.

It should be noted that the canonical stress-energy tensor (2.39) (or

(2.40)) and the canonical angular momentum tensor (2.41) are not sym-

metric. They also do not, in general, have any direct connection with the

mechanical stress-energy and angular momentum tensors defined in Sec-

tion 2.3.5, although certain terms are contained in both (see, e.g., [113,

Sec. 12.10(b)]).

On the other hand, the canonical stress-energy tensor (2.39) possesses

other qualities, that (if properly used) can make it even more powerful than

its mechanical counterpart: it can be obtained for arbitrary fields, not just

the electromagnetic;—its definition is set, rather than expressions postulated

for each physical application; it automatically proves the conservation of
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canonical energy, canonical momentum and canonical angular momentum

for a closed system; and it has a much closer connection with group theory ,

which is formulated completely in canonical—not mechanical—terms.

2.4.6 Electrically charged particles

We now consider the problem of obtaining the motion of a charged particle

from a Lagrangian viewpoint. The source term −JµAµ of (2.37) suggests

that we should try the Lagrangian

L =
1

2
mv2 − q(ϕ− v ·A) (2.42)

for the nonrelativistic charged particle. Computing first the canonical mo-

mentum coördinates b conjugate to the position variables z, we find

bi ≡ ∂vi
L = mv + qA. (2.43)

Now, since the nonrelativistic quantity mv is simply the mechanical momen-

tum, we find the most important relation

b = p + qA, (2.44)

or, alternatively,

p = b− qA. (2.45)

The result (2.44) or (2.45) is referred to as the principle of minimal coupling .

It is clear why one most definitely needs to have distinct and unambigu-

ous notation and nomenclature for the mechanical and canonical momenta:

even for the simplest electrodynamical case of an electric charge, these two

quantities are not identical.

Let us now turn immediately to the Euler–Lagrange equations (2.22). For

the Lagrangian (2.42), using the result (2.44), we find

dt(p + qA) + q∇(ϕ− v ·A) = 0.
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Collecting together the terms involving q onto the right-hand side, using the

convective derivative of the field A,

dtA ≡ ∂tA + (v ·∇)A,

and employing the vector identities of Section B.3, we thus find [96, Sec. 1–5]

dtp = −q∇ϕ− q∂tA + qv×(∇×A);

noting the identities (2.12), we thus find

dtp = q(E + v×B), (2.46)

the Lorentz force expression (2.17).

The derivation leading to (2.46) may seem familiar to the reader. It

should: it in fact gives identical expressions to the mechanical conservation

method of derivation of the Lorentz force law outlined in Section 2.3.8. We

can now begin to see the connection between the canonical and mechanical

quantities more clearly—but it is most important to get the relationships

absolutely correct: the canonical momentum of a charged particle includes

both the mechanical momentum of the charge, plus the mechanical momen-

tum excess contained in the electromagnetic field due to the electric charge’s

vicinity to the other charges in the Universe generating the “external” fields

E and B.

Note carefully the concepts involved here: One can derive the Lorentz

force either by insisting on conservation of the total mechanical momentum

of the system—particle plus field;—or one can use the Lagrangian framework

to obtain the equation of motion for the canonical momentum expression,

which itself includes the mechanical field momentum excess . These meth-

ods of derivation are mutually exclusive: one does not and cannot add the

“hidden field momentum” to the Lorentz force law itself: it has already been

taken account of . This point may seem obvious; but a careful and unam-

biguous recognition of the subtle issues involved here will be vital for the

considerations of Chapter 4.
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Let us return to the electric charge Lagrangian (2.42). We can obtain a

Hamiltonian description of the system by again using the result (2.26):

H ≡ v ·b− L

= v · (mv + qA)−
{

1

2
mv2 − q(ϕ− v ·A)

}

=
1

2
mv2 + qϕ.

We again must convert the functional dependence of this result, from be-

ing in terms of the generalised velocity components v, to being in terms of

the canonical momentum coördinates b. We can use (2.43) to effect this

substitution, yielding

H(z, b, t) =
(b− qA)2

2m
+ qϕ. (2.47)

It may be seen why the “minimal coupling” result (2.44) was a guiding light

in the early days of electrodynamics: not only does one need to add a scalar

potential qϕ to the free-particle Hamiltonian, one must additionally modify

the factor b2/2m into (b− qA)2/2m. Of course, this term is still simply the

nonrelativistic kinetic energy of the particle:

(b− qA)2

2m
=

p2

2m
≡ 1

2
mv2;

it is simply that the functional dependence of this term on the canonical

momentum changes , because the canonical momentum itself is no longer

the mechanical momentum.

The situation may be clarified even further by considering the problem

when generalised to Einsteinian mechanics. The form of the Hamiltonian

(2.47), which we can rewrite

H − qϕ =
(b− qA)2

2m
,
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suggests that perhaps the fully relativistic expression is

(H − qϕ)2 = m2 + (b− qA)2. (2.48)

In fact, this is indeed the case [113, Eq. (12.14)]. We may alternatively write

(2.48) in the form

H =
√

m2 + (b− qA)2 + qϕ,

which most clearly shows how the nonrelativistic result (2.47) is obtained

as the first-order expansion of the square-root (ignoring the functionally

trivial—but relativistically important—zeroth-order term m).

The manifest covariance of the result (2.48) may be exhibited explicitly by

recalling that the Hamiltonian is in fact the canonical energy of the system—

the zero component b 0 of the canonical four-momentum bα. The relation

(2.48) then simply states that

p 2 = (b− qA)2 = m2, (2.49)

since ϕ is the zero-component A0 of Aµ. We can now recognise the fully

relativistic formulation of the “minimal coupling” result:

p = b− qA; (2.50)

or, alternatively,

b = p + qA. (2.51)

It must again be stressed that the identities

p ≡ mU

and (as a consequence)

p 2 ≡ m2

are sacrosanct; hence, once one has recognised the result (2.50), the covari-

ant expression (2.49) for the Hamiltonian H ≡ b 0 follows immediately. It
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should also be carefully noted again that the canonical momentum has no

relationship to the velocity of the particle: in particular, we have

b 2 6= m2,

in the general case.

Finally, it must be noted that all of the results above linking the mechani-

cal and canonical momenta apply only to the case of an electric charge: when

we add more complicated moments, in Chapter 4, we shall have to start this

procedure all over again. In particular, the “minimal coupling” result (2.50)

is not universal. (However, we shall see that it may in fact be generalised.)

2.4.7 Conservation laws

We now briefly return to a subject touched on above, that will not be of

any practical importance in this thesis, but which is most powerful for a

number of applications: the ability to extract conservation theorems from

the Lagrangian or Hamiltonian description of a physical system.

For the case of discrete degrees of freedom qa, the Euler–Lagrange equa-

tions (2.22)—or equivalently Hamilton’s equations (2.28)—show that, if a

generalised coördinate qa does not explicitly appear in the Lagrangian or

Hamiltonian, then the corresponding conjugate canonical momentum ba is

constant in time. This finding is not restricted to the translational degrees

of freedom of a system: it applies to any generalised coördinate of any suit-

ably describable system.

Similarly, for the case of continuous field degrees of freedom φ(x), one can

extract powerful conservation laws. If the Lagrangian density L is invariant

under a continuous one-parameter set of transformations , then it can be

shown (see, e.g., [145, Sec. 2.4]) that the Euler–Lagrange equations (2.36)

yield a corresponding conserved quantity ; this is known as Noether’s theorem.

We shall not elaborate further on these powerful physical and analytical

tools, but will merely remind the reader that such considerations always

62



apply to canonical quantities , being as they are derived from the Lagrangian

function L or L.

2.5 The canonical–mechanical challenge

The author challenges the reader to pick up an arbitrarily chosen textbook

or research paper from their bookshelf, leaf through the chosen volume, and

count how many times the concepts of canonical quantities and mechanical

quantities are either confused, mistaken for each other, written in ambiguous

or oft-changed notation, or simply not recognised at all.

The reasons for the author’s apparent pedantry, in the preceding sections,

will then be clear.

As a rule, the best authors generally define completely separate symbols

for mechanical and canonical quantities—although the choices made are not

at the present time standardised; good authors generally only mix their nota-

tion: the concepts are clearly understood and enunciated; but less fortunate

authors mix the two types of quantity together with gay abandon, generally

leading to completely meaningless and useless conclusions.

Reader beware!

2.6 Relativistic mechanics

In this section, we consider the various subtleties introduced by the use of

the mechanics of Einstein’s Special theory of Relativity [75]. Again, some

results are simply listed here as an introduction to the author’s notation;

other, more subtle aspects are discussed in somewhat more detail.

2.6.1 Mass

The mass m of a system is a Lorentz scalar, and is defined as the mechanical

energy of the system in the rest frame of the system.
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For an elementary particle, the mass m is a constant.

We do not employ the terms “rest mass”, “moving mass”, “longitudinal

mass”, etc., in this thesis.

2.6.2 Four-position

The four-position of a classical point particle is denoted

z ≡ (t, z).

The four-position is a Lorentz-covariant quantity , or simply a covariant quan-

tity , in the nomenclature of Section A.8.

2.6.3 Three-velocity

The three-velocity v of a classical particle is defined as

v(t) ≡ dtz(t).

The three-velocity is a non-covariant quantity , in the nomenclature of Sec-

tion A.8.

2.6.4 Proper time

A most important concept in relativistic mechanics is that of the proper

time, τ . It is the time cumulated in the co-accelerated coördinate system (or

CACS ) of the particle.

At any particular instant in time, one may set up a momentarily comoving

Lorentz frame (or MCLF ) for the particle, which is, as its name suggests, a

global Lorentz frame in which the particle is momentarily at rest.

Although the CACS and MCLF have subtle differences in their behav-

iour, the differential of the proper-time may in fact be computed around the

rest-instant in the MCLF:

dτ = dt|MCLF .
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Since the MCLF is a Lorentz frame, we can boost the right-hand side of

this result to an arbitrary, “lab” frame, in which the particle moves with

three-velocity v:

dτ ≡ dt

γ
≡ dt

√
1− v2. (2.52)

2.6.5 Four-velocity

The four-velocity of a classical point particle is defined as

U(τ) ≡ dτz(τ).

From (2.52) it is clear that the components of U are given by

U = (γ, γv),

and hence

U2 ≡ 1. (2.53)

2.6.6 Mechanical four-momentum

The mechanical four-momentum of a classical particle is always defined as

p ≡ mU.

Thus,

p 2 = m2

always. However, in the general case of systems of arbitrary mass (i.e.,

arbitrary mechanical rest-energy), the mass m may itself be a function of

time, rather than simply a constant. Except where otherwise noted, we shall

not assume the mass of a system to be a constant.
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2.6.7 Unit four-spin

It is often necessary to consider an “internal” property of a classical point

particle, that may be fully described in terms of a spatial direction in the

particle’s rest frame. For such general purposes we define the unit vector

σ (2.54)

in this frame. We shall generally refer to this three-vector (2.54) as the unit

three-spin, since for the physically important case of a spin-half particle it

shall represent the (expectation value of the) spin of the particle, normalised

to unity; in the general case, however, this vector may be used for arbitrary

purposes, not just to represent spin.

To provide a relativistic generalisation of this three-vector, we define the

unit four-spin, Σ , so that, in the instantaneous rest frame of the particle,

this four-vector has components

Σ |MCLF = (0,σ). (2.55)

Subtleties involved in taking time-derivatives of the four-spin are dis-

cussed in the following two sections.

2.6.8 The Thomas precession

From the discussion of the previous section, we can obtain the explicit compo-

nents of the unit four-spin Σ in any Lorentz frame, by means of the Lorentz

transformation (G.1) of the rest-frame definition (2.55):

Σ 0 = γ(v ·σ),

Σ = σ +
γ2

γ + 1
(v ·σ)v. (2.56)

There is, however, a subtlety. Since the only requirements of the MCLF and

lab frames are that they give the appropriate velocity of the particle (0 and
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v respectively), there remains an ambiguity of the spatial orientation of the

two frames. For the four-velocity U , this ambiguity is irrelevant, because

U only depends on the three-velocity v. But for the unit four-spin Σ , this

problem is of course maximal , because σ itself has been introduced for the

very purpose of specifying a spatial direction in the rest frame.

From our writing down of the definition (2.56), however, we have at least

specified a definite relationship between the MCLF and the lab frame at

some particular time: the directions of the spatial axes of the MCLF are

cöıncident with those of the chosen lab frame. The problem arises in the

infinitesimal time period following this instant. From (2.56), it would seem

that we could describe the time-evolution of the four-spin of the particle most

simply through the three-vector

σ(t), (2.57)

which we would reasonably believe to be “the rest-frame” three-spin of the

particle. This is, indeed, a mathematically valid way to proceed, but our

interpretation must be tempered somewhat. In using (2.57) in (2.56), we are

effectively performing a boost from the lab frame to the particle’s rest frame

for each instant of time. This means that, as far as the particle is concerned,

we are, at each instant of time, referring its three-spin back to the lab frame,

by a boost of −v; we then evolve the three-spin by an amount σ̇ dt, and then

we boost back to the particle’s new rest frame—which is of course slightly

boosted from its previous frame because the particle is accelerated; hence

our “boost back” is by the velocity v + v̇ dt.

Now, these operations can be carried out explicitly, using the Lorentz

transformation (G.1), and taking due note of the time-dilation factor relating

the time coördinates in the two frames. One might expect that this whole

complicated analysis would simply be equivalent to boosting the particle by

velocity v̇ dt in the rest frame of the particle, without the added steps of

a boost to the lab frame and then the boost back. However, this is not
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the case. The reason, pointed out by Thomas in 1926 [213, 214], is that

pure Lorentz boosts do not form a group: indeed, two successive Lorentz

boosts are, in the general case, equivalent to one overall Lorentz boost, plus

a rotation. In terms of the description given above, we may understand the

situation as follows: the näıve expectation assumes that the Lorentz boost

from the lab frame to the rest frame may be trivially “commutated” through

the incremental boost of the rest frame due to its acceleration, “cancelling

off” the return boost back to the lab frame. But this is not so: the boosts do

not commute; indeed, their commutator is just the rotation corresponding

to the “Thomas precession”, as it has become called.

If one performs the algebra explicitly (see, e.g., Jackson [113, Sec. 11.8]),

one finds that

σ̇|lab =
1

γ
σ̇|MCLF +

γ2

γ + 1
σ×(v×v̇), (2.58)

where the factor of 1/γ in the first term of the right-hand side is simply the

time-dilation relation between the two time coördinates; the second term is

the Thomas precession. (We shall return to a covariant derivation of (2.58)

in the following section.)

Note that the Thomas precession is a purely kinematical effect : it arises

automatically through the kinematics of the Lorentz group; it does not re-

quire any dynamical “force” or “Hamiltonian” in order to bring it about.

It may be wondered how the three-spin of an accelerated particle can be

seen to be precessing with different rates in two different Lorentz frames, over

and above the time-dilation effect: after all, aren’t these the simple Lorentz

frames of Special Relativity? The answer is that even the description in the

MCLF is only valid at one instant in time; to obtain even the instantaneous

time evolution in this frame, we must still employ the Lorentz transformation

by v̇ dt. In reality, the physically meaningful rate of precession is actually

that measured in the CACS of the particle, not the MCLF. The fact that

the required boost for the MCLF is by a quantity of first order in dt (with
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no finite v added) means that the measured precession rate in the MCLF is

actually identical to that in the CACS, at that instant. But the MCLF of

course gets “left behind” by the particle. One thus finds that the CACS in

fact rotates relative to the various fixed Lorentz frames, if the direction of

the particle’s velocity is changing.

If the reader finds the Thomas precession completely counter-intuitive,

and mind-boggling, the reader is not alone, and may be perversely gratified

to find that it also slipped the author’s attention on one occasion during

the work of this thesis (to be described in Section 3.3.3); but even those for

whom the counter-intuitive was second nature were sometimes bamboozled

by the concept. We quote from Pais [162]:

Einstein also pointed out that the transformations

x′ = γ(x− vt),

y′ = y,

z′ = z,

t′ = γ(t− vx/c2),

form a group, ‘wie dies sein muss,’ as it should be (he did not

expand on this cryptic statement): two successive transforma-

tions with velocities v1, v2 in the same direction result in a new

transformation of this form with a velocity v given by

v =
v1 + v2

1 + v1v2/c2
.

Twenty years later, Einstein heard something about the Lorentz

group that greatly surprised him. It happened while he was in

Leiden. In October 1925 George Eugene Uhlenbeck and Samuel

Goudsmit had discovered the spin of the electron and thereby

explained the occurrence of the alkali doublets, but for a brief
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period it appeared that the magnitude of the doublet splitting

did not come out correctly. Then Llewellyn Thomas supplied the

missing factor, 2, now known as the Thomas factor. Uhlenbeck

told me that he did not understand a word of Thomas’s work

when it first came out. ‘I remember that, when I first heard

about it, it seemed unbelievable that a relativistic effect could

give a factor of 2 instead of something of order v/c. . . . Even

the cognoscenti of the relativity theory (Einstein included!) were

quite surprised.’ At the heart of the Thomas precession lies the

fact that a Lorentz transformation with velocity v1 followed by a

second one with velocity v2 in a different direction does not lead

to the same inertial frame as one single Lorentz transformation

with the velocity v1 + v2. (It took Pauli a few weeks before he

grasped Thomas’s point.)

What chance, then, is there for us mere mortals?

2.6.9 Partial and covariant derivatives

We now turn to another subtle but important aspect of relativistic mechanics,

not unrelated to the considerations of the previous section, that requires

clarification before we may proceed to obtain equations of motion in the

following chapters. The problem arises when we try to compute proper-time

derivatives of the kinematical properties of a particle.

The difficulty can be stated as follows: Fundamentally, the proper-time

of a particle is the cumulation of the time-coördinate in its co-accelerated

coördinate system. To measure the proper-time rate of change of some prop-

erty of the particle, we should therefore examine the evolution of the property

in this CACS , and thence take its time-derivative.

But the problem is that the CACS is not a Lorentz frame: it is an accel-

erated system of coördinates. There are therefore two ways that we can pro-
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ceed. We can either expand our view somewhat, and embrace the complete

coördinate-independence employed in the formulation of General Relativity

(allowing us to analyse accelerated coördinate systems, although still in a flat

spacetime); or we can choose to remain within the realm of Special Relativ-

ity, and perform some fancy footwork to extract the physically meaningful

quantities for the accelerated particle.

We shall choose the latter path—both because this is the historically

favoured option, for electrodynamical considerations in flat spacetime; but

moreover because our actual needs, for the purposes of this thesis, are such

that we shall only need to delve into the philosophical framework of General

Relativity on two occasions—this section being the first, and Section 3.3.4

being the second; it is arguably not worth the effort to carry around the full

power of General Relativity when our applications are so relatively simple.

Let us therefore consider immediately the problem of computing the

proper-time derivative of the unit four-spin of an accelerated particle; this

example will illustrate the general physical principles completely. Since we

are remaining within the analytical framework of Special Relativity, the best

that we can do, in an attempt to place ourselves as close as possible to the

CACS, is to set up an MCLF for the particle at some instant in time. For

simplicity, we label this particular time t = 0, for both the CACS and the

MCLF, and place the particle, instantaneously at rest, at the spatial origin

x = 0 in both of these coördinate systems. Now, from the definition of the

unit four-spin, equation (2.55), we have

Σ (0) = (0,σ); (2.59)

and of course the four-velocity of the particle, at this instant in time, is just

U(0) = (1,0). (2.60)

Now, we know that the CACS will begin to accelerate away from the MCLF,

as time passes from this instant; we shall therefore need some way to nota-
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tionally reflect the difference between the components of the four-spin and

four-velocity in the two frames. For the purposes of this thesis, we denote

the CACS components by placing parentheses around the symbol; and the

MCLF components by placing square brackets around the symbol. Since, at

t = 0, the CACS and MCLF have been constructed so that the four-spin and

four-velocity have identical components, we may therefore write (2.59) and

(2.60) in this new notation:

(U(0)) = [U(0)] = (1,0),

(Σ (0)) = [Σ (0)] = (0, σ). (2.61)

Let us consider the particle a small time dt after the instant t = 0. Now,

as far as the particle is concerned, its four-velocity (in its CACS) remains

(1,0) for all time, since it is of course always at rest with respect to itself;

hence,

(U(dt)) = (1,0),

and thus, somewhat trivially,

(U̇) = 0. (2.62)

On the other hand, the unit four-spin of the particle may change in its

CACS: not in its zero-component—since, in the CACS, Σ is always a purely

spacelike quantity; rather, the direction σ of the three-spin may of course be

precessing . Let us refer to this CACS precession of σ by simply the symbol

σ̇; the author assures the reader in advance that, for our current purposes,

this notation will be found to be quite unambiguous. We thus have, in the

CACS,

(Σ (dt)) = (0, σ + σ̇ dt),

and thus, as a consequence,

(Σ̇ ) = (0, σ̇), (2.63)
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where we are taking as understood the fact that the equation is referring to

the instant t = 0.

Now let us turn our attention to the description of the particle, at time

t = dt, in the MCLF . The three-velocity of the particle, as seen in the MCLF,

is at this time given by

v(dt) = v̇ dt + O(dt2), (2.64)

where v̇ is its three-acceleration in the MCLF at t = 0. We may thus apply

the Lorentz transformation (G.1) to the four-velocity U , by the three-velocity

v̇ dt:

[U(dt)] = (1, v̇ dt) + O(dt2),

and hence

[U̇ ] = (0, v̇). (2.65)

Now, let us pretend, for the moment, that we wished to have a way to connect

the rate of change (U̇) in the CACS, equation (2.62), with the rate of change

[U̇ ] in the MCLF, equation (2.65). This is of course a hypothetical scenario,

since the rate of change of U in the CACS is trivially zero, and hence (U̇)

is not a quantity that can be in any way useful to us; but nevertheless the

procedure is intructive: We could write

(U̇) = [U̇ ]− (0, v̇). (2.66)

The connection (2.66) reminds us that, while the CACS and MCLF cöın-

cide at t = 0, they fail to cöıncide, in general, for t > 0, and hence time

derivatives of the components (U) in the CACS are not equivalent to the

time derivatives of the components [U ] in the MCLF.

We now apply the same considerations to the four-spin Σ . In the MCLF,

at t = dt, we may again apply the Lorentz transformation (G.1), by the

velocity v̇ dt of (2.64), to the components of the four-spin. Before doing so,

however, we must again recall that, in the time interval dt, the three-spin σ
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has precessed by an amount σ̇ dt. (That this amount is the same whether

measured in the CACS or MCLF may be recognised, in advance, from the

fact that the Thomas precession relation (2.58) given in the previous section

does not modify the rate σ̇ if the initial velocity v linking the two frames is

zero; corrections are, in this case, in fact second order in dt.) Therefore, we

seek to boost the precessed spin,

(0, σ + σ̇ dt),

by the velocity v̇ dt. We find

[Σ (dt)] = ((v̇ ·σ)dt, σ + σ̇ dt) + O(dt2),

and hence

[Σ̇ ] = ((v̇ ·σ), σ̇). (2.67)

Now let us connect this MCLF result, (2.67), to the corresponding CACS

result, (2.63): Clearly, the former is identical to the latter, except for the

extra zero-component contribution (v̇ ·σ). To subtract off this quantity, we

note that

[U̇ ] ·Σ ≡ [U̇ ·Σ ] = −(v̇ ·σ),

at the instant t = 0; and U = (1,0); hence, we subtract (v̇ ·σ) from the

zero-component by adding the term U [U̇ ·Σ ]:

(Σ̇ ) = [Σ̇ ] + U [U̇ ·Σ ]. (2.68)

Now, in constrast to the case of U̇ , the quantity Σ̇ is actually very im-

portant to our considerations, since it encapsulates the precession of the

three-spin of the particle. Thus, we must be careful to choose the correct

quantity—(Σ̇ ) or [Σ̇ ]—for any mathematical analysis we wish to perform

on such a particle. Usually, we shall find that it is the quantity (Σ̇ ) that

we should in fact be considering, because it represents the precession of the
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particle in the CACS—and hence is independent of any particular coördinate

frame we choose to use to evaluate components of quantities. On the other

hand, the näıve proper-time derivative of the four-vector Σ α actually fur-

nishes us with the quantities [Σ̇ α]:

dτ [Σ
α] ≡ [Σ̇ α],

because we generally evaluate the components Σ α in a Lorentz frame, and

then take the derivatives of these components . Thus, the quantity

Σ̇ α + UαU̇βΣ
β

that one frequently sees in the literature should, in the author’s notation, be

surrounded by square brakets—and is indeed simply the right-hand side of

(2.68).

We now turn to the question of finding appropriate names for the quan-

tities (Σ̇ ) and [Σ̇ ], so that they shall not be confused in the remainder of

this thesis. If one looks, for example, in Jackson’s textbook [113, Sec. 11.11],

one finds that he has, indeed, recognised the fundamental importance of

(Σ̇ ): he has given it a new symbol Fα in his equation (11.166) (to which

we shall return shortly). However, he simply refers to it as “the terms with

coefficient (ge/2mc) in (11.162)”. Now, it may be acceptable to refer to

this quantity as “the terms with coefficient (ge/2mc) in (11.162)” on one,

or perhaps two, occasions; but if one were to read about “the terms with

coefficient (ge/2mc) in (11.162)” repeatedly, one would no doubt appreciate

the need for a simpler name. Furthermore, we shall shortly have need to con-

sider proper-time derivatives, similar in nature to “the terms with coefficient

(ge/2mc) in (11.162)”, but for completely different quantities altogether.

We shall therefore refer to (Σ̇ ) as the covariant proper-time derivative of

Σ ; and the quantity [Σ̇ ] as the partial proper-time derivative of Σ . The jus-

tification for this nomenclature is that it is of course that which is commonly

used in General Relativity (see, e.g., [153]). Although our description above
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is in terms of the quantities of Special Relativity, the concepts involved are

of course borrowed directly from the General theory.

At this point, we shall make a simplifying definition: for the remainder

of this thesis, we recognise the fact that the quantity (U̇) ≡ 0 is both trivial

and useless, and indeed shall not appear again after this paragraph; but the

quantity [U̇ ] is useful, and indeed shall be used quite frequently; hence, we

shall allow [U̇ ] to be denoted by simply the symbol U̇ , on the understanding

that no confusion will result in practice.

We also note that the partial and covariant derivatives are important not

just for the four-spin Σ , but in fact for practically all proper-time derivatives

of manifestly-covariant quantities. For example, we note that (Σ̇ ) itself is

a purely spacelike four-vector in the rest frame of the particle; hence, when

we compute its proper-time derivative, we must likewise distinguish between

the partial and covariant derivatives. And, since this process, for the co-

variant derivative, always yields another purely spacelike four-vector in the

rest-frame of the particle, we find that all covariant derivatives of Σ must

be considered in this way; the final term of (2.68) is essentially the Christof-

fel symbol term that is “spat out” for each covariant derivative in General

Relativity.

As another example of the wide-ranging need for the covariant derivative,

we note that, since U̇ is also a four-vector that is purely spacelike in the rest

frame, then its derivative, Ü , also has partial and covariant flavours. In

particular, we note that

(Ü) ≡ [Ü ] + UU̇2, (2.69)

which appears confusing because U̇ itself is both acting as the quantity being

differentiated, as well as appearing in the “Christoffel symbol” of (2.68).

Now, the Abraham term for the radiation reaction force on a point charge is

often written, manifestly-covariantly, as

Γ µ =
2

3

q2

4π

{
Üµ + Uµ(U̇αU̇α)

}
.
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Recalling that the näıve differential Üµ appearing here is in fact the partial

derivative [Ü ], we thus see that the Abraham force is in fact simply

Γ =
2

3

q2

4π
(Ü). (2.70)

The reason for this occurrence of simplicity is that the covariant derivative

is of course just the derivative as seen by the accelerated particle itself , and

is hence the appropriate generalisation of the nonrelativistic result

F =
2

3

q2

4π
v̈. (2.71)

We likewise find, for the Thomas–Bargmann–Michel–Telegdi equation [214,

25], that the relativistic generalisation of the nonrelativistic torque N is

simply

(Ṡ) ≡ [Ṡ] + U [U̇ ·S]. (2.72)

Indeed, it is just this quantity that Jackson was referring to in his equation

(11.166). If one uses the expressions listed in Section G.4.8 for the com-

ponents of (Σ̇ ) in an arbitrary Lorentz frame, one can in fact prove quite

quickly Jackson’s (11.166):

σ̇ =
1

γ
(Σ̇)− 1

γ + 1
(Σ̇ )v +

γ2

γ + 1
σ×(v×v̇). (2.73)

This equation is most important for one to obtain Thomas’s equation for

the σ̇ of a magnetic dipole [113, Sec. 11.11]—indeed, to find the precession

due to any covariant torque N ≡ (Ṡ). It includes—of course!—the Thomas

precession term of the previous section, which automatically emerges through

the use of relativistic kinematics; this effect is independent of the particular

torque N that one may wish to consider; but it is of course (indirectly)

dependent on the force equation of motion, through v̇.
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2.6.10 The FitzGerald three-spin

In Section 2.6.7, we introduced the unit three-spin σ, that will be used

to represent any internal degrees of freedom for our classical particle that

may be fully described in terms a three-direction in its rest frame. We now

introduce another three-vector quantity, closely related to the three-spin σ,

but with subtle differences that will be found to simplify considerably a

number of explicit algebraic expressions that we will encounter in this thesis:

the FitzGerald three-spin,

σ′ ≡ σ − γ

γ + 1
(v ·σ)v. (2.74)

The reason for the author naming it after FitzGerald may be appreciated if

we compute its three-magnitude:

σ′ 2 = 1− (v ·σ)2.

The magnitude of σ′ is (like that of σ) unity, if σ lies in a plane perpendicular

to the three-velocity v; but it is contracted by a factor of
√

1− v2 ≡ 1

γ

if σ lies parallel or antiparallel to the direction of v; in other words, σ′ acts

like a FitzGerald–Lorentz contracted [87] version of σ.

The utility (indeed, the indispensability) of σ′ as an algebraic tool will be

manifestly clear when we consider the retarded field expressions of Chapter 5.

(The author in fact employed the quantity σ′ in the published paper

of Appendix F [65] as one of a number of “convenient quantities”, but did

not realise at the time that its simplifying properties are of quite a general

nature.)

2.6.11 Relativistic Lagrangian mechanics

There arise the dual questions of whether Lagrangian mechanics can be for-

mulated in a relativistically meaningful way, and whether such a formulation
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can be written in manifestly covariant terms.

The former question will be answered in more detail in Section 2.6.12;

basically, as long as one can obtain a valid Lagrangian description that is

dynamically correct to first order in the velocity of the particle, then there is

a definite procedure that one may follow to “bootstrap” the resulting equa-

tions of motion, unambiguously, into the relativistic domain; the kinematical

consequences of Einsteinian mechanics are then automatically included cor-

rectly.

If one wishes to actually write down a Lagrangian that itself automatically

yields the correct equations of motion to all orders in the particle’s velocity,

but by still using the lab-time t of the Euler–Lagrange equations (2.22), then

one is generally advised to begin with the “bootstrap” procedure above, and

thence seek a Lagrangian function that reproduces the equations of motion.

It is indeed possible to find such functions for simple situations; e.g., for a

free particle, one may use [96, Sec. 7–8]

L = −m
√

1− v2;

for an electric charge, one notes that the Lorentz force law is actually correct

relativistically, and hence the electromagnetic part of the Lagrangian (2.42)

still suffices. However, it is not clear [96] whether such a procedure can be

made to work for arbitrary systems of relativistic particles.

The second question above is whether one can find a relativistic La-

grangian framework that is manifestly covariant . The subtlety arising here

(see, e.g., [96, Sec. 7–9]) is that one should seek to use the proper time τ

as the “time” parameter in the variational framework. For constant mass

particles, one then faces the problem that the four translational degrees of

freedom zα are actually constrained by the identity (2.53):

(dτz)2 = 1; (2.75)

hence, there are effectively only three translational degrees of freedom for
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such systems. On the other hand, for systems of arbitrary mass , the four

components of the mechanical momentum pα are clearly independent, since

the identity

p 2(τ) ≡ m2(τ)

is now a definition of the function m2(τ), rather than a constraint. But any

use of the proper-time τ as the “time parameter” in the variational framework

will always lead to the constraint (2.75) for the generalised velocities, and

hence cannot yield a formalism embodying four truly independent degrees of

freedom.

The way out of this dilemma is to define a new time parameter, θ, related

differentially to the proper-time by

dθ(τ) ≡ dτ

m(τ)
, (2.76)

and use this new time parameter as the “time” parameter in the Euler–La-

grange formalism. The generalised velocities of the translational motion of

the particle, in this new formalism, can be obtained by means of the chain

rule:

dθz ≡ (dθτ)(dτz)

≡ m(τ)U(τ)

≡ p(τ);

hence, in terms of the theta-time, the generalised velocities are simply the

components of the mechanical momentum:

dθz(θ) ≡ p(θ).

An additional benefit of using the theta-time θ is that massless particles

may (in principle) be described by the formalism, since both θ and p are

well-defined for such particles, but τ and U are not.
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The theta-time formalism outlined above appears to be the fundamen-

tally most rigorous way of defining a manifestly covariant Lagrangian or

Hamiltonian framework for classical particles. The author is unsure who

first developed it; the theta-time is of course a well-known parametrisation

of the trajectory of a light beam in General Relativity (see, e.g., [184]); and

its use as per the above as a rigourisation of the manifestly covariant La-

grangian or Hamiltonian formalism is most definitely known to experts in

the field of classical electrodynamics [122], albeit not frequently described in

the literature. The author will leave it to other workers to trace the historical

precedents of this formalism.

In practice, however, one may, for massive particles, embark on a sloppier

but somewhat logistically simpler path, that contains the essential physics,

keeping always in the back of one’s mind that the theta-time formalism may

always be dusted off and brought forward to rigourise the results if so re-

quired: one may simply employ the proper time τ and four-velocity U in the

Lagrangian or Hamiltonian framework, pretending that the four components

of U are not actually constrained by (2.53), until the equations of motion

themselves are obtained; one then allows the relation (2.53) to again hold

true. In using this procedure, we are employing four generalised velocities of

translational motion that we are essentially treating as independent, which

are in fact not independent, but which are acting as proxies for the four

generalised velocity coördinates that are independent. Thus, for example,

we may write down a free-particle Lagrangian of

L =
1

2
mU2 (2.77)

or

L = m
√

U2, (2.78)

pretending in each case that U2 6= 1, until after we have applied the Euler–

Lagrange equations (2.22). Taking the time-parameter to be τ for these
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equations, one then finds, for either Lagrangian (2.77) or (2.78), the equation

of motion

dτ (mU) = 0,

and thus, by the definition of the mechanical momentum p,

dτp = 0.

We can likewise obtain the equation of motion for an electric charge, by

simply adding a term to the free-particle Lagrangian:

L =
1

2
mU2 + q(U ·A).

The canonical momentum four-vector for the electric charge is then directly

obtained:

bα ≡ ∂UαL = mUα + qAα;

in other words, we again find the minimal coupling result:

b = p + qA. (2.79)

The Euler–Lagrange equation for b then yields

dτb− q∂(U ·A) = 0,

which, on using (2.79), yields

dτp = −qdτA + q∂(U ·A).

We now need to use the relativistic convective derivative,

dτA ≡ (U ·∂)A,

to find

dτp = −q(U ·∂)A + q∂(U ·A)

≡ q(∂∧A)·U.
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Noting now the definition

F ≡ ∂∧A,

we thus find

ṗ = qF ·U, (2.80)

the covariant expression of the Lorentz force law.

Now, to apply the above manifestly covariant Lagrangian formalism to

particles possessing “internal” degrees of freedom—which we shall describe

using the normalised spin four-vector Σ ,—one finds that one has to deal with

various new subtleties that are introduced. Firstly, for the Euler–Lagrange

equations of motion arising from the translational degrees of freedom zα, we

shall find that the normalised four-spin Σ will appear among the factors that

need to be subjected to the proper-time derivative operator dτ . The question

then arises as to whether we should use the partial or covariant proper-time

derivative of this quantity. The author confesses that his viewpoint on this

subject has changed quite recently: he [65] originally believed that it should

be the covariant derivative; however, one needs to note that the Lorentz

dot-product ,

dτ (A·B),

must be treated consistently; if one differentiates the components of (say) A,

then one must of course also differentiate the components of B. This implies

a partial derivative. (This requirement will be used extensively in Chapter 5.)

This point is subtle, for the case of the dipole force law, because the “other

quantity” is in fact the electromagnetic field Fµν , for which we must in fact

use the convective derivative: a third version of the proper-time derivative.

This issue was, in fact, only discovered by the author a few days before the

printing of this thesis; it is discussed in more depth in Sections 4.2.1 and

4.3.4.

The second issue arising in connection with the use of the four-spin is

the question of obtaining the rotational equations of motion for the system,
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i.e., the torque. Clearly, the corresponding Euler–Lagrange equations will be

those due to the Euler angle generalised coördinates of the rest-frame three-

spin s ≡ sσ, as in the nonrelativistic case [96]. But relativistic generalisations

of these Euler angles do not appear to be worth the complications involved,

since they do not even form a three-vector in the rest frame [96], let alone

a four-vector in the arbitrarily moving frame; thus, any manifestly covariant

derivation must arguably employ the procedure of constraints [96] on the

relativistic generalisation Ω α of the nonrelativistic angular frequency vector

ω, which contains combinations of the time-derivatives of the Euler angles.

The author has also (despite attempts apparently successful, but then found

to be wanting) been unable to formulate any relativistic version of the Euler–

Lagrange equations for the explicit Euler-angle expressions, in any fashion

that might reasonably be described as “transparent”.

Fortunately, the torque equation of motion found in Chapter 4 will be

simply the Thomas–Bargmann–Michel–Telegdi equation [214, 25], which can

be derived on quite general physical grounds [108], and indeed has been

derived in so many different ways in the literature that it took the author

several days just to read them all. Since no modification to this famous and

well-loved law will be necessary, we shall be content, for the purposes of this

thesis, to simply follow the “relativistic bootstrap” procedure (described in

the next section) to obtain the relativistic torque equation of motion from

the nonrelativistic result; it is trusted that the reader will be satisfied with

this result, even if it might be considered preferable if a manifestly covariant

Lagrangian derivation, along the lines described in this section, could be

found. We leave the latter as an exercise for the reader!

2.6.12 The “relativistic bootstrap” process

One frequently wishes to obtain equations of motion for a physical system

that are relativistically correct, yet without needing to consider all of the

84



(often counter-intuitive) complications involved when the system is moving

with an arbitrarily relativistic speed. One therefore often decides to analyse

the system in question in the nonrelativistic limit ; and then, after the correct

physics has been ascertained, kinematically “extrapolate” the results to the

relativistic domain.

Such a procedure sounds simple enough. It is, however, a potential mine-

field. In this section, we will describe the steps that need to be taken to

ensure that one is not led down an incorrect path; on the other hand, it is

shown that, with suitable care, the process is not as difficult as sometimes

imagined.

Firstly, it must be noted that Galilean kinematics and Lorentzian kine-

matics do not fit together as well as one might at first think. On the surface

of it, it may appear that the former is the “first approximation” of the latter:

Galilean expressions appear to be correct up to first order in a particle’s ve-

locity, v, but not to second order. For example, the mechanical momentum

of a point particle is given, in Galilean kinematics, by

p = mv,

whereas in relativistic kinematics it is given by

p =
mv√
1− v2

= mv +
1

2
mv2v + · · · .

But the first-order-in-v rule is often incorrect . Consider a dumbbell model

of an electric dipole: two charges on the ends of a stick. Call their relative

displacement ∆l. Relativistically, this relative displacement is actually the

three-vector part of a four-vector, ∆Lα, which has vanishing zero-component

in the object’s rest frame. If this object is boosted by a velocity v, then the

Lorentz transformation (G.1) shows that, to first order in v, the components

of the four-vector ∆L are transformed into

∆L0 = (v ·∆l) + O(v2),

∆L = ∆l + O(v2). (2.81)
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The component ∆L0 is our warning flag: it tells us that, to first order in v,

the two charges are not only separated in space, they are also separated in

time—even though they are “simultaneous” in their rest frame. This failure

of simultaneity is an elementary result in any text on Special Relativity, but

due attention is not always brought to the fact this effect is first order in the

velocity v.

How does Galilean kinematics warn of this complication? It doesn’t. New-

ton’s “universal time” admits of no such manipulation.

It is at about this point that one’s faith in nonrelativistic physics generally

takes a sharp turn for the worse. Galilean kinematics is not even correct to

first order in v, in general. Those for whom group theory is second nature

recognise this simply by virtue of the fact that the transformations of Lorentz

group, and those of the Galileo group, are of a completely different inherent

structure (see, e.g., [237, 24, 111, 97, 98, 133]).

How, then, is one to generalise a valid analysis of nonrelativistic physics

into the relativistic domain? The answer is, in one sense, obvious, but on

deeper reflection, somewhat subtle: Galilean kinematics is correct to zeroth

order in particle velocities. One need therefore only obtain the physically

correct equations of motion for a physical system to zeroth order, convert

them to relativistic form, and, voila! , one has the answers one seeks. That

this is indeed a valid procedure may be recognised by recalling that, if one’s

equations are valid in some chosen Lorentz frame, and they are written in

manifestly covariant form, then they are automatically valid in all Lorentz

frames.

There is, however, a catch: The equations of Galilean physics are formu-

lated in terms of three-vectors and scalars . To convert these equations to

relativistic form, we need to place these three-vectors and scalars into appro-

priate Lorentz quantities : four-scalars, four-vectors, four-tensors, six-vectors,

etc. (See Section A.8 for a description of the nomenclature used here.) The

catch is that, a priori , there is no way of fundamentally knowing just which

86



Lorentz quantities should be used: this must be postulated, by someone, at

some stage. For example, it is all well and good to know that, to zeroth

order, the force on an electric charge q is the Coulomb force:

F |v=0 =qE|v=0 ; (2.82)

but this does not tell us whether the three-vectors F and E are parts of four-

vectors, six-vectors, or quite possibly some higher-rank tensors altogether. Of

course, we know , now, that F is the three-part of a four-vector, and that E

is the electric part of a six-vector; Lorentz, Minkowski and Einstein figured

this out for us. But it must always be kept in mind that this knowledge

relies on Laws written by our forbears into the Statute Books of Theoretical

Physics: it is not in any way derivable from the Galilean expressions.

Once one has appreciated this subtlety, the procedure for “bootstrapping”

a nonrelativistic result to the relativistic domain is straightforward. One

must simply compute the relevant physics in the frame in which the centre of

energy of the system is stationary (if “constituents” in the system are moving,

it is assumed that their fully relativistic behaviour is a priori known), and

then slot these results into the corresponding relativistic structures.

There is, nevertheless, one pitfall into which unfortunate travellers still

drop: one must ensure that all components of the relativistic structures being

used are correctly computed. This seems trivial, but is ignored at one’s peril.

For example, the electric charge force (2.82) alone does not provide sufficient

information for one to obtain the relativistic force equation of motion for an

electric charge. The reason is a simple matter of arithmetic: equation (2.82)

is a three-equation, i.e., it represents three separate component equations,

yet we (following our relativistic forbears) know that the relativistic force is

a four-vector , ṗα. We therefore need a fourth equation to supplement (2.82)

before we can obtain all four components of ṗα in this frame. Of course,

in the case of an electric charge, this is trivial: the power into the charge
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vanishes, for v = 0:

P |v=0 = 0; (2.83)

the postulates of relativity tell us that the power input is, in fact, the zero

component ṗ 0 of ṗα. Equations (2.82) and (2.83), together with the postulate

that E is the electric part of the six-vector Fαβ, and the definition of the four-

velocity (G.3), finally do uniquely give us the relativistic expression for the

Lorentz force law:

ṗ = qF ·U.

The author may seem to be belabouring the point of ensuring all components

are computed fully; in the case of the Lorentz force, the (often overlooked)

fourth equation required is trivial; but, in general (and the dipoles will be

examples of this), this consideration is of the utmost importance.

Finally, we must point out one further complication to this “bootstrap”

process, when one wishes to use Lagrangian mechanics to obtain the nonrel-

ativistic result. The problem is that, in the course of using the Euler–La-

grange equations, one takes the derivative of the Lagrangian with respect

to the (generalised) velocities. This operation effectively decreases the or-

der of v in all terms by one power . Since one usually wishes to perform

the “bootstrap” operation on the equations of motion themselves—not the

Lagrangian,—one must therefore retain an order of v in the initial nonrela-

tivistic Lagrangian treatment, in order that the resulting equations of motion

are correct to zeroth order.

On the surface of it, such a procedure would seem to run contrary to

our above insistence that Galilean kinematics is not , in general, correct to

even first order in the velocities. The author submits that this dilemma may

arguably be evaded on the grounds of a philosophical technicality: The gen-

eralised velocities appearing in Lagrangian treatments are in fact required

for the purposes of dynamical considerations; the failure of the Galilean

framework noted above is in fact a kinematical deficiency. It is therefore
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suggested by the author that, in general, one may analyse the Lagrangian

of a physical system to first order in the velocities, as long as side-effects of

relativistic kinematics, such as the Thomas precession, are not inserted by

hand ; one may then obtain the equations of motion to zeroth order, and in-

sert them into the relativistic structures, without running foul of relativistic

invariance; and the side-effects of relativistic kinematics, put to one side in

the above procedure, will in fact emerge automatically when these final rela-

tivistic equations of motion are expanded out, in some given Lorentz frame.

To avoid nomenclatorial confusion, the author shall refer to the former, dy-

namically valid framework described above as the pre-relativistic limit of

the relativistic equations; it will, in fact, correspond to how the particle itself

would describe its evolution, in terms of its co-accelerated coördinate system.

(See Section A.8.17.) The latter, kinematically expanded-out framework will

simply be referred to as the nonrelativistic limit of the relativistic equations:

this corresponds to how one would describe the motion of the particle, in

some given Lorentz frame, when the actual acceleration, etc., of its motion

is substituted, where necessary, into the dynamical equations of motion.

(In fact, it will also be necessary to apply the framework of the rela-

tivistically rigid body formalism of Chapter 3 to obtain the full equations of

motion; this is discussed in Chapter 4.)

The above assertions of the author may appear to dwell unnecessarily

on philosophical problems. But the author notes that many capable and

reputable physicists have tried to obtain appropriate relativistic equations

of motion for particles carrying dipole moments; and many have stumbled

and fallen by confusing the kinematical effect of the Thomas precession for

a dynamical effect—and have ended up counting it twice; or have counted

it dynamically, but spoilt the integrity of their kinematics in the process;

or have forgotten to count it at all. It will be shown in Chapter 4 that,

despite the apparent tortuosity of the author’s reasoning above, the equations

resulting from such an approach do in fact possess all the qualities one would
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wish of them—not least of which being simplicity.

2.7 Classical limit of quantum mechanics

A thorny question is the following: In what sense does classical mechanics

represent the “limit” of quantum mechanics?

The author will not add any new answers to this question. Most physicists

will be familiar with Ehrenfest’s theorem (see, e.g., [150, Ch. VI] and [69,

Sec. 31]): the equation of motion for the expectation value of an operator is

the expectation value of the corresponding classical Hamiltonian equation of

motion.

The rub is that, despite first appearances, the expectation values do not

follow the classical equations of motion, unless the functional dependence of

the Hamiltonian equation of motion is such that the expectation value of the

function is equivalent to the function of the relevant expectation values. This

is only exactly true of a few physical systems (where the Hamiltonian H is a

polynomial of the second degree in the q’s and b’s).

However, regardless of the system being considered, one can generally

construct wave-packets for which the classical equations of motion are a good

approximation—namely, those physical situations for which one may speak

with some validity of complementary variables taking on approximately well-

defined values (limited by the Heisenberg uncertainty principle) [69]. In such

cases, the difference between the taking the expectation of a function of

the conjugate variables, and taking the function of the expectations of the

conjugate variables, is small compared to the motion of the wave-packet as

a whole.

It is simple enough to review Ehrenfest’s theorem in theory, as we have

briefly done above. It is far more difficult to decide, for any given physical

application, just how well the classical equations equations of motion will

describe the gross motion of the particles under consideration. Clearly, the
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Lorentz force equation of motion for charged particles works well in a wide

variety of applications; no one would deny its applicability to the real world.

Further than this, one must tread carefully.

In the early days of quantum mechanics, it was commonly stated that the

newly-invented spin degrees of freedom had no classical limit whatsoever.

But accelerator physicists know this to be an exaggeration: the Thomas–

Bargmann–Michel–Telegdi equation of motion [214, 25]—which is a com-

pletely classical equation—describes the precession of spins to a high degree

of accuracy. (Indeed, in the interpretation of the extremely precise measure-

ments of the magnetic moments of fundamental particles, the Thomas–Barg-

mann–Michel–Telegdi equation is generally used as an analytical tool [19].)

Of course, a classical object may indeed possess “spin” angular momen-

tum: it is simply the angular momentum of the object in its rest frame,

about its centre of energy; it therefore comes as no surprise that a classical

limit should exist. What is surprising, to some, is that this limit exists,

and is entirely valid, even for spin-half particles—the lowest non-zero quan-

tum of spin possible; in other words, it is not necessary to invoke the “large

quantum number” arguments of the Old Quantum Theory to make contact

with the classical formalism. In fact, one finds that, for a single particle, the

classical spin precession equation describes accurately the evolution of the

three-vector characterising the expectation value of the spin: its “latitude”

describes the ratio of the amplitudes in the “up” and “down” states; and its

“longitude” describes the relative phase between these two amplitudes. The

overall phase of the wavefunction is—as with any reduction to the classical

limit—lost. (See, e.g., [155, App. 1.3] for a thorough and rigorous derivation

of this correspondence.)

But the successes of the Lorentz force law, and the Thomas–Bargmann–

Michel–Telegdi spin precession equation, do not mean that classical equations

of motion may be used carte blanche. One must always recall that there will

be situations in which the wave-packets assumptions fail.
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The author will, in the remaining chapters of this thesis, obtain numerous

consequences arising from the careful consideration of classical electrodynam-

ics; some of these results are new. The reader may validly ask: In which phys-

ical situations may these results be used? The author is not ashamed to admit

that he does not precisely know; it is, arguably, a question to which a hasty

answer would almost definitely be wrong. The author therefore suggests a

“Suck It and See” approach, as has been used, to great advantage, with the

Lorentz force and the Thomas–Bargmann–Michel–Telegdi equations. If the

equations derived herein by the author describe your physical application

well, then count your blessings: you have a new analytical tool available to

you.

2.8 Pointlike trajectory parametrisation

Consider a pointlike particle. We shall, in later chapters, have need to para-

metrise its (relativistic) path, z(τ), around some particular event, which we

shall refer to as the zero event . The following question then arises: What is

the best way to perform this parametrisation?

Consider, first, Lorentz invariance: no matter which Lorentz frame we use

to perform our computations, the final, Lorentz-invariant results must be the

same. Choice of an arbitrary Lorentz frame gives us ten degrees of freedom

that we may choose at will: the origin of the four spacetime coördinates; the

three-velocity of the frame relative to that of the particle, at the zero event;

and the three Euler angles describing the spatial orientation of the frame.

Clearly, the kinematical motion of the particle provides “natural” choices

for seven of these degrees of freedom, that will clearly simplify the mathe-

matics considerably: namely, setting the origin of spacetime to be at the zero

event (we also set the origin of τ to be at this same event); and setting the

relative three-velocity of the Lorentz frame and the particle’s motion to be

zero at this same event. We shall leave the spatial orientation of the Lorentz
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frame arbitrary.

2.8.1 Covariant Taylor series expansion

We now make the following assumption: the worldline of the particle, z(τ),

is an analytical function of τ . Without this assumption, it is practically

impossible to proceed; we shall, however, leave philosophical questions on

this topic aside, for the purposes of this thesis.

Expanding zα(τ) as a Taylor series about τ = 0, we have

zα(τ) ≡ cα
0 + cα

1 τ + cα
2 τ 2 + cα

3 τ 3 + cα
4 τ 4 + cα

5 τ 5 + cα
6 τ 6 + O(τ 7), (2.84)

where the cα
i are constants, dependent on the physical motion around τ = 0.

(See Section A.3.17 for a description of the +O( ) notation.)

The keeping of terms up to sixth order in τ in (2.84) is not an arbitrary

choice: the considerations of this thesis require precisely this many orders be

retained, and no more.

2.8.2 Redundancies in the covariant parametrisation

By setting the origin of spacetime to be at the zero event, we have set

cα
0 = 0

in (2.84); the choice of zero velocity at τ = 0 likewise sets

cα
1 = (1,0).

However, it is clear that the manifestly covariant parametrisation (2.84) still

contains a greater number of parameters than is required to fully specify the

path of the particle. To see this, one need only recall that, once the three-

position z(τ) of the particle is specified for all proper time, the lab-time of

the particle, t(τ), is automatically specified, by virtue of the identity

dt ≡ dτ√
1− v2(τ)
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(see equation (A.58) of Section A.8.19). In other words, only three of the

four components of zα(τ) are independent, and hence the parametrisation

(2.84) contains a redundant parameter in each order of τ .

To remove these redundant parameters, it would clearly be sufficient to

eliminate the zero-components c0
i , in favour of the spatial components ci.

2.8.3 Non-covariant parametrisation

While mathematically quite acceptable, the ci of equation (2.84) do not,

however, have a direct connection with one’s intuitive understanding of the

motion of a pointlike particle. Clearly, any other set of three-vectors, that

are in one-to-one correspondence with the ci, will serve the same purpose,

mathematically.

The author suggests that the most natural parametrisation of the path,

that removes all redundant parameters, is in terms of the lab-frame motion

of the particle. In other words, we consider the three-space position of the

particle, as seen in a particular lab frame, as a function of the time coördinate

in this frame:

z(t) = z|0+v|0t+
1

2
v̇|0t2 +

1

6
v̈|0t3 +

1

24

...
v|0t4 +

1

120

....
v|0t5 +O(t6), (2.85)

where the overdots on the non-covariant three-vector v denote dt (see Sec-

tions A.3.10, A.3.18, A.8.15 and A.8.20), and our choice of Lorentz frame

sets

z|0 = 0

and

v|0 = 0.

The Taylor series (2.85) possesses the dual advantages that it corresponds to

what we would have written down as the trajectory of the particle before the

advent of Special Relativity—and hence is in somewhat more contact with

our intuition than a manifestly-covariant expression,—while still containing
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exactly the right number of free parameters to specify the fully relativistic

path of the particle.

2.8.4 Conversion of parametrisation

To make connection between the parametrisations (2.84) and (2.85), we first

differentiate the former with respect to τ ,

dτz
α(τ) ≡ cα

1 + 2cα
2 τ + 3cα

3 τ 2 + 4cα
4 τ 3 + 5cα

5 τ 4 + 6cα
6 τ 5 + O(τ 6), (2.86)

and the latter with respect to t:

v(t) = v̇t +
1

2
v̈t2 +

1

6

...
vt3 +

1

24

....
vt4 + O(t5), (2.87)

where in (2.87), and hereafter, we take the notation |0 to be understood for

the quantities v̇, v̈,
...
v and

....
v, if they are not adorned to the contrary with an

explanatory subscript. Now, from the definition of τ , namely,

dτ 2 ≡ dzαdzα,

we immediately find the constraint

(dτz
α)(dτzα) ≡ żαżα ≡ 1. (2.88)

Using (2.86) directly yields

żαżα = c2
1 + 4(c1 ·c2)τ +

{
6(c1 ·c3) + 4c2

2

}
τ 2 +

{
8(c1 ·c4) + 12(c2 ·c3)

}
τ 3

+
{
10(c1 ·c5) + 16(c2 ·c4) + 9c2

3

}
τ 4

+
{
12(c1 ·c6) + 20(c2 ·c5) + 24(c3 ·c4)

}
τ 5 + O(τ 6);

thus, to satisfy (2.88), we require

c2
1 = 1,

4(c1 ·c2) = 0,
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6(c1 ·c3) + 4c2
2 = 0,

8(c1 ·c4) + 12(c2 ·c3) = 0,

10(c1 ·c5) + 16(c2 ·c4) + 9c2
3 = 0,

12(c1 ·c6) + 20(c2 ·c5) + 24(c3 ·c4) = 0. (2.89)

We now divide the temporal component dτz
0 of (2.86) into the spatial com-

ponents dτz, to obtain

v(τ) ≡ dtz(τ)

≡ dτz(τ)

dτ t(τ)

≡ c1 + 2c2τ + 3c3τ
2 + 4c4τ

3 + 5c5τ
4 + 6c6τ

5 + O(τ 6)

c0
1 + 2c0

2τ + 3c0
3τ

2 + 4c0
4τ

3 + 5c0
5τ

4 + 6c0
6τ

5 + O(τ 6)
. (2.90)

To proceed from here, one needs to perform the division (2.90) term-by-term;

at each step, one needs to make use of the identities (2.89), and then replace τ

wherever it appears in favour of t (by reverting the expression already found,

to the preceding order, for t as a function of τ). The result at each step is

compared to the parametrisation (2.87), to replace the cα
i by the quantities

v̇, v̈,
...
v and

....
v . The procedure is straightforward, but tedious; the author

will spare the reader the gory details. One finally finds that the correct

parametrisation is

t(τ) = τ +
1

6
v̇2τ 3 +

1

8
(v̇ ·v̈)τ 4 +

1

120

{
13v̇4 + 3v̈2 + 4(v̇ ·...v)

}
τ 5

+
1

144

{
(v̇ ·....v) + 2(v̈ ·...v) + 27v̇2(v̇ ·v̈)

}
τ 6 + O(τ 7), (2.91)

z(τ) =
1

2
v̇τ 2 +

1

6
v̈τ 3 +

1

24

{...
v + 4v̇2v̇

}
τ 4

+
1

120

{....
v + 10v̇2v̈ + 15(v̇ ·v̈)v̇

}
τ 5 + O(τ 6). (2.92)

(It will be noted that (2.91) contains terms up to sixth order in τ , whereas

(2.92) only contains terms up to fifth order. This order of expansion has been
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chosen by the author to yield only those orders of terms required for this

thesis, and no more; the reason that (2.91) requires an extra order is that its

leading-order term is of order τ , whereas that of (2.92) is of order τ 2, and

hence when we form powers of these expressions via the binomial theorem,

the cross-terms between the leading and last-retained orders will both be

of order τ 7. This also explains why we retained terms up to sixth order in

τ in (2.84)—as it encompasses all four components (2.91) and (2.92),—but

only terms up to fifth order in (2.85), since the latter only affects the spatial

components (2.92).)

2.8.5 Verification of parametrisation

As a method of verification, one may simply start with the results (2.91) and

(2.92)—derivation unseen,—and verify that they do indeed satisfy the re-

quirements laid out previously. (The computer algebra program radreact,

of Appendix G, does precisely this.) Taking the τ -derivative of (2.91) and

(2.92), one obtains

γ(τ) ≡ dτ t(τ) = 1 +
1

2
v̇2τ 2 +

1

2
(v̇ ·v̈)τ 3 +

1

24

{
13v̇4 + 3v̈2 + 4(v̇ ·...v)

}
τ 4

+
1

24

{
(v̇ ·....v) + 2(v̈ ·...v) + 27v̇2(v̇ ·v̈)

}
τ 5 + O(τ 6), (2.93)

dτz(τ) = v̇τ +
1

2
v̈τ 2 +

1

6

{...
v + 4v̇2v̇

}
τ 3

+
1

24

{....
v + 10v̇2v̈ + 15(v̇ ·v̈)v̇

}
τ 4 + O(τ 5). (2.94)

Our first check comes from the identity (2.88): for the expressions (2.93) and

(2.94), we find

żαżα ≡ (dτ t)
2 − (dτz)2 = 1 + O(τ 6).

Now computing v(τ) from (2.90), we find

v(τ) = v̇τ +
1

2
v̈τ 2 +

1

6

{...
v + v̇2v̇

}
τ 3
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+
1

24

{....
v + 4v̇2v̈ + 3(v̇ ·v̈)v̇

}
τ 4 + O(τ 5), (2.95)

and reverting t(τ) from (2.91), one finds

τ(t) = t− 1

6
v̇2t3 − 1

8
(v̇ ·v̈)t4 − 1

120

{
3v̇4 + 3v̈2 + 4(v̇ ·...v)

}
t5

− 1

144

{
(v̇ ·....v) + 2(v̈ ·...v) + 6v̇2(v̇ ·v̈)

}
t6 + O(t7); (2.96)

substituting (2.96) into (2.95), we are returned to the definition (2.87); this

is the second check. Finally, we note that γ(τ), computed in (2.93) as dτ t(τ),

may alternatively be computed via

γ(τ) ≡ 1√
1− v2(τ)

; (2.97)

using (2.95), we are returned to the expression (2.93).

Thus, even without seeing the explicit derivation of (2.91) and (2.92),

one knows that they are, in fact, a correct parametrisation of the path of the

point particle, around its instantaneous-rest event.

2.8.6 Spin degrees of freedom

We now consider the case in which the point particle possesses three inter-

nal degrees of freedom constituting a spin vector , σ, in its rest frame. As

described in Section 2.6.7, this three-vector generalises to the four-vector

Σ when the particle is in arbitrary relativistic motion. Clearly, we could

consider a manifestly-covariant parametrisation of Σ (τ) à la that of z(τ),

namely,

Σ (τ) = c′0 + c′1τ + c′2τ
2 + c′3τ

3 + c′4τ
4 + O(τ 5), (2.98)

but from the discussion of Section 2.8.2, we already know that this will

introduce a redundant parameter in each order, since the four-spin Σ must

satisfy the constraint

(Σ ·U) = 0.
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Thus, we again seek a set of three-vector parameters that will parametrise

the evolution of the spin Σ (τ) without redundancy.

Clearly, the set of three-vectors c′n of (2.98) would serve this purpose, but,

again, they are not, in the author’s opinion, the most natural or intuitive

choices. Instead, we shall, following the discussion of Section 2.8.3, para-

metrise the three-spin σ, in terms of its lab-time evolution. The analogue of

(2.87) is clearly

σ(t) ≡ σ + σ̇t +
1

2
σ̈t2 +

1

6

...
σt3 +

1

24

....
σt4 + O(t5), (2.99)

where we again understand the unadorned quantities σ, σ̇, σ̈,
...
σ and

....
σ to

denote the spin and its derivatives evaluated at t = 0.

Unlike the analysis of Section 2.8.4, the conversion of the lab-time pa-

rametrisation (2.99) into a proper -time parametrisation is simple, since we

already have t(τ), equation (2.91): inserting this into (2.99), we find

σ(τ) ≡ σ + σ̇τ +
1

2
σ̈τ 2 +

1

6

{...
σ + v̇2σ̇

}
τ 3

+
1

24

{....
σ + 4v̇2σ̈ + 3(v ·v̈)σ̇

}
τ 4 + O(ε5). (2.100)

The similarities between this equation for σ(τ), and (2.95) for v(τ), are

obvious; they are both obtained by substituting t(τ) into the lab-time Taylor

expansions (2.87) and (2.99).
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Chapter 3

Relativistically Rigid Bodies

We envisage a rigid sphere—that is, a body possessing spherical form
when examined at rest—of radius R, . . .

—— A. Einstein (1905) [75]

3.1 Introduction

The Special Theory of Relativity was only four sections old when those words

were written (translated here [78] from the German, of course). Einstein’s

seminal work [75] is arguably one of the most carefully thought-out papers

in the history of Physics. If he himself used a relativistically rigid sphere,

then it must be an acceptable construct.

If only it were that simple. Numerous myths have arisen, over the years,

about what the theory of relativity does and does not say about the notion

of rigidity. It will be necessary for the author to bring the fictional nature of

some of these old wives’ tales to the attention of the reader, as the author

would like to use just such an object in his considerations.

We shall also derive quantitative relations for the constituents of such

rigid bodies, that will be of vital importance in the following chapters.
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3.2 Notions of rigidity

In this section, we briefly review the philosophical assumptions underlying

Galilean (Section 3.2.1) and Einsteinian (Section 3.2.2) notions of rigidity.

3.2.1 Galilean rigidity

The Galilean concept of rigidity—namely, that the three-positions of the

constituents of the rigid body maintain a fixed three-geometrical relationship

with respect to one another, up to three-rotations—clearly is nonsensical in

a Lorentz world: it is not formulated in Lorentz-covariant terms.

There are two ways in which one can view the problem. The first is

to invoke the FitzGerald–Lorentz contraction [87]: as the body’s velocity

increases, the body should effectively “contract” in length along the direction

of its motion. The Galilean model would require extra, contrived forces to

bring about such a contraction.

The second way to view the problem—which the author overwhelmingly

prefers—is to start with a stationary body. According to Galilean mechanics,

a boost by a velocity v of this system does not affect the three-geometrical

relationships between the constituents: they all move coherently, with the

same velocity, and the same separation vectors between them, as when the

body is static. But according to relativistic mechanics, we find that a boost

by velocity v should actually take us into a new Lorentz frame, which mixes

the temporal and spatial components of the original frame. Thus, if the

three-geometry is fixed in one Lorentz frame, then it will not, in general, be

so in another.

The reason that the second way of looking at the problem is preferred by

the author is that the former, “contraction” argument clings somewhat to

the pre-relativistic concept of Newton’s “universal time”: it “measures” the

lengths of objects over a constant-time hypersurface of the measurer , rather
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than considering the rest frame of the object being measured of fundamental

importance. Of course, the difference is that the rest frame of a moving

particle is “tilted” in spacetime relative to the frame in which it is seen to

move with velocity v; the “contraction” notion obfuscates the presence of

this “tilt”. (Indeed, if the “ends” of the body are measured at constant

proper time for the body , their three-separation is actually lengthened , not

contracted, as the Lorentz transformation shows; it is the presence of the

corresponding difference in time between the two “ends” of the body that

ensures that its invariant length is a constant.)

Of course, the concept of the “FitzGerald–Lorentz contraction” played an

important rôle in the development of the relativistic theory, and is given due

historical respect by the author; but nevertheless one should begin weeding

it out of one’s fundamental conceptual framework, since it is, in itself, not a

fully-ripened concept, and can lead one on quite erroneous paths of logic if

applied recklessly.

3.2.2 Einsteinian rigidity

We now turn to Einstein’s concept of rigidity, as illustrated by the quote at

the head of this chapter: namely, that the body is always of some predeter-

mined three-geometrical shape in its instantaneous rest-frame. The author

cannot improve on Pearle’s concise and accurate review [168] of this topic,

one of the many instructive sections in his 1982 review of classical electron

models, and so will reproduce it here verbatim (for logistical simplicity, cita-

tion references to the author’s Bibliography are added in square brackets):

Fermi (1922) [83, 84, 85], Wilson (1936) [242], Kwal (1949) [128],

and Rohrlich (1960) [178] found another way to construct a rel-

ativistically invariant theory that is more in keeping with Abra-

ham’s [1, 2] original economical notion of avoiding discussion of

mechanical forces. The electron is to move in such a way that a
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Lorentz frame can always be found in which the electron is in-

stantaneously at rest and spherically shaped. The equation of

motion

m0a
µ = fµ

self + fµ
ext

is required to hold always in this instantaneous rest frame. In this

formulation, the mechanical force is assumed capable of main-

taining the electron’s spherical shape in the electron’s rest frame,

while making no net contribution to the total self-force. Thus

fµ
self is totally electromagnetic, and the electromagnetic energy

and momentum are computed in such a way as to satisfy the

correct relativistic relationship.

We shall call this the relativistically rigid electron. The nonrela-

tivistic notion of rigidity, which requires unchanging dimensions

of an object regardless of its state of motion or the observer’s

reference frame, is impossible because of the Lorentz contraction.

In order to extend the notion of rigidity to relativity, it is best

to talk of a rigid motion of an object, rather than a rigid object

(Pauli, 1958). One can define the rigid motion of an object with

respect to a point as a motion in which the dimensions of the

object are fixed in the instantaneous rest frame of the point. In

this sense, the electron undergoes rigid motion with respect to its

center. We shall only discuss nonrotative motion of the electron,

where the surface of the electron is at rest in the rest frame of its

center.

Change the word “surface” to “volume” in this last sentence (Pearle considers

only spherical shell charge densities; we shall choose to consider uniform

spherical densities), and this extract sums up the author’s approach to this

problem quite accurately.
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We also note Pearle’s proof of his equation (9.15),

d

dτ
P ν

mech =
d

dτ
m0v

ν(τ),

(see pp. 265–6 of [168]), that states that, for a relativistically rigid body,

the contribution, to the equation of motion, of the mechanical stress-energy

maintaining the “rigid motion” of the body is just that of the inertial term

of the corresponding mechanical energy in the rest frame.

For further philosophical arguments in favour of relativistically rigid bod-

ies as appropriate bases for our physical considerations, we refer the reader

to the literature cited above. The diagrams in Pearle’s review [168] are also

of great benefit in visualising the issues involved, and will be referred to in

the following sections.

3.3 Trajectories of rigid body constituents

We now turn to the question of obtaining explicit, relativistically correct

expressions for the trajectories of the constituents of a relativistically rigid

body.

We begin, in Section 3.3.1, by explaining just what we mean by the term

“constituent”, and we establish appropriate notation to label such objects.

In Section 3.3.2, we ease the reader into the algebraic considerations to fol-

low, by obtaining the constituent trajectories assuming Galilean rigidity. We

then, in Section 3.3.3, repair the relativistic deficiencies of the Galilean re-

sults, following the guidelines of Section 3.2.2. In Section 3.3.4, we point out

a simple yet vitally important consequence of the relativistic constituent tra-

jectorial parametrisation, that is a familiar face from another area of classical

physics, but which has not often been seen around the traditional haunts of

classical electrodynamics. In Section 3.3.5, we compute the trajectories of

the constituents in terms of the lab-time t, rather than the body’s proper
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time τ . Finally, in Section 3.3.6, we define the spins of the constituents of

the body in terms of the spin of the body as a whole.

3.3.1 What is a “constituent”?

If we consider a body which has some finite three-geometry in its rest frame,

we need to have a way of describing the parts of the body making up the

whole. We shall call these the constituents of the body.

If a body is constructed from discrete constituents, then we can name

them individually, and thereafter refer to them by name; but if the body is

(as it will be for the considerations of this thesis) formed from a continuum of

constituents, then we need some other way of identifying them individually.

Consider the body in its instantaneous rest frame. Let us place the me-

chanical centre of energy of the body at the origin of coördinates. We can

then identify any constituent by its relative three-position, r, in this rest

frame.

It may seem that we should really be talking about not a single point

at the position r as a “constituent”, but rather a small elementary volume

surrounding the position r, since, rigorously speaking, a mere point in a uni-

formly distributed region does not actually contain anything. But we do not

particularly care that the “point” contains “nothing”, since we know that we

shall, ultimately, be integrating over an infinite number of “points”,—which

does yield “something”; these are simple concepts of elementary calculus.

Thus, we shall continue to refer to the point r as “a constituent”; the reader

may, if they like, place a solid stone at this point if they feel the conceptual

need to do so.

We shall also consider the three-vector r to serve as a suitable name for

the constituent at the point r. For example, we shall refer to “the constituent

r”, as if “r” were a name like Tom or Dick. This will avoid an unnecessary

amount of circumlocution in the remainder of this thesis. Mathematical
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properties of the constituent r are likewise labelled by the symbol r; or, more

frequently, by the subscript r on the quantity in question. (Note that pure

LaTEX cannot boldface an italicised subscript, and its boldfacing of roman

subscripts are of incorrect size; we therefore use the bare Roman subscript r,

on the understanding that it is to be taken to be the three-vector r.)

Of course, the use of the rest-frame three-position r at all would be some-

what ambiguous if the distribution of the constituents were not spherically

symmetric around the centre of energy, because an instantaneous rest frame

is only defined up to an arbitrary rotation. However, we shall only consider

spherical bodies of uniform constituent density in this thesis, and hence shall

not need to worry about such subtleties.

3.3.2 Constituent trajectories for Galilean rigidity

We now consider the problem of obtaining the trajectories of the constituents

of the rigid body. From the discussion of Section 3.2.2, we know that the

trajectory of the centre of energy of the body—in our case, the centre of the

sphere, which we shall henceforth simply refer to as “the centre”—is to be

taken as the trajectory of the body considered as a whole. The trajectories of

the other constituents must be formed in such a way so as to maintain the

spherical rest-frame three-geometry of the body.

For simplicity, we again choose our Lorentz frame according to the con-

siderations of Section 2.8, so that the centre of the body is instantaneously

at rest at the “zero event”. Thus, at the instant τ = 0, the four-position of

the constituent r is simply given by

tr(0) = 0,

zr(0) = r. (3.1)

Now let us first see how we would proceed if we were to assume Galilean

rigidity to hold true, rather than Einsteinian rigidity. Employing Newton’s
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universal time, we would then find

tr(t)|Galilean = t, (3.2)

zr(t)|Galilean = z(t) + r, (3.3)

where we assume, following the discussion of Section 3.2.2, that the body does

not rotate at any time. The first result, (3.2), simply states that simultaneity

is universal in Galilean physics. The second result, (3.3), states that the

absolute position of the constituent r is given by the vectorial sum of its

relative position r relative to the centre of the body, and the absolute position

of the centre of the body itself, z(t).

The lack of relativistic invariance of the Galilean result (3.3) is highlighted

most clearly if we compute the relative four-positional offset between the

constituent r and the centre of the body:

∆zα
r (τ) ≡ zα

r (τ)− zα(τ). (3.4)

For the Galilean result (3.3), we have

∆tr(t) = 0,

∆zr(t) = r, (3.5)

which is clearly not transforming as a four-vector, as the velocity of the

particle increases with time, as it should.

3.3.3 Constituent trajectories for Einsteinian rigidity

We found, in the previous section, that the essential failing of the Galilean

results (3.2) and (3.3) is that the relative position ∆zα
r (τ) does not transform

as a four-vector. It is tempting to correct this defect by merely transforming

(3.5) according to the Lorentz transformation (G.1),

∆tr(τ) = γ(τ)
(
u(τ)·v(τ)

)
,

∆zr(τ) = u(τ) +
γ2(τ)

γ(τ) + 1

(
u(τ)·v(τ)

)
v(τ), (3.6)
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where we set

u(τ) = r (3.7)

because we do not wish the body to rotate. This is, indeed, the transforma-

tion that the author had used, until after the computer algebra programs of

Appendix G had been completed and the final equations of motion obtained

(see Section G.2.1). However, (3.7) is, in fact, incorrect , for the following

subtle reason: The non-covariant three-vector u is, according to (3.7), con-

stant in time:

u̇ = 0. (3.8)

But we know, from Section 2.6.8, that the three-vector u should Thomas

precess , as seen from the (fixed) lab frame, as the velocity and acceleration

of the body increase from zero, so that the corresponding u measured in the

CACS does not precess. In other words, by using the transformation (3.6)

with (3.7), we would, in fact, be unwittingly specifying that the body should

start to rotate—as seen by the particle itself, in its CACS,—in such a way

so that, when this rest-frame rotation is added to the Thomas precession in

the lab frame, the net result would be zero.

This rest-frame rotation would violate the very assumptions underlying

the construction of the relativistically rigid body (see Section 3.2.2), and

hence the conclusions originally drawn by the author from the use of (3.7)

were rendered invalid. Somewhat surprisingly, the final equations of motion

obtained by the author (to be described in Chapter 6) were unchanged by

his correction of this oversight (to be described below)—even though all

expressions up to the penultimate step were affected. The author has no

clear understanding of this phenomenon as yet; it is discussed further in

Section 6.9.

Returning to the derivation under consideration, it is clear that the correct

way to compute the trajectory of the constituent r is to add the required
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Thomas precession term to the otherwise undesirable result (3.8):

u̇(τ) =
γ2(τ)

γ(τ) + 1
u(τ)×

(
v(τ)×v̇(τ)

)
. (3.9)

We can convert the lab-time derivative u̇ ≡ dtu into a proper-time derivative

by multiplying by γ:

dτu(τ) =
γ3(τ)

γ(τ) + 1
u(τ)×

(
v(τ)×v̇(τ)

)
. (3.10)

Since the right-hand side of (3.10) depends itself on u(τ), we now consider u

as a Taylor series in τ , and integrate (3.10) order-by-order. This calculation

is performed, and explicitly cross-checked, by the computer algebra program

radreact, in Section G.6.3 of Appendix G. The result found there (sim-

plified somewhat, notationally, by the author) is

u(τ) = r +
1

12
r×(v̇×v̈)τ 3 +

1

24
r×(v̇×...

v)τ 4

+
1

240
r×

{
3v̇×....

v + 2v̈×...
v + 19v̇2v̇×v̈

}
τ 5 + O(τ 6). (3.11)

We can now substitute the corrected result (3.11) for u(τ) into the Lorentz

transformation (3.6), and then evaluate this transformation for the paramet-

risation of the centre of the body derived in Section 2.8. Using the definition

zα
r (τ) = zα(τ) + ∆zα

r (τ), (3.12)

we then find we find that

tr(τ) =
[
1 + (r ·v̇)

]
τ +

1

2
(r ·v̈)τ 2 +

1

6

{[
1 + 4(r ·v̇)

]
v̇2 + (r ·...v)

}
τ 3

+
1

24

{[
3 + 13(r ·v̇)

]
(v̇ ·v̈) + (r ·....v) + 12v̇2(r ·v̈)

}
τ 4 + O(τ 5), (3.13)

zr(τ) = r +
1

2

[
1 + (r ·v̇)

]
v̇τ 2 +

1

6

{[
1 + (r ·v̇)

]
v̈ + 2(r ·v̈)v̇

}
τ 3

+
1

24

{[
1 + (r ·v̇)

]...
v +

[
4 + 13(r ·v̇)

]
v̇2v̇ + 3(r ·v̈)v̈ + 3(r ·...v)v̇

}
τ 4
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+
1

120

{[
1 + (r ·v̇)

]....
v + 2

[
5 + 14(r ·v̇)

]
v̇2v̈

+ 5
[
3 + 11(r ·v̇)

]
(v̇ ·v̈)v̇ + 4(r ·....v)v̇

+ 52v̇2(r ·v̈)v̇ + 6(r ·...v)v̈ + 4(r ·v̈)
...
v

}
τ 5 + O(τ 6). (3.14)

3.3.4 Accelerative redshift

The constituent r has, in the above, been treated as a part of the overall

body, and has thus had its motion described in terms of the body’s proper

time, τ . On the other hand, the constituent often needs to be considered as

an individual particle in its own right. The proper time τr of this particle

r is defined solely by its four-trajectory zα
r ; the body proper time τ is, in

this context, merely a convenient quantity that parametrises this path via

equations (3.14) and (3.13). Now, by definition,

dτ 2
r ≡ dt2r − dz2

r;

thus,

dττr ≡
√

(dτ tr)2 − (dτzr)2. (3.15)

Computing (3.15) from (3.14) and (3.13), one finds that

dττr =
[
1 + (r ·v̇)

]
+ (r ·v̈)τ +

1

2

{
(r ·...v) + 3v̇2(r ·v̇)

}
τ 2

+
1

6

{
(r ·....v) + 9v̇2(r ·v̈) + 10(r ·v̇)(v̇ ·v̈)

}
τ 3 + O(τ 4). (3.16)

This result (3.16) is, in fact, of major importance to the considerations

of this thesis. Let us explain why. To compute the power into, force on

and torque on the relativistically rigid body, we shall need to sum up these

quantities for all of the constituents of the body. Let us, for example, consider

the power and force on the body; the torque follows in the same manner.

Now, the four-force on the body as a whole, ṗα, is of course defined in terms

110



of the proper-time of the body as a whole:

ṗ ≡ dτp.

On the other hand, the four-force on a constituent r is given by some Law

of Nature—such as the Lorentz force law—that involves the proper-time of

that constituent :

dτrpr. (3.17)

The contribution of the four-force on this constituent to the mechanical four-

momentum of the body as a whole must therefore be computed by means of

the chain rule:

dτpr ≡ (dτrpr)(dττr), (3.18)

where it will be noted that the derivative operator on the left-hand side

is dτ , not dτr . The first factor on the right-hand side of (3.18) is simply

the four-force on the constituent, (3.17), as given by the appropriate Law

of Nature; whereas the second factor of (3.18) is the quantity computed in

(3.16). Now, at first sight, it might be thought that, by analysing the body

in its instantaneous rest frame, we would find the body and constituent times

evolving at the same rate. But (3.16) shows that this is not true: at τ = 0,

it tells us that

dττr|τ=0 = 1 + (r ·v̇). (3.19)

This result may seem perplexing at first. However, upon further reflection,

it can be recognised as just the familiar gravitational redshift formula. Of

course, from the Equivalence Principle, we know that a gravitational field

is simply equivalent to an acceleration, and vice versa; thus, it comes as

no surprise that, when a relativistically rigid body is accelerated—by what-

ever means—the constituents in this accelerated frame experience the phe-

nomenon of redshift. (Of course, Einstein originally [77] began with the ac-

celerated system, and then inferred the gravitational redshift by invoking the

Principle of Equivalence; it is curious that the latter is now more rigorously
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applied than the former.) We shall therefore, for clarity, actually refer to the

result (3.19) as the accelerative redshift formula, as being a more accurate

name for our current purposes.

An intuitive understanding of this result may also be gleaned from Fig-

ure 6 of Pearle’s review [168]: Due to the acceleration of the particle, the

contant-proper-time hypersurfaces are successively more tilted as the particle

moves away from τ = 0. Thus, constituents in the direction of the accelera-

tion see dtτ < 1 (since the τ “ticks” are spaced further apart, relative to the

t “ticks”, for these constituents); constituents in the opposite direction see

dtτ > 1 (since the τ “ticks” are more compressed for these constituents); and

constituents perpendicular to the acceleration direction see dtτ = 1. Noting

that dtτr ≡ 1 for vr = 0, and taking the reciprocal of (3.19), we find that

this intuitive explanation contains the physics completely.

The net result of the above considerations, as far as the remainder of

this thesis is concerned, is, therefore, the following: the body proper-time

derivative of any covariant quantity Q is related to the constituent proper-

time derivative of this same quantity, at τ = 0, by means of the relation

dτQ ≡
[
1 + (r ·v̇)

]
dτrQ

≡λdτrQ, (3.20)

where we have defined the symbol

λ ≡ 1 + (r ·v̇), (3.21)

which will be used extensively throughout the rest of this thesis.

We also note the phenomenon of the accelerative horizon: if (r·v̇) < −1,

the constituent r will need to go into antiparticle motion to satisfy the rigid

body constraints. This can be avoided by keeping the body’s size small

enough so that all of its constituents are within the horizon produced by the

maximum acceleration encountered in the practical situation in question; this

will be discussed in more detail in Chapter 6.
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3.3.5 Lab-time constituent trajectories

We now obtain the trajectory of the constituent r as zr(tr), without reference

to the body τ at all, by eliminating τ between equations (3.14) and (3.13).

Reverting (3.13), we have [4, eq. 3.6.25]

τ(tr) =
1

λ
tr − 1

2λ3
(r ·v̈)t2r

+
1

6λ5

{
−λ(r ·...v)− λ

[
1 + 4(r ·v̇)

]
v̇2 + 3(r ·v̈)2

}
t3r

+
1

24λ7

{
−λ2(r ·....v)− λ2

[
3 + 13(r ·v̇)

]
(v̇ ·v̈)− 15(r ·v̈)3

− 2λ
[
1− 14(r ·v̇)

]
v̇2(r ·v̈) + 10λ(r ·v̈)(r ·...v)

}
t4r

+ O(t5r). (3.22)

Using (3.22) in (3.14), we thus find that

zr(t) = r +
1

2λ
v̇t2 +

1

6λ3

{
λv̈ − (r ·v̈)v̇

}
t3

+
1

24λ5

{
λ2...v − λ(r ·...v)v̇ − 3λv̇2(r ·v̇)v̇ − 3λ(r ·v̈)v̈ + 3(r ·v̈)2v̇

}
t4

+
1

120λ7

{
λ3....v − λ2(r ·....v)v̇ − 6λ2(r ·v̈)

...
v − 4λ2(r ·...v)v̈

− 12λ2v̇2(r ·v̇)v̈ − 8λ2v̇2(r ·v̈)v̇ − 10λ2(r ·v̇)(v̇ ·v̈)v̇

+ 15λ(r ·v̈)2v̈ + 10λ(r ·v̈)(r ·...v)v̇

+ 30λv̇2(r ·v̇)(r ·v̈)v̇ − 15(r ·v̈)3v̇
}
t5 + O(t6), (3.23)

where it is understood that t means tr. Equation (3.23) gives the trajectory

of the constituent r as an individual particle, without reference to the system

proper-time τ .

3.3.6 Spin degrees of freedom

We finally consider the spin degrees of freedom of the particle. The various

constituents r of the body each have a unit spin vector of their own, σr,
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which varies with time. We deem that the spins of the constituents are all

aligned in the instantaneous rest frame of the particle. Thus

σr(τ) ≡ σ(τ), (3.24)

where, again, it is the proper time of the body as a whole that appears here.

We shall defer an explicit expansion of the result (3.24) in terms of the

constituent time tr to Chapter 6; if one desires it for an arbitrary rigid body,

one simply needs to substitute (3.22) for τ(tr) in (3.24).
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Chapter 4

Dipole Equations of Motion

The next stage would naturally be to seek the second approximation
terms in equations (4.11) of motion of the centre of the electron. There
does not, however, appear to be any definite way of finding them as
they depend on the assumptions made as to the constitution of the
electron.

—— L. H. Thomas (1927) [214]

4.1 Introduction

He may be accused of being a doubting Thomas; but his doubts were com-

pletely well-founded. The exact classical force equation of motion that one

obtains for an electron depends on one’s assumptions as to the classical na-

ture of its magnetic dipole moment . Change your assumptions—while still

keeping the same magnetic moment—and your expressions change before

your very eyes.

Now, in the past thirty-five years, various workers have found that the

standard textbook expression for the force on a magnetic dipole possesses a

number of properties that are somewhat less than desirable, if one would like

to apply them to elementary particles. These workers have also generally

realised what Thomas already did in 1927: that different models of magnetic

dipoles yield different force laws . Indeed, one of these alternatives has most
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desirable properties—but unfortunately it is derived from a model that is

manifestly and unsalvageably unphysical.

On the other hand, a number of illustrious physicists who contemplated

this problem showed, by simple yet powerful gedanken experiments, that the

simple textbook force expression, while obtained by quite rigorous methods,

could not be the whole story: some truth was being hidden somewhere.

They therefore analysed the systems in question in meticulous detail; and—

as elementary as it may be to us now as Conan Doyle always had it to dear

Watson—the puzzle was solved.

Unfortunately, due to the mist of time, it has sometimes become some-

what unclear what exactly the puzzle was in the first place; and whose inves-

tigation it was that solved it; or indeed whether perhaps different solutions

should apply in different situations. And then the facts of the case were mud-

dled a little further, with spurious characters, apparently fitting the modus

operandi of the culprit, being rounded up for good measure, and made to

stand in the ultimate line-up of publication by peer review; but in fact the

wrong man was accused, having inadvertantly switched identities with the

culprit, in the minds of the Authorities, decades ago.

If the situation sounds confusing, good. It is. The author began his

Ph.D. considering this problem; and, perhaps fittingly, has only obtained a

satisfactory understanding of all of the nuances of the situation in the closing

days of his candidature. The full story is as complicated as the metaphorical

situation above, so we shall, in this chapter, let it unfold slowly, and carefully;

it was to assist in this task that Chapter 2 was written in the careful style

that it was. By the end of this chapter, we shall have led the reader through

the maze of contradictory literature on this topic, and shall emerge with the

fully relativistic equations of motion for particles carrying dipole moments—

of arbitrary nature—that would no doubt satisfy the wishes of all workers in

this field.

It should be noted that a summary of the equations of motion obtained
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in this chapter has been published [65]; this paper is included verbatim in

Appendix F. However, it was found by the author, shortly before the printing

of this thesis, that an extra term needs to be added to the results of the

published paper; this is discussed in detail in Section 4.2.1.

4.2 Newtonian mechanics

In this section, we analyse various classical dipoles from the viewpoint of

Newtonian mechanics.

4.2.1 The electric dipole

The simplest dipole to consider is an electric dipole: a separation of positive

and negative electric charge. Its behaviour is easily derivable, and is not

subject to any controversy whatsoever.

Let us choose to analyse what is arguably the simplest model of a fixed

electric dipole: a positive charge glued to one end of a rigid stick, with a neg-

ative charge of the same magnitude glued to the other end of the stick. (We

only consider fixed moments in this thesis, as are applicable for the intrin-

sic moments of spin-half particles; “induced” moments are not, in general,

considered.)

The author shall describe how the following analysis can be made ab-

solutely rigorous, according to the relativistically rigid body formalism de-

scribed in Chapter 3, at the end of this section.

We shall, as with all considerations of this thesis, consider only pointlike

particles in this chapter; but we shall of course start off with an object that

is of finite size, and then take the point limit at the end of the calculations.

Now, an electric dipole moment is fundamentally described by a three-

vector, d, in the rest frame of the particle. The direction d̂ of d describes

the direction in which the positive-charge end of our rigid stick is pointing;
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the magnitude d of d describes the strength of the electric dipole moment.

We shall make use of the unit three-vector σ of Section 2.6.7, via

σ ≡ d̂ ,

to simplify notationally the analysis of the electric dipole.

Let us call the positive charge on our stick q1, and the negative charge

q2, and likewise label the kinematical quantities of these charges by the sub-

scripts 1 and 2. For simplicity, let us place the origin of our spatial coördinates

at the midpoint of the rigid stick, at the instant t = 0 at which we wish to

analyse the particle. Let us say that the stick is of length ε, which we shall

shrink to zero at the end of the analysis. The positive charge q1 is thus,

according to these definitions, located at the position

z1 =
1

2
εσ, (4.1)

at t = 0; and the negative charge q2 is located at the position

z2 = −1

2
εσ. (4.2)

By convention, the definition of the magnitude d of the dipole moment is

such that our charges q1 and q2 take the values

q1 ≡ −q2 ≡ d

ε
. (4.3)

Let us now consider the motion of the charges q1 and q2, in the nonrel-

ativistic limit. Each charge will obviously partake in the motion, v, of the

centre of the dipole (the mid-point of the rigid stick); but the charges will

also have equal and opposite contributions to their velocity if the stick is

rotating (or “precessing”, as it is generally referred to). This precession is

described by the three-vector σ̇, the rate of change of the direction of the

dipole. Clearly, since σ is of constant magnitude (i.e., the dipole moment is

fixed in magnitude), we have the identity

(σ ·σ̇) ≡ 0.
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By using the elementary result v = rθ̇ for circular motion, and noting that

the direction of σ̇ is the direction of this extra velocity for q1, and antiparallel

to it for q2, we thus find

v1 = v +
1

2
εσ̇,

v2 = v − 1

2
εσ̇. (4.4)

We now consider the external electric and magnetic fields that are acting

on our electric dipole. Clearly, since the dipole will eventually be shrunk to

infinitesimal size, it is appropriate for us to expand the fields E(r) and B(r)

as three-dimensional Taylor series around the position of the centre of the

dipole:

E(r) = E(0) + (r ·∇)E(0) + O(r2),

B(r) = B(0) + (r ·∇)B(0) + O(r2). (4.5)

Let as refer to E(0) and B(0) as simply E and B in the following, and

likewise for the gradients of these fields, on the understanding that these

quantities and derivatives are to be evaluated at the position of the centre of

the dipole. Using (4.1) and (4.2) in (4.5), we thus find

E1 = E +
1

2
ε(σ ·∇)E + O(ε2),

E2 = E − 1

2
ε(σ ·∇)E + O(ε2),

B1 = B +
1

2
ε(σ ·∇)B + O(ε2),

B2 = B − 1

2
ε(σ ·∇)B + O(ε2). (4.6)

We now have all the ingredients required to find the pre-relativistic equa-

tions of motion for our electric dipole. The force on each electric charge q1 or

q2 is of course simply the Lorentz force (2.17); the power into each charge is

likewise the Lorentz result (2.18). Let us consider first the Lorentz force. We

119



shall compute the net force on the electric dipole as a whole as simply the

sum of the forces on the two charges (the rigorously relativistic consideration

of this problem shall be presented shortly):

F = q1

{
E1 + v1×B1

}
+ q2

{
E2 + v2×B2

}
.

Using (4.3), (4.4) and (4.6), one finds

F = (d ·∇)(E + v×B) + ḋ×B, (4.7)

where we have rëınstated the three-vectors d and ḋ into this final expression,

and where we have taken the point limit, so terms of order ε or higher vanish.

Let us examine the result (4.7) for the force on an electric dipole in some

detail. Firstly, we see that there is a gradient force on a stationary dipole,

(d ·∇)E; (4.8)

this is of course intuitively understandable, since each charge has a Lorentz

force of qE; and the electric dipole is essentially a replacement of the Dirac

delta function source density of a monopole by a spatial gradient of a Dirac

delta function, in the direction of d̂ . The second term in (4.7) is clearly the

first relativistic correction to the rest-frame E:

E −→ E + v×B;

we shall “bootstrap” up a fully relativistic expression, with a greater deal of

rigour, shortly.

We now turn to the final term of the electric dipole force equation (4.7),

namely,

ḋ×B. (4.9)

This force may at first be surprising. It applies to a stationary electric dipole,

but is dependent on its rate of precession. However, this force is in fact quite
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easily understood when one looks at the construction of our electric dipole: if

the rigid stick is precessing, then the two charges have velocities that are equal

and opposite (in circular motion around the centre of the stick, effectively),

of order ε. But the values of their charges , q1 and q2, are also equal and

opposite, and, moreover, are of order ε−1; thus, the quantity qv for each of

these charges is of the same sign, and is of order ε0. But this qv simply

couples to the magnetic part of the Lorentz force law, qv×B; hence, we are

led to the force (4.9).

If we refer to the part (4.8) of the electric dipole force as the “gradient

force”, then we clearly need to invent a name for the contribution (4.9).

The author considers the term precession force to be a suitable name, since

the force is fundamentally a coupling of the precession of the dipole to the

external magnetic field. A more colourful name might be the term helicopter

force, which evokes images of the particle “taking off” due to its rigid stick

flaying around in the “air” of the magnetic field. Another suitable term might

be the electric dipole Anandan force, because the magnetic dipole dual of

(4.9), highlighted and emphasised by Anandan, has proved controversial in

the last couple of years. Anandan was not the first to discover this force, of

course; but historical precedent suggests that the person or persons who draw

most attention to a phenomenon should have the effect named after them:

for example, Aharonov and Bohm were not the first to suggest the Aharo-

nov–Bohm effect [74]; Aharonov and Casher were not the first to suggest the

Aharonov–Casher effect [107, 10]; etc. In any case, the author shall, for the

purposes of this thesis, stick to the conservative term “precession force” for

(4.9).

Let us now consider the power into the electric dipole. We shall again

simply add the powers into each electric charge, according to the Lorentz

power expression (2.18),

P = q1(v1 ·E1) + q2(v2 ·E2);
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we shall make the analysis relativistically rigorous shortly. Again using (4.3),

(4.4) and (4.6), one finds

P = (ḋ ·E) + (d ·∇)(v ·E). (4.10)

Now, the second term of (4.10) is simply the first-order change in kinetic

energy of the particle due to the gradient force (4.8). The first term of (4.10),

however, is a little more worrying. It tells us that a stationary electric dipole

may increase its mechanical energy ; in relativistic terms, this means that its

mass—its mechanical rest-energy—may change. The fundamental source of

this power may be recognised by following the same line of reasoning as was

used to understand the precession force above: in this case, the precession

qv of each charge can couple to the external electric field, via the Lorentz

power expression qv ·E.

To see whether this “precession power” will actually cause the mechanical

rest-energy of the dipole to increase, we first have to obtain an equation of

motion for the precession itself. This leads us to the question of the torque

on the electric dipole. Now, each electric charge has no “intrinsic” torque on

it, i.e., no torque about the position of the charge itself (this is an unstated

but eminently reasonable postulate of Newtonian electrodynamics); but we

do of course have a torque on the dipole as a whole, due to the fact that the

forces on the charges are not through the centre of the dipole, but are rather

offset: we have a “moment-arm” type of torque

N = z1×F 1 + z2×F 2.

Again using (4.3), (4.4) and (4.6), one finds

N = d×(E + v×B). (4.11)

This is of course the well-known result; the second term is again the first-

order relativistic correction to the rest-frame electric field E, which we shall

rigourise shortly.
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Now, the torque on an object (around its centre of energy) is simply the

time rate of change of its mechanical spin angular momentum,

N ≡ ṡ,

in the same way that the force is the time rate of change of its linear me-

chanical momentum,

F ≡ ṗ.

In general, the spin angular momentum s of a classical object may be of any

value, and point in any direction. In particular, there is no good reason why

it should point in the same direction as the electric dipole moment: it can

do so (e.g., if one uses the rigid stick above as an axis for a rotating flywheel,

and one assumes the charges and the rigid stick to be themselves massless);

but it need not, in general.

On the other hand, we shall often wish to apply the equations of motion

derived in this thesis to the case of a spin-half particle, such as an electron.

For such a particle, we know that the mass must be a constant of the motion

(namely, me); and we know that the magnitude s of its spin angular momen-

tum must be a constant of the motion (namely, 1
2
h̄). But we also know that

any dipole moment of a spin-half particle must be parallel to its spin vector

s (basically because there are no other three-vectors available in the Dirac

algebra):

d ≡ dσ,

s ≡ sσ ≡ 1

2
h̄σ.

With such a parallelism identity in effect, we may use the torque result N

to obtain the precession rate very simply:

ḋ
∣∣∣
d‖s =

d

s
ṡ ≡ d

s
N . (4.12)
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Now, let us consider such a spin-half particle, in its rest frame. The power

into the dipole, (4.10), is then

P = (ḋ ·E);

using the relation (4.12), we may now write this as

P =
d

s
(N ·E).

But if we substitute the rest-frame torque N from (4.11), we find

P =
d

s
E ·d×E ≡ 0.

Thus, for electric dipoles for which d and s are parallel, we find that the

mass of the dipole is a constant of the motion. This is a non-trivial result,

and will not be found to be true for all systems considered in this chapter.

We also need to consider the rate of change of the spin magnitude s.

Differentiating the definition

s2 ≡ s2,

we have

ṡ ≡ 1

s
(s·ṡ) ≡ 1

s
(s·N).

In the general case, the electric dipole torque (4.12) yields some finite ṡ; but,

again, if the dipole moment d and spin s are parallel , we find

ṡ|d‖s = 0.

We now consider the problem of providing a rigorous relativistic deriva-

tion of the power, force and torque expressions found in this section. We use

the framework described in Chapter 3. Clearly, we need to place the dipole as

a whole at rest, to use the framework described there; the simultaneity of the

two ends of the stick, assumed above, is then appropriate and relativistically
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correct. We must also multiply all expressions by the accelerative redshift

factor λ(r), which for each of our two charges q1 and q2 is simply given by

λ1 = 1 +
1

2
ε(σ ·v̇),

λ2 = 1− 1

2
ε(σ ·v̇). (4.13)

For the computation of the power expression, we note that the velocities of

the charges (in the dipole rest frame) are already of order ε; the factor of

ε−1 in the values ±d/ε of the charges cancel this factor of ε; hence, there

are therefore no “spare” factors of ε−1 left which could couple to the latter

terms of (4.13). Hence, the power expression is given by the rest-frame value

of (4.10) found above:

P |v=0 = (ḋ ·E). (4.14)

The rigorously relativistic computation of the force expression, however,

is somewhat more subtle. Here, we find that the electric force on each charge

may couple with the second factor of (4.13):

Fextra =

(
±d

ε

)(
±1

2
ε(σ ·v̇)

)
E,

where the upper (lower) signs apply to charge q1 (q2). We thus find an extra

redshift force,

Fredshift = (d·v̇)E.

Thus, the total rest-frame force on the electric dipole is in fact given by

F |v=0 = (d ·∇)E + (d·v̇)E + ḋ×B.

Now, in the interests of honesty, the author must confess that this extra

“redshift force” was only discovered by him a few days before the final print-

ing and binding of this thesis. It has ramifications for the radiation reaction

calculations of Chapter 6; fortunately, the author was able to insert this addi-

tional force (and its corresponding “moment-arm” torque) into the program
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radreact of Appendix G; the expressions found there and in Chapter 6,

and the author’s comments on them in Chapter 6, have been updated to

reflect the resulting changes to the radiation reaction equations of motion.

In fact, this additional contribution simplified the final equations of motion

somewhat; and it also removed one term that was clearly unphysical , which

had been causing the author serious concern. Due to this increase in physical

correctness of the radiation reaction calculations, the author most definitely

considers the redshift force to be physically correct; he only wishes he had

obtained it earlier. However, to the author’s knowledge, this redshift force

has not been obtained in the literature to date; but then again neither has

the accelerative redshift factor apparently been used at all , for the purposes

of electrodynamical considerations.

If the radiation reaction calculations yielded a bonanza with the redshift

force, the published paper [65] listed in Appendix F did not fare quite so well.

The derivation therein is now incomplete; and therefore the final “uncoupled”

equations of motion, listed there, are incorrect. The reason for the author

failing to obtain the redshift force from the manifestly covariant analysis

presented there will be discussed in somewhat more detail in Section 4.3.4;

basically, the author inappropriately used the covariant proper-time deriva-

tive, rather than the partial proper-time derivative, on one occasion: the

difference between the two leads, somewhat remarkably, to the extra redshift

force derived above!

We now turn to the relativistically rigorous derivation of the torque equa-

tion of motion, in the rest frame. In this case, we note that the quantity z

that is crossed into the force expression to obtain the “moment-arm” torque

is in fact of order ε, so, as with the power equation of motion, there are no

terms of order ε−1 remaining that could couple to the second terms in the

redshift factors (4.13). Hence the rest-frame torque expression is still that

given by (4.11)

N |v=0 = d×E. (4.15)
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We can now place these results into the appropriate Lorentz quantities.

The power and force expressions are of course to be placed into the quantity

ṗ, and the torque expression is to be placed into the quantity (Ṡ). Firstly,

we note that the equation

ṗ = (d·∂)F ·U + [F ·ḋ ] (4.16)

has the correct properties: to see this, we note that, for v = 0, the following

are true:

(d·∂) = (d ·∇),

F ·U = (0,E),

[F ·ḋ ] = (ḋ ·E, (d·v̇)E + ḋ×B),

where we have used the identities listed in Section G.4 of Appendix G fre-

quently. (The published paper [65] incorrectly uses (F ·ḋ ) rather than [F ·ḋ ].)

We furthermore note that

(Ṡ) = −F̃ ·d− U(d·F̃ ·U) (4.17)

similarly has the correct properties, since

F̃ ·d = (d ·B, −d×E),

(d·F̃ ·U) = −d ·B;

the second term of (4.17) therefore serves to remove the (unwanted) zero-

component of the first. The result (4.17) is, of course, simply the manifestly

covariant Bargmann–Michel–Telegdi equation [25] for the electric dipole.

Finally, it should be noted that, although we employed a “two charges

on a stick” model of an electric dipole for the purposes of this section, the

results obtained are of quite a general nature, for any fixed dipole d arising

from the permanent separation of positive and negative electric charge.
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4.2.2 The magnetic-charge dipole

Magnetic monopoles are incompatible with a simple Lagrangian description

of the electromagnetic field; they cannot be described by a unique four-

potential A(x). They have never been observed experimentally. All known

magnetic dipole moments have been shown [115] to most definitely not arise

through the presence of magnetic monopoles. The author does not believe

that magnetic monopoles exist in our Universe.

But Newtonian mechanics does not care for any of this: it does not use the

four-potential; it does not worry about what has and has not been discovered

by mankind; and it most definitely couldn’t care less about the author’s

opinions. Moreover, the Maxwell equations of Newtonian mechanics seem

to have a gaping asymmetry , which arguably could be filled by inserting

“magnetic charge” and “magnetic current” source terms into these equations.

Thus, despite the author’s disbelief in the physical usefulness of magnetic

charge, we shall nevertheless consider here the Newtonianly acceptable model

of a magnetic dipole as simply being the dual of the electric dipole: two equal

and opposite magnetic charges on the ends of a stick. The reasons for doing so

are fourfold. Firstly, it has been historically common to consider such objects,

and no discussion would be complete without such a review. Secondly, it is

a simple analysis, being simply obtained from the electric result by means

of a trivial duality transformation. Thirdly, we shall begin to appreciate the

desirable features of the resulting equations of motion, despite the fact that

the model is unphysical. Fourthly, the final equations of motion we shall

find, in this chapter, will turn out to be identical to the magnetic-charge

model—with one, beautiful addition.

Let us therefore immediately take across the results of the previous sec-

tion, by using the electromagnetic duality transformation

E −→ B,

B −→ −E,
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d −→ µ. (4.18)

We note carefully that we did not need to use Maxwell’s equations at all

in the analysis of the previous section; this is important because, under

a duality transformation, the homogeneous and inhomogeneous equations

are interchanged—and, indeed, need to be modified if magnetic charge and

current is introduced.

Under the transformations (4.18), we immediately find, for the nonrela-

tivistic analysis,

P = (µ̇·B) + (µ·∇)(v ·B),

F = (µ·∇)(B − v×E)− µ̇×E,

N = µ×(B − v×E). (4.19)

The rigorously relativistic analysis, in the rest frame of the magnetic-charge

dipole, likewise yields

P |v=0 = (µ̇·B),

F |v=0 = (µ·∇)B + (µ·v̇)B − µ̇×E,

N |v=0 = µ×B. (4.20)

The relativistically bootstrapped results for the magnetic-charge dipole are

therefore given by

ṗ = (µ·∂)F̃ ·U + [F̃ ·µ̇ ],

(Ṡ) = F ·µ + U(µ·F ·U). (4.21)

4.2.3 The electric-current magnetic dipole

We shall now analyse the most controversial form of magnetic dipole known

to physics: that due to the circulation of electric current . It is clearly the

only physically acceptable magnetic dipole model we have available to us;
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but its employment of moving constituents makes it a notoriously difficult

system to analyse correctly, as we shall shortly find.

The first general observation that the author shall bring to the attention

of the reader is the following: The overall power into, force on and torque

on an electric-current magnetic dipole cannot depend on its rate of preces-

sion. Given the results of the previous sections, this may seem surprising;

but nevertheless it is a property that is remarkably simple to demonstrate,

on quite general grounds. The crucial observation is that the circulating

currents of an electric-current magnetic dipole should be electrically neutral :

they should be formed from the equal and opposite circulation of equal and

opposite streams of charge; there should be no net electric charge at any po-

sition in space. (In other words, they should be pure “electric currents” as an

Electrical Engineer would understand the term.) Now, the precession of any

such loop of current will obviously lead to extra velocities of the circulating

charges, but these extra velocities are, for any position in space, the same

for both the positive and the negative charges . Any power, force or torque

coupled to these extra velocities for (say) the positive charges would need to

be proportional to qvprec for each charge; but then there would be an equal

and opposite coupling −qvprec to the negative charge at that same position

in space, because the velocity vprec is the same for both charges. Thus, the

power, force and torque due to the precession of the dipole must vanish at

every position in space, when the positive and negative charge contributions

are added together; and hence, regardless of what geometrical factors we may

wish to insert, the precession can have no effect on these forces whatsoever.

Likewise, when we analyse the system relativistically, according to the

completely rigorous formulation described in the previous chapter, we do

find that extra position-dependent factors need to be inserted, but these

again have no effect, since the forces vanish at every position in space. Thus,

regardless of relativistic effects , the precession cannot enter into the equations

for the forces on the electric-current magnetic dipole.
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We furthermore note that the translational velocity of the current loop as

a whole, v, cannot enter into the equations of motion either, in the nonrela-

tivistic analysis, for the same reason as above: the effect of the added velocity

to each positive charge, qv, is counterbalanced by that added to the negative

charge, −qv. Of course, we know that a Lorentz boost should transform the

quantities involved in the static result, and we should obtain some terms of

order v; their omission in the nonrelativistic analysis is of course due to the

incorrect treatment of simultaneity in Galilean kinematics, noted in Chap-

ter 2. We shall, at the end of this section, repair this omission by performing

the correct “relativistic bootstrap” procedure on the static results.

Now, from the above discussions, we have found that neither precession

nor translational velocity of the electric-current magnetic dipole will have

any effect on the forces obtained. We are therefore left with considering the

simple case of a static, non-precessing current loop. Let us consider some

particular geometry of an electric-current magnetic dipole that is easy to

analyse, in the same way that we analysed the “charges on a stick” model for

an electric dipole. We must note that the particular geometry chosen for the

electric-current magnetic dipole is arbitrary : the final results will be found

to be the same regardless of the choice one makes; all that is relevant is that

the dipole moment does arise through the circulation of electric current.

We shall therefore consider a simple circular, planar loop of electric cur-

rent , of radius ε, with a line of positive electric charge circulating in one

direction, and an equal and opposite line of negative electric charge circu-

lating in the other direction. It will simplify the analysis to construct a set

of Cartesian coördinates, with the centre of the circular loop at the origin of

coördinates, and the loop itself lying in the x–y plane; we use the symbols i ,

j and k to denote the unit vectors in the x, y and z directions respectively.

We denote the angle between the x-axis and the radius vector to any given

position on the circular loop by θ, with the usual convention that θ = +π/2

when this radius vector points along the positive y-axis. The position of that
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point of the loop at angle θ to the x-axis is then given by

z(θ) = ε
{
i cos θ + j sin θ

}
. (4.22)

Clearly, the direction of the magnetic moment µ of the current loop will lie

along the z-axis. We choose to make it point in the positive z-direction:

µ ≡ µk. (4.23)

This then requires the (Engineer’s) electric current I in the loop to flow in

the direction of positive θ, i.e., counter-clockwise as viewed from a position

“above” the loop (z > 0). The definition of the magnitude µ of a planar

electric-current magnetic dipole is simply the product of the area of the loop

by the Engineer’s current I flowing around it [113]; in our case,

µ ≡ πε2I. (4.24)

Now, we are here forming the Engineer’s current I from equal and opposite

lineal streams of positive and negative charge, around the loop: the charge

densities cancel, and their current densities add. Thus, half of I will be due

to the integral of the qv contributions of the positive charges, and half will

be due to the same integral of the contributions of the negative charges. We

denote the total number of positive charges circulating in the loop as n; the

number of negative charges circulating in the loop is thus also n. The number

of charges n will be taken to infinity at the end of the calculations, and the

product of the other quantities taken to zero to compensate, to provide a

“continuous” stream of charge. Each individual positive or negative charge

is denoted +q or −q respectively. We denote the speed of each charge in its

“orbital” motion around the loop by vorb. The Engineer’s current I is then

simply given by

I = 2
nqvorb

2πε
, (4.25)

where the factor 2 outside the front is due to the presence of both positive

and negative charges in circulation; the factor 2πε is the circumference of the
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loop. We can now substitute (4.25) into (4.24), to eliminate the Engineer’s

current I altogether, in favour of the quantities n, q, vorb and ε:

µ = nqεvorb. (4.26)

Now, since the positive charges are simply moving around the loop at

speed vorb, in the direction of increasing θ, we then have

v+(θ) = vorb

{
−i sin θ + j cos θ

}
, (4.27)

where by v+(θ) we denote the velocity of each positive charge, when at the

positional angle θ in the loop. The negative charge at any position of the

loop is moving in the opposite direction to the positive charge at that same

position, and thus

v−(θ) = −v+(θ). (4.28)

We again expand the electric and magnetic fields as Taylor series around

the centre of the loop:

E(θ) = E + ε
{
cos θ ∂x + sin θ ∂y

}
E + O(ε2),

B(θ) = B + ε
{
cos θ ∂x + sin θ ∂y

}
B + O(ε2). (4.29)

Finally, we note that, in the limit that n →∞, it makes sense to talk of

the differential number of charges dn in the differential angle dθ; clearly,

dn =
n

2π
dθ. (4.30)

We now have all the ingredients necessary for an analysis of our planar

current loop. We start with the computation of the power into the loop.

This is given by

P =
∫

dn
{
P+(n) + P−(n)

}
,

where we are taking n as an integration variable, again anticipating the

continuum limit n → ∞. We can convert this integral in n to one in θ by

using (4.30):

P =
n

2π

∫ 2π

0
dθ

{
P+(θ) + P−(θ)

}
. (4.31)
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Now, the power into each positive charge is given by the Lorentz result

P+(θ) = qv+(θ)·E(θ),

and the power into each negative charge is similiarly given by

P−(θ) = −qv−(θ)·E(θ),

Using (4.28), we therefore see that

P (θ) = 2qv+(θ)·E(θ), (4.32)

where

P (θ) ≡ P+(θ) + P−(θ).

Substituting (4.32) into (4.31), using (4.27) and (4.29), and integrating, we

thus find

P = nqεvorb

{
∂xEy − ∂yEx

}
+ O(ε2).

Noting the identities (4.23) and (4.26), and taking the point limit, we there-

fore find

P = µ·∇×E. (4.33)

We now use one of the homogeneous Maxwell equations,

∇×E + ∂tB = 0,

to obtain our final result

P = −µ·∂tB. (4.34)

The result (4.34) is highly undesirable. It is also untuitively obvious. It

tells us that if there is a changing magnetic field through the current loop,

then energy will be transferred into the loop by induction. But this occurs

for a stationary loop. If we tried to apply this equation to an electron, say,

we would then (relativistically speaking) find that its mass could be changed ,
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simply by ramping up a magnetic field, at the position of the electron, in the

direction of its magnetic moment. This is clearly unphysical. This is why

the current loop equations have not been popular this century. This will be

repaired shortly.

We now turn to the question of the force on the electric-current magnetic

dipole. In this nonrelativistic analysis, we again simply sum the forces on all

of the circulating constituent charges:

F =
n

2π

∫ 2π

0
dθ

{
F+(θ) + F−(θ)

}
. (4.35)

The Lorentz force on each positive charge gives

F+(θ) = q
{
E(θ) + v+(θ)×B(θ)

}
,

and, likewise, for each negative charge,

F−(θ) = −q
{
E(θ) + v−(θ)×B(θ)

}
.

Again using (4.28), we see that

F (θ) = 2qv+(θ)×B(θ), (4.36)

where

F (θ) ≡ F+(θ) + F−(θ).

Substituting (4.36) into (4.35), again using (4.27) and (4.29), and integrating,

we thus find

F = nqεvorb

{
i ∂xBz + j∂yBz − k(∂xBx + ∂yBy)

}
+ O(ε2). (4.37)

We now need to use the other homogeneous Maxwell equation,

∇·B = 0;

in component form, this reads

∂xBx + ∂yBy + ∂zBz = 0;
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or, on reärranging the terms,

−(∂xBx + ∂yBy) = ∂zBz. (4.38)

But the left-hand side of (4.38) is simply the parenthesised expression in

(4.37); hence, we find

F = nqεvorb

{
i ∂xBz + j∂yBz + k∂zBz

}
+ O(ε2).

But the expression in braces is simply ∇Bz; hence,

F = nqεvorb∇Bz.

Again noting the relations (4.23) and (4.26), and taking the point limit, we

therefore find

F = ∇(µ·B). (4.39)

The expression (4.39) is the force on an electric-current magnetic dipole. It

is the controversial “textbook force” on a magnetic dipole. For example, we

find the following in Jackson [113, Sec. 5.7]:

This can be written vectorially as

F = (m×∇)×B = ∇(m·B)−m(∇·B).

Since ∇·B = 0 generally, the lowest order force on a localized

current distribution in an external magnetic field B is

F = ∇(m·B).

This result holds even for time-varying external fields.

These statements are absolutely correct. (By “lowest-order” Jackson is refer-

ring to the keeping of only the first term in the Taylor expansion (4.29) of the

magnetic field; this is rigorously true in the point limit.) Equation (4.39) is
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the force on the electric-current magnetic dipole. But there is again a twist;

we shall return to this shortly.

We now turn to the question of the torque on an electric-current mag-

netic dipole. Fortunately, this problem is not subject to any controversy

whatsoever. In this nonrelativistic analysis, we simply sum the “moment-

arm” torques on all of the circulating constituent charges:

N =
n

2π

∫ 2π

0
dθ

{
N+(θ) + N−(θ)

}
. (4.40)

Since each torque is only dependent on the force at that position θ, we can

immediately make use of the sum of the torques on the positive and negative

charges at that position:

N(θ) ≡ N+(θ) + N−(θ) ≡ z(θ)×F (θ).

From (4.36), we find

N (θ) = 2qz(θ)×
(
v+(θ)×B(θ)

)
;

using the identity

a×(b×c) ≡ (a·c)b− (a·b)c,

and noting that

z(θ)·v+(θ) ≡ 0

(since the charge is moving in circular motion, i.e., with velocity perpendic-

ular to its radius vector), we thus find

N(θ) = 2q
(
z(θ)·B(θ)

)
v+(θ). (4.41)

Substituting (4.41) into (4.40), using (4.22), (4.27) and (4.29), and integrat-

ing, we find

N = nqεvorb

{
−iBy + jBx

}
+ O(ε2). (4.42)
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Again noting the relations (4.23) and (4.26), and taking the point limit, we

therefore find

N = µ×B. (4.43)

Equation (4.43) is the (completely uncontroversial) expression for the torque

on an electric-current magnetic dipole. To see why it is uncontroversial,

we only need note that—unlike the power and force expressions—this result

(4.43) is the same as the result (4.19) found for the magnetic-charge dipole

in the previous section.

In fact, Hraskó [108] has shown why one must obtain this torque law

for any object generating a magnetic dipole field, regardless of the nature

of the object. He likewise showed why the Lorentz force must be obtained

for any electric monopole. His proofs considered the mechanical momentum

contained in the electromagnetic field surrounding the position of the charge

or magnetic dipole, using essentially the same concept of “conservation of

mechanical four-momentum” as the derivation in Section 2.3.8 of the Lorentz

force. In fact, his proofs are much more satisfactory: he essentially uses the

Dirac [68] method of considering the flow of mechanical four-momentum (via

the mechanical stress-energy tensor) through the surface of a small volume

surrounding the particle; this has the great theoretical advantage that the

proof is now manifestly local , and independent of retardation effects, etc.

Now, Hraskó found that the contributions to the integrals of the interior of

the small volume surrounding the point particle vanish, for the monopole

force and dipole torque, when the volume is shrunk to zero. However, for the

power and force on a dipole, this integral over the small volume surrounding

the particle does not vanish: it is, in fact, finite; and hence the internal field

differences between the magnetic-charge dipole and electric-current magnetic

dipole can (and do) lead to different power and force expressions. (The reason

that these integrals do not vanish as with the monopole case is that the

dipole field contains one extra power of 1/r over that of the monopole field;
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this brings a vanishing integrand r-dependence up to a finite r-dependence.

The dipole torque avoids this problem because the angular momentum has

the vector r explicitly crossed into its definition, and hence the integrand

in question only diverges to the same order as the corresponding integrand

for the force on a monopole field, i.e., it vanishes over the small volume

surrounding the particle.)

Let us now make the above analyses relativistically rigorous, by again

employing the rigid body formalism described in Chapter 3. We need to add

in the effects of the accelerative redshift factor,

λ(r) ≡ 1 + (r ·v̇).

At any position in our circular loop, we use (4.22) to find

λ(θ) = 1 + ε
{
v̇x cos θ + v̇y sin θ

}
. (4.44)

If one examines the expressions carefully, one finds that the redshift correc-

tion terms in (4.44), of order ε, will not contribute to the torque integral,

because that integral already has z(θ) crossed into it, which is itself of or-

der ε. On the other hand, we do find contributions to the power and force

integrals. For the former, one finds

Predshift = µ·v̇×E.

Now, if one compares this to our original result (4.33), and then looks back

at the electric dipole redshift force found in Section 4.2.1, one finds that we

seem to be establishing a “redshift prescription”,

∇ −→ ∇+ v̇. (4.45)

Again, since this effect was only discovered by the author a few days before

the printing of this thesis, only a small amount of contemplation has followed
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its discovery. Mathematically, the above prescription of course arises because

the quantity

(r ·v̇)

has the same position dependence as the quantity

(r ·∇)

in the Taylor expansion of the fields. However, the author does not yet have

any intuitively simple explanation of why the prescription (4.45) is physically

correct. We leave this as an exercise for the reader.

We now turn to the redshift correction to the force expression. As with

the above, the detailed analysis again finds that this extra contribution may

be obtained by means of the redshift prescription (4.45):

Fredshift = v̇(µ·B).

4.2.4 Mechanical momentum of the current loop

We now ask the following loaded question: What is the mechanical momen-

tum of a stationary electric-current magnetic dipole?

Before we answer this question, let us first explain its importance. In

Chapter 2, we continually (and somewhat pedantically) reminded the reader

that the force on a particle is the time rate of change of its mechanical mo-

mentum:

F ≡ dtp.

This is the only definition of “force” permissible. If you were to inscribe the

laws of physics on stone tablets, this would go on the first one.

Now, a point mass, possessing no other characteristics at all, has the

following kinematical relationship between its velocity and its mechanical

momentum:

p ≡ mγv. (4.46)
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This would seem to imply, by the use of the relativistic centre of energy

theorem, that, for a system of particles, one should have

P ≡ MΓ V , (4.47)

where P is the mechanical momentum of the system as a whole (the sum

of the mechanical momenta of its constituents), M is the mechanical rest-

energy of the system, V the velocity of the centre of energy of the system,

and Γ is the gamma factor corresponding to V .

The problem is that this use of the centre of energy theorem relies on the

fact that the system is isolated . For an isolated system, (4.47) is indeed true.

But if the system is not isolated, it need not remain true. For an electric

charge, it is still true. For an electric dipole, it therefore also remains true.

For a magnetic-charge dipole, it still remains true. . . .

The author has stopped his list one short of the end. The problem with

the electric-current magnetic dipole is not that its constituents are electric

charges, but that these constituents are free to move around their constrain-

ing “tube”: they retain one degree of freedom. When the electric-current

magnetic dipole is isolated , it of course still obeys the centre of energy theo-

rem result (4.47). But when it is in the electromagnetic field of other electric

sources in the Universe, the result (4.47) fails. This was first recognised

by Penfield and Haus [170, 171, 102]. The author shall now outline their

argument, using the formalism and notation of the previous section.

The essential agent of causation in the Penfield–Haus effect is the presence

of an external electric field E whose direction is in the plane of the current

loop (i.e., perpendicular to the magnetic moment µ), at the position of the

electric-current magnetic dipole. The spatial variation of E over the loop may

be neglected; the corresponding corrections vanish in the point limit. Since

our current loop formalism of the previous section is circularly symmetric in

the plane of the loop, we may choose an arbitrary direction, in the x–y plane,

for the direction of the external electric field E: let us choose the positive-y
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direction:

E ≡ jEy.

Now, let us analyse the motion of one of the constituent positive charges in

our loop, as it makes its journey around one complete orbit. For simplicity,

we start the charge (at time t = 0) at the position θ = 0. Now, as the

charge moves counter-clockwise around the loop with speed vorb, it feels the

effect of the electric field E: namely, the Coulomb force qE, which in our

configuration is in the y-direction:

FE = jqEy.

When the charge is at position θ = ±π/2, this force is wholly perpendicular

to the motion of the charge, and is absorbed by the “rigid walls” of the

constraining tube. But when the charge is at the position θ = 0 or θ = π,

it feels a force parallel or antiparallel to the direction of its motion. At a

general position in the loop, the force along its motion is given by

dtpθ = qEy cos θ, (4.48)

where we are here considering only the mechanical momentum in the theta-

direction, pθ (since the charge is constrained to move in only that direction);

the factor cos θ is simply θ̂ ·j. Let us refer to the additional mechanical

momentum given to the charge, over and above that due to its designed

orbital motion, as ∆pθ(t), where

∆pθ(0) ≡ 0. (4.49)

This extra mechanical momentum given to the charge by the electric field

will cause it to accelerate and decelerate as it circulates.

An essential problem now arises: the positive charges will be moving

fastest the position θ = π/2 (i.e., when they are as far in the direction of

the field E as they can be), whereas the negative charges will be moving
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fastest at the position θ = −π/2. This implies that the net charge densities

will no longer balance at each point of the loop; in particular, we will find

that it now possesses an induced electric dipole moment ; the integrity of its

magnetic dipole moment may also be lost. Essentially, we are feeling the

ramifications of letting our constituent charges retain a degree of freedom:

they are now “sympathetic” to the external fields.

Now, if the physical situation that one would like to consider is , indeed,

made up of a number of real electric charges in circulation, with some given

velocities, then this induced electric dipole moment is a reality, and needs

to be considered in the equations of motion of the system. On the other

hand, if one is actually trying to construct an appropriate model of a fixed

magnetic dipole moment, without an induced electric dipole moment (as we

are for the purposes of this thesis, namely, a model that is applicable to the

fixed intrinsic moments of spin-half particles), then this is not acceptable.

We must therefore take steps to ensure that an appropriate limit is taken

that eliminates this unwanted induced moment.

Now, if one considers the situation from first principles, one can see that

if the initial speeds of the circulating charges are small , then the charges will

essentially act as if they are free, and the positive charges will simply tend

to crowd together at one end of the loop, and the negative charges at the

other end, ultimately only constrained by their mutual repulsion. This is of

course what we do not want to happen. So let us, following Penfield and

Haus [171], look at the opposite limit: that of ultra-relativistic circulating

charges. We then of course know that the extra mechanical momentum

absorbed and relinquished during each orbit will lead to only small changes

in speed, due to the relativistic relationship between mechanical momentum

and three-velocity. Moreover, the time that each charge spends in any single

orbit will also be reduced, down to the limiting value (for given ε)

τmin = 2πε
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(i.e., 2πε/vorb with v = 1, the speed of light), and so the effects of the electric

field on its orbital motion will be minimised further, since the impulse given

to the charge on its “downhill leg” is of order qEτ . Thus, we find that we in

fact need to take the constituent charges to be in the ultra-relativistic limit

for our current purposes.

Let us, however, retain the quantity vorb for the remainder of this deriva-

tion, and only set it to unity at the end; this will show us quantitatively

why the ultra-relativistic limit is necessary. Now, the angular position of our

chosen charge, as a function of time, may be obtained quite simply from its

orbital motion; if we assume its speed to be approximately constant through-

out its orbit, then

θ(t) =
vorbt

ε
, (4.50)

since it makes one complete orbit in a time period

τorb =
2πε

vorb

,

and hence

ωorb ≡ 2π

τorb

≡ vorb

ε
.

Using (4.50) in (4.48), we therefore find a differential equation for the zeroth-

order contribution to ∆pθ(t):

dt∆pθ = qEy cos
(

vorbt

ε

)
,

with the initial condition (4.49). This is trivially integrated:

∆pθ =
qεEy

vorb

sin
(

vorbt

ε

)
.

We now rëınstate the full vectorial nature of ∆pθ, by using the identity

θ̂ ≡ −i sin θ + j cos θ;
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thus, using (4.50), we find

∆p
+
(t) =

qεEy

vorb

sin
(

vorbt

ε

){
−i sin

(
vorbt

ε

)
+ j cos

(
vorbt

ε

)}
. (4.51)

Now, if we average this expression over one orbit of the charge, and multiply

by the number of positive charges in the loop, we find

∆p
+

=
n

τorb

∫ τorb

0
dt∆p

+
(t) = −i

qεEy

2vorb

.

If we now look at performing the above analysis for a negative charge in the

loop, we must simply change +q to −q, and reverse the sign of θ(t) in (4.50):

this gives us

∆p−(t) = −qεEy

vorb

sin
(

vorbt

ε

){
+i sin

(
vorbt

ε

)
+ j cos

(
vorbt

ε

)}
, (4.52)

where the negative sign out the front is that due to q → −q, and the first

term in braces has changed sign because sin(−θ) ≡ − sin(θ). The integral of

(4.51), over all of the negative charges, thus also gives

∆p− =
n

τorb

∫ τorb

0
dt∆p−(t) = −i

qεEy

2vorb

.

Thus, adding the contributions of the negative and positive charges together,

we find

∆p ≡ ∆p
+

+ ∆p− = −i
qεEy

vorb

.

Using (4.26), and noting that µ×E is, for our configuration, in the negative-x

direction, we therefore find

∆p =
µ×E

v2
orb

. (4.53)

Now, this result (4.53) seems to imply that, in the nonrelativistic limit of

the motion of the constituent charges, their net mechanical momentum would

diverge. This is, of course, not the case: if the charges are not moving with
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a sufficient amount of inertia, the cyclical changes to their velocity during

each orbit, due to the force of the electric field, may be as large as the

designed orbital velocity: in fact, in the nonrelativistic limit it completely

dominates their motion; hence, the assumption of roughly constant orbital

speed, underlying the expression (4.50), is invalidated in the nonrelativistic

limit, and the expression (4.53) cannot be applied to that regime.

On the other hand, we see that, in the ultra-relativistic limit—where the

speed of each charge rigorously remains at practically the speed of light,—the

result (4.53) gives

∆p = µ×E. (4.54)

In this limit, the magnitude of the magnetic dipole moment is constant, the

induced electric dipole moment vanishes, and there is a model-independent

contribution, (4.54), to the mechanical momentum of the electric-current

magnetic dipole.

Now, if we are considering the ultra-relativistic current loop as a model for

a fixed magnetic dipole moment, then we clearly need to take account of the

extra mechanical momentum (4.54) when computing the equations of motion

for the loop as a whole. If the quantity µ×E is changing—for whatever

reason—then the ultra-relativistic constituent charges will effectively absorb

or relinquish some of the extra mechanical momentum (4.54) that they are

in possession of. If m is the mechanical rest-energy of the loop as a whole,

and v is its velocity, we thus see that

F ≡ dtp = dt(mγv + ∆p).

In other words, we find

dt(mγv) = F − dt∆p. (4.55)

Inserting the expression for the force on an arbitrary stationary electric-

current magnetic dipole, found in the previous section:

F = ∇(µ·B)
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(we shall rëınsert the new redshift force shortly), and the expression (4.54)

for the mechanical momentum ∆p for the stationary electric-current mag-

netic dipole with ultra-relativistic constituents, into (4.55), we thus find the

equation of motion

dt(mγv) = ∇(µ·B)− dt(µ×E)

= (µ·∇)B + µ×(∇×B)− µ̇×E − µ×dtE,

by using a three-vector identity on the first part. Now, the loop we are

considering in this section is stationary, so the convective derivative

dtE ≡ ∂tE + (v ·∇)E

is in this case simply equal to ∂tE. Using Maxwell’s equations for ∇×B, we

thus find

dt(mγv) = (µ·∇)B + µ×(∂tE + J)− µ̇×E − µ×∂tE.

Thus, for the ultra-relativistic current-loop model of a fixed magnetic dipole,

we find

dt(mγv) = (µ·∇)B − µ̇×E + µ×J . (4.56)

Apart from the last term, this is identical to the equation of motion for

the magnetic-charge dipole. The last term in (4.56) is a contact force be-

tween the magnetic dipole µ and any external current J that is generating

a magnetic field. It is beautifully appropriate that the magnetic-charge and

ultra-relativistic current-loop dipoles only behave differently if one probes

the internal structure of the magnetic dipole, by making it collide with an

external current J ; if, on the other hand, we keep our external currents J

away from the position of the dipole—and hence our external currents only

“see” the external magnetic dipole field, identical for either model—then we

find that the two types of dipole also move identically. One could not hope

for a more æsthetically pleasing result.
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The fact that the Penfield–Haus effect returns us to practically the same

equation of motion as the magnetic-charge dipole means that the undesirable

properties of the current-loop equations of motion are no longer applicable;

we instead return to the manifestly satisfactory properties of the electric

dipole case. (The extra contact force can be easily shown to not lead to

any change in the mass of the particle either.) Thus, since the mass m is a

constant, we can write down the covariant equation of motion, in terms of

the four-velocity U , immediately:

mU̇ = (µ· ∂)F̃ · U + [F̃ ·µ̇] + µ×J×U ; (4.57)

the final term is the covariant generalisation of the contact force µ×J , and

the partial derivative [µ̇] encompasses the new redshift force, as with the

electric dipole. The covariant spin equation of motion is of course just the

Bargmann–Michel–Telegdi equation:

(Ṡ) = F ·µ + (µ·F · U)U. (4.58)

Equations (4.57) and (4.58) are essentially the final classical equations of

motion the author shall present for a fixed pointlike magnetic dipole (ignoring

radiation reaction, which will be considered in Chapter 6).

4.2.5 Literature on the current loop force law

If the reader finds the Penfield–Haus effect interesting, they will find some

of the literature on the subject simply fascinating. At essentially the same

time as Penfield and Haus were doing their work on the subject, Shockley

and James [188] constructed a beautiful gedanken experiment that showed

that something was definitely amiss with the standard textbook force on a

current loop. They essentially placed a stationary charged particle at some

distance from two counter-rotating charged disks (their electric-current mag-

netic dipole), and then introduced a very small frictional force between the
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disks. The magnetic dipole moment then decays slowly to zero, due to this

frictional force. The crucial observation is that the time-changing magnetic

dipole force induces, by Maxwell’s equations, an electric field in the space

around the dipole. One can show that this electric field is given by

E(t) =
n×µ̇

4πr2
.

(This can, incidentally, also be obtained from the author’s retarded field

expressions of Chapter 5, even though the author only considers µ̇’s for which

µ stays constant; it appears this result is quite general.) This electric field

acts on the charge, and gives it a mechanical momentum impulse. Because

the electric field depends on the rate of change of the magnetic moment, but

the impulse integrates this force up again, the net impulse is independent of

how slowly one lets the magnetic moment decay.

Shockley and James then point out that there is no apparent counter-

balancing force on the magnetic dipole! By taking the limit in which the

charge’s m/q ratio is made to approach infinity, the velocity attained by the

charge due to the imparted impulse can be made as arbitrarily small as one

likes, and hence there is no substantial magnetic field induced by the charge

that could act on the magnetic dipole. This may be taken to imply that the

mechanical momentum of the total system is not conserved.

Shockley and James suggested that a mechanical momentum excess con-

tained in the electromagnetic field is a “hidden momentum” of the magnetic

dipole; they then used this essentially as the ∆p of the Penfield–Haus ef-

fect. However, this is manifestly incorrect , as the discussions of Chapter 2

show: the mechanical field momentum excess has already been counted in

the derivation of the Lorentz force law, which in turn yields the “textbook”

current loop force law. Thus, to add this excess field mechanical momentum

again would be to count it twice.

In fact, if one considers the question carefully, one finds that in fact there

are three aspects of the physical situation that all have a mechanical momen-
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tum of ±µ×E. Firstly, one can show that the mechanical field momentum

excess for an electric dipole in a magnetic field is in fact given by

pexcess = −d×B; (4.59)

we will shortly find that this same result can be obtained from the Lagrangian

description of the electric dipole, as the difference between the canonical and

mechanical momentum of the particle, in the same way that we found the

quantity qA for an electric charge. One might therefore expect the dual of

the result (4.59), namely,

pexcess = µ×E, (4.60)

to be applicable to the magnetic dipole. But this ignores the fact that there

is an extra delta-function field BM ≡ µ δ(r) at the position of the magnetic

dipole, over and above the dual of the electric dipole field (see Chapter 5);

thus, we get an extra field contribution for the current loop, of value

pexcess =
∫

d 3r E×µ δ(r) ≡ −µ×E.

But this mechanical field momentum contribution cancels that of (4.60). In

other words, the current loop has no net mechanical field momentum excess

at all ; this is again verified by the Lagrangian analysis, which finds no differ-

ence between the canonical and mechanical momentum for the current loop.

(One can intuitively understand this result by recalling that in an electric

dipole, Faraday lines of electric field have beginnings and ends; but in a mag-

netic dipole they do not: they are closed paths, since there are no magnetic

charges.)

Finally, we of course have the third contribution to the consideration of

the current loop, of value +µ×E: the Penfield–Haus mechanical momen-

tum of the constituents themselves. Unlike the mechanical field momentum

excesses, this contribution, being due not to the fields but to the motion of

the particles themselves, does need to be taken into account over and above
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the Lorentz force law, in the equation of motion for the particle, in the way

shown in the previous section.

Unfortunately, the incorrect “field mechanical momentum” explanation of

Shockley and James of the Penfield–Haus effect seems to have been accepted

carte blanche, in more recent years, by some authors: by Aharonov and

Casher in their paper on the effect that bears their name [7]; and, even more

recently, in a paper by Aharonov, Pearle and Vaidman [8] that attempts to

make the argument more rigorous. The latter is most unfortunate, because

the main message of the Aharonov–Pearle–Vaidman paper is most definitely

correct (the establishment of the correct law of motion for the current loop;

the fact that this leads to no force in the Aharonov–Casher effect); but their

use of the field mechanical momentum is badly described, and physically

incorrect . They also state that either the Shockley and James argument or

the Penfield and Haus argument may be alternatively chosen to explain the

Penfield–Haus effect: this is not so, of course, since the two arguments deal

with different physical aspects of the system, and so if they were both to be

correct, it would imply an effect twice as large!

Finally, if one wishes to examine a masterpiece of detective work, one

must look at the 1968 paper by Coleman and Van Vleck [55] on the Shockley

and James paradox. This paper establishes, in a most careful and rigorous

way, that there is indeed some amount of mechanical momentum that is

missing. They then employ the Darwin Lagrangian to show explicitly how

the interactions between the charges in the current loop and the external

charge arise. They establish the back-reaction force. They then quote the

Penfield and Haus analysis for the mechanical momentum excess possessed

by the circulating charges. But, most importantly, they do not invoke the

incorrect argument of Shockley and James involving the mechanical field

momentum. Although there are a few comments in the Coleman and Van

Vleck paper, about canonical and mechanical momentum, that the author

does not quite agree with, the bulk of the argumentation deals with the two
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concepts precisely and correctly, and is a joy to read.

4.3 Lagrangian mechanics

In this section, we analyse the various dipoles considered in the previous

sections from the viewpoint of Lagrangian mechanics.

4.3.1 The electric dipole

It is actually quite a simple task to obtain the interaction Lagrangian for

the electric dipole of Section 4.2.1, from first principles. To do so, one need

only note that the rigid body constraints that we employed in the definition

of that model allow us [96] to simply add the interaction Lagrangians of the

two individual charges together. Starting with the interaction Lagrangian

for each electric charge,

Lint = q
{
ϕ(z)− v(z)·A(z)

}
, (4.61)

and using the position and velocity expressions for each charge listed in

Section 4.2.1, one quite quickly finds that the sum of the two individual

Lagrangians yields

Lint = (d ·∇)(ϕ− v ·A)− ḋ ·A. (4.62)

To convert this into a more recognisable form, we use the property, noted

in Chapter 2, that one may add a total time derivative to the Lagrangian,

without affecting its physical content. If we add the total derivative

dt(d·A)

to (4.62), perform the derivative using the product rule, and employ the

convective derivative, we immediately find

Lint = d · (E + v×B). (4.63)
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If we now differentiate (4.63) with respect to v, to obtain the corresponding

contribution to the canonical momentum b, we find

bint = −d×B.

In other words (adding this result to that of an electric charge), we find

b = p + qA− d×B. (4.64)

This indicates that perhaps the principle of “minimal coupling”, reviewed in

Chapter 2 for an electric charge, might be extended when an electric dipole

moment is present, to the expression (4.64).

If one computes the Euler–Lagrange equations of motion for the interac-

tion Lagrangian (4.63), one simply finds the same results as found in Sec-

tion 4.2.1 via Newtonian mechanics, except that, yet again, the nonrelativis-

tic analysis does not yield the redshift force.

If we now compute the Hamiltonian for the electric dipole, from the

Lagrangian (4.64), one finds

H =
(b− qA + d×B)2

2m
− d ·E. (4.65)

Recalling that H is just the zero-component b 0 of the canonical momentum

four-vector bα, we thus obtain the manifestly covariant expression of extended

minimal coupling :

b = p + qA + d ·F,

or, alternatively,

p 2 = (b− qA− d ·F )2 = m2,

of which (4.65) is the nonrelativistic limit.

4.3.2 The magnetic-charge dipole

Since one cannot have both a well-defined four-potential A(x) and magnetic

monopoles in the same Universe, without performing serious plastic surgery

153



on the structure of spacetime, one cannot formulate a Lagrangian description

of electrodynamics in any simple way if monopoles are employed.

Hence, there is no Lagrangian description of the magnetic-charge dipole.

4.3.3 The electric-current magnetic dipole

If one uses the explicit expressions found in Section 4.2.3, together with

the interaction Lagrangian (4.61) for the electric charge, one finds that the

electric-current magnetic dipole interaction Lagrangian is simply

Lint = µ·B. (4.66)

It will be noted that there is no term in (4.66) dependent on v; this fol-

lows from the general arguments given in Section 4.2.3. In the context of

Lagrangian mechanics, it means that, for the current loop, the canonical

three-momentum b is simply the same as the mechanical three-momentum

p. The Euler–Lagrange equations then of course yield

F = ∇(µ·B),

as was found via Newtonian mechanics in Section 4.2.3.

If we compute the Hamiltonian for the current loop, we simply find

H =
b2

2m
− µ·B.

Now, this result again tells us that there is something strange happening with

a current loop: the Hamiltonian (canonical energy) does have the term −µ·B
added to it, but the canonical three-momentum does not have the relativistic

counterpart µ × E added to it. This would imply that the canonical four-

momentum does not correctly transform under Lorentz transformations.

However, we know , from the analysis in Section 4.2.3, that a current

loop can either describe a system with constituents that may be “induced”

into other configurations—and hence does not properly constitute a system
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of fixed properties; or, alternatively, if we take the ultra-relativistic limit

of the constituents, then we know that we must include the Penfield–Haus

effect. Of course, only the latter course of action is of interest to us for

the purposes of this thesis. Now, it is not clear how one could modify the

Lagrangian description of the electric-current magnetic dipole to incorporate

the Penfield–Haus effect. However, since the resulting equations of motion

are so similar to the dual of the electric dipole results, we might make a guess

that the interaction Lagrangian

Lint
?
= µ · (B − v×E) (4.67)

might do the trick. In fact, if one computes the Euler–Lagrange equations

due to the interaction Lagrangian (4.67), one finds results in complete agree-

ment with those of the current loop incorporating the Penfield–Haus effect,

including the contact force µ×J . Thus, while we have only obtained it by

guesswork, it would appear that (4.67) is in fact the appropriate Lagrangian

for a fixed magnetic dipole. As with the electric dipole case, the canonical

momentum now has an extra contribution: all up, we now have

b = p + qA− d×B + µ×E. (4.68)

The Hamiltonian likewise follows; including all moments, in the nonrelativis-

tic limit, we have

H =
(b− qA + d×B − µ×E)2

2m
− d ·E − µ·B. (4.69)

Finally, the principle of extended minimal coupling can be written manifestly

covariantly, for all three moments:

b = p + qA + d·F + µ·F̃ ,

or, alternatively,

p 2 = (b− qA− d·F − µ·F̃ )2 = m2.

It doesn’t come much simpler than that.
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4.3.4 Relativistic Lagrangian derivation

We shall now briefly review another method that the author [65] has used

to derive the manifestly covariant equations of motion for point particles

carrying (fixed) electric charge and electric and magnetic dipole moments.

(The full text of this paper is given in Appendix F, but it should be noted

that the redshift force does not appear therein, and hence the “uncoupled”

equations of motion listed at the end are incorrect.)

In this method of derivation, one essentially recognises from the outset

that one wishes the magnitudes of the dipole moments to be fixed . One

therefore writes down a relativistic Lagrangian in such a way that the dipole

moments are treated like four-vectors of fixed magnitude. One way to do so,

recognising the fundamental practical importance of spin-half particles, is to

start from the most general interaction Lagrangian possible between such

particles and the electromagnetic field, from the point of view of quantum

field theory; and then to massage the functional form of the resulting La-

grangian somewhat. This procedure does not lead to any new results, and is

somewhat tangential to the main thrust of this thesis, and so has been rel-

egated to Appendix E. The form of the relativistic Lagrangian found there

is

L =
1

2
m(U2) + q(U ·A) + (d·F ·U) + (µ·F̃ ·U).

The Euler–Lagrange equations for the four translational degrees of freedom

zα give

dτ (mU) = −qdτA− dτ (d·F )− dτ (µ·F̃ )

+ q∂(U ·A) + ∂(d·F ·U) + ∂(µ·F̃ ·U). (4.70)

Using the identities (B.27), (B.28) and (B.29), one then immediately obtains

the result

ṗ = qF · U + (d·∂)F · U + [F ·ḋ ] + (µ·∂)F̃ · U + [F̃ ·µ̇ ] + µ×J×U, (4.71)
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which can be seen to encompass all of the results of the preceding sections.

As has been noted earlier, the correct procedure when taking the proper-

time derivative

dτ (Σ ·F )

or

dτ (Σ ·F̃ )

in (4.70) is to use the product rule on the components Σ α, Fµν and F̃µν ; the

former thus yields the partial derivative [Σ̇ ] appearing in (4.71), and the

latter two yield the convective derivatives

(U ·∂)F

and

(U ·∂)F̃ .

The published paper [65] of Appendix F unfortunately uses instead the co-

variant derivative (Σ̇ ); again, as has been noted in previous sections, this

incorrect procedure removes the redshift force, which the author now realises

should be present.

Due to the fact that the author only obtained the redshift force shortly

before this thesis was printed, a re-analysis of the uncoupled equations of

motion, à la that presented in Appendix F, has not yet been performed.

However, we intend to perform such an analysis in the near future.

4.4 What does the Dirac equation say?

Throughout this chapter, we have considered the dipole equations of mo-

tion purely from the point of view of classical physics. But, as noted in

the Abstract of this thesis, the Dirac equation also belongs to the field of

single-particle electrodynamics: it considers only a single particle, and the

electromagnetic field is treated as a classical field. From Ehrenfest’s theorem,
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we know that the operator equations of motion for expectation values should

correspond to the classical equations of motion (see Section 2.7). But, un-

like most applications of this theorem, in this case the correct formulation

of the classical equations of motion is actually in doubt, whereas the quan-

tum equation is most definitively known. By analysing the Dirac equation,

we may therefore gain an independent view of the question of the correct

classical limit, as least as far as spin-half particles are concerned.

In Section 4.4.1, we briefly review the physical interpretation of the Fol-

dy–Wouthuysen transformation of the Dirac equation, and explain why it

is vital in making contact with the classical limit. Then, in Section 4.4.2,

we list the Heisenberg equations of motion arising from the Foldy–Wouthuy-

sen-ed Dirac Hamiltonian. The subtleties involved in the interpretation of

these equations are then highlighted in Section 4.4.3, and the expressions

compared to those argued for by the author in previous sections.

It should be noted that this section is purely one of review; the author is

satisfied that the existing literature covers the physics admirably; but several

comments are made by the author as to the physical interpretation of the

mathematics involved.

For the purposes of this section only, we use units in which h̄ = 1.

4.4.1 The Foldy–Wouthuysen transformation

In relativistic quantum mechanics, the wavefunction components for parti-

cles and antiparticles are considered together, and indeed may interact with

each other. But there always exist canonical transformations of the wave-

function (changes of representation) that mix these particle and antiparticle

components together, while still leaving the physical quantities represented

by the theory unchanged, as long as the operators are complementarily trans-

formed. This means that the components of the wavefunction that appear to

represent antiparticles in one representation will actually be a superposition
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of particle and antiparticle components in a different representation.

It would be difficult to recognise a classical limit of the relativistic quan-

tum theory if this arbitrariness in representation were to be permitted to

run free. Classical physics does not have any trouble with the concept of an-

tiparticles per se: by Feynman’s interpretation, antiparticle motion is simply

effected by means of the “classical C” transformation

τ −→ −τ

on the corresponding particle motion (see Section A.8.26). But the discrete-

ness of this classical C transformation—and the lack of any sort of “superpo-

sition” principle—means that classical physics does not admit any “mixing”

of particle and antiparticle motion.

The clue to the path out of this dilemma was first found in 1949 by

Newton and Wigner [159], as almost a by-product of other, more abstract

considerations. The findings of Newton and Wigner eradicated some of the

myths surrounding the position operator in relativistic wave equations—in

particular, that states localised in position cannot be formed solely from

positive-energy states; and that if a particle’s position is measured below its

Compton wavelength, one necessarily generates particle–antiparticle pairs,

which renders the position measurement of a single particle impossible. In

pursuing some rather simple questions of a group theoretical nature, they

not only found what they were looking for, but were greeted with a swag

of unexpected bonuses. These were explained and elaborated on by Foldy

and Wouthuysen [88], who also obtained the explicit transformation that

realised the goals of Newton and Wigner for the physically important case

of a spin-half particle. (Case [48] later generalised their method to spin-zero

and spin-one particles).

The original aim of Newton and Wigner was to rigorously formulate the

properties of localised states , for arbitrary-spin relativistic representations of

elementary particles. In typical style, they proceeded simply on the basis of
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invariance requirements . They sought a set of states which were localised

at a certain point in space, such that any state becomes, after a translation,

orthogonal to all of the undisplaced states; such that the superposition of

any two such localised states is again a localised state in the set; that the

set of states be invariant under rotations about the point of localisation, and

under temporal and spatial reflections; and that the states all satisfy certain

regularity conditions, amounting to the requirement that all of the operators

of the Lorentz group be applicable to them.

From such a simple and reasonable set of requirements, a most bountiful

crop was harvested. Firstly, Newton and Wigner found that the set of states

they sought could , indeed, be found, for arbitrary spin (provided the mass is

non-zero); moreover, their requirements in fact specify a unique set of states

with the desired properties. Furthermore, these states are all purely positive-

energy states (or, equivalently, purely negative-energy). They further belong

to a continuous eigenvalue spectrum of a particular operator , which itself has

the property of preserving the positive-energy nature of the wavefunction.

Due to these remarkably agreeable properties, Newton and Wigner felt

that one would be justified in referring to the operator they had found as the

position operator—in contradistinction to the operator x in some arbitrary

representation of the relativistic wave equation, which only is the “posi-

tion” operator in that particular representation, and hence has no invariant

physical meaning—since the representation may be subject to an (in gen-

eral position-dependent) canonical transformation, that by definition cannot

change any physical quantities, but which most definitely changes the expec-

tation values of the fixed operator x. The Newton–Wigner position operator

had, in fact, been discovered previously in 1935 by Pryce [175], who found

the operator a useful tool in the Born–Infeld theory, and again later [176]

in a discussion of relativistic definitions of the centre of mass for systems of

particles.

A natural question to ask, given the findings of Newton and Wigner, is
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the following: What does a given relativistic wave equation look like in the

representation in which the Newton–Wigner position operator is , in fact,

simply the three-vector x? This is the question effectively asked by Foldy

and Wouthuysen in their classic 1950 paper [88], for the physically important

case of the Dirac equation. (Their stated aim was actually to find a repre-

sentation in which the components for positive- and negative-energy states

are decoupled, but from the above it is clear that this is effectively the same

as seeking the Newton–Wigner representation.) What they in fact found is,

even today, simply astounding. Firstly, they found that the canonical trans-

formation from the Dirac–Pauli representation to the Newton–Wigner repre-

sentation of the free Dirac equation is, in fact, obtainable exactly. Secondly,

they found that the Hamiltonian for the free particle, in the Newton–Wigner

representation, agrees completely with that of classical physics,

HNW = β(m2 + p2)1/2 ≡ βWp, (4.72)

in contrast to that applicable in the Dirac–Pauli representation,

HDP = βm + α·p,

which—while having the important property of linearity—does not resemble

the classical expression at all. (The eigenvalue of the matrix operator β,

which takes the values ±1, is the particle–antiparticle quantum number—

effectively, the eigenvalue of C; and since the particle is free, we need not

distinguish between the operators b and p.)

Thirdly, Foldy and Wouthuysen found that the velocity operator (ob-

tained from the position operator by means of its Heisenberg equation of

motion) in the Newton–Wigner representation—or, equivalently, the corre-

sponding Newton–Wigner velocity operator in any representation—satisfies

the classical relation for a free particle:

vNW ≡ dtxNW = β
p

Wp

. (4.73)
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That (4.73) is an amazing result is recognised from the fact that, from the

very inception of the Dirac equation, it was known that the “velocity” op-

erator in the Dirac–Pauli representation does not make any classical sense

whatsoever: its sole eigenvalues are plus or minus the speed of light; it is

not directly related to the mechnical three-momentum p; and its equation

of motion has non-real “zitterbewegung” oscillatory motion (see, e.g., [69]).

In drastic contradistinction, the Newton–Wigner velocity operator vNW of

(4.73) has the physically understandable continuum of eigenvalues between

plus and minus the speed of light; its relationship to the canonical momen-

tum of the free particle is identical to that valid in classical physics; and,

when one considers in turn its Heisenberg equation of motion, then one finds

that, for a free particle, the velocity vNW is a constant, since p and W are

also.

Fourthly, Foldy and Wouthuysen found that the free-particle spin and or-

bital angular momentum operators in the Newton–Wigner representation—

defined to be simply lNW ≡ x×p and σNW ≡ σ in this representation—are

constants of the motion separately ; again, it is well-known that, in the Dirac–

Pauli representation, these operators are not separately constants of the mo-

tion, even for a free particle. (The peculiarity of the Dirac–Pauli representa-

tion in this respect can, in fact, be traced back to the fact that the “position”

operator in that representation exhibits the non-physical “zitterbewegung”

motion, which thus enters into the motion of the “orbital angular momen-

tum” operator xDP×p in this representation.)

As a fifth and final accomplishment, Foldy and Wouthuysen attacked

the problem of finding the canonical transformation from the Dirac–Pauli

representation to the Newton–Wigner representation, in the case of the elec-

tromagnetically-coupled Dirac equation. Unfortunately, this cannot be done

in closed form. Nevertheless, Foldy and Wouthuysen showed how one can

obtain successive approximations to the required transformation, as a power

series in 1/m (where m is the mass of the particle), for an arbitrary initial
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Hamiltonian HDP in the Dirac–Pauli representation.

(An unstated assumption, crucial to the validity of the procedure, is that

the “odd” part of the Hamiltonian is in fact of no higher order in m than

m0. This is usually the case, but the assumption has the latent ability to

trip one up. For example, if one tries to Foldy–Wouthuysen-transform a

Hamiltonian in which the mass term βm has been multiplied by eiθγ5 (say,

by a canonical transformation of the representation), then one can be led

to quite erroneous conclusions if one assumes that the terms omitted in the

subsequent Foldy–Wouthuysen process are of high order in m; in fact, the

omitted terms are of exactly the same order as the terms that are retained;

the Foldy–Wouthuysen transformation is, if applied in this way, completely

useless. In such cases, the correct procedure is to first perform a simple

canonical transformation to remove the order m+1 terms from the “odd”

parts of the Hamiltonian; the resulting representation may then be fruitfully

subjected to the Foldy–Wouthuysen transformation.)

It may be wondered, after hearing of all of the wonderful properties of the

Newton–Wigner representation, why one should bother with any other rep-

resentation at all. In particular, why do we usually only concentrate on the

Dirac–Pauli representation of the Dirac equation? (Or representations “triv-

ially” related to it; we shall define this term with more precision shortly.) The

answer is subtle, but beautiful. The massive leptons in Nature are excellently

described by a minimal coupling of their Dirac fields to the electromagnetic

field, in the Dirac–Pauli representation only. It is not often stressed that

minimal coupling—the use of the prescription

b −→ b− qA

in the corresponding non-interacting formalism—is not a universal, repre-

sentation-independent transformation. The reason is that, in general, a

canonical transformation used to effect a change in representation may be

momentum-dependent ; indeed, the Foldy–Wouthuysen transformation itself
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is an important example. Clearly, the processes of using minimal coupling,

and then performing a momentum-dependent transformation, on the one

hand; and that of performing the momentum-dependent transformation first,

and then using minimal coupling, on the other; will lead to completely differ-

ent relativistic wave equations, in general. A priori , one cannot know which

representation one should use the minimal coupling prescription on.

(Clearly, “trivial” changes of representation, in the sense used above, are

therefore those in which the canonical transformation does not involve the

canonical momentum operator.)

Dirac was therefore not just brilliant, but also somewhat lucky: he in-

vented a representation, in which to use minimal coupling, that just hap-

pened to be the right representation for the electron (and, as we now know,

the muon and tauon also). But what distinguishes the Dirac representation

of spin-half particles from all others? It gives a free-particle Hamiltonian

that is linear in the components of the canonical momentum operator. This

property is, of course, precisely what Dirac was striving for in the first place;

even though his reasoning for its necessity was, as we now know, flawed, his

intuition nevertheless led him along the right path.

We therefore come to recognise that, in reality, there are two represen-

tations of the Dirac equation that are singled out above all others,—each

having qualities unique to itself,—that have a truly direct correspondence

with Nature: The Dirac–Pauli representation is unique due to its linearity; it

is the representation in which the massive leptons are minimally coupled. The

Newton–Wigner representation is unique due to its decoupling of positive-

and negative-energy states; it is the representation in which the operators of

the free theory correspond to their classical counterparts.

We may go even further, conceptually speaking, in our description of

the massive leptons: they are, in effect, two types of particle in the one

being: on the one hand, they are four-component animals, in the Dirac–

Pauli representation, in which all four components are inextricably coupled,
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but in which they are pure, pointlike, structureless electric charges ; on the

other hand, they are classical objects, in the Newton–Wigner representation,

in which their operators act quite in accord with classical mechanics, but

in which their electromagnetic moments are more complicated: they still

have electric charge; but through the Foldy–Wouthuysen transformation they

acquire a magnetic moment , and (less well-known) an electric charge radius

(manifested in the “Darwin term” in the Hamiltonian; see [89, 90, 91, 92]).

(In fact, if one wishes to be rigorous, the Foldy–Wouthuysen transforma-

tion of a pure point charge in the Dirac–Pauli representation induces more

than just a magnetic moment and an electric charge radius; these are just

the lowest-order effects. The Sachs form factors [181, 182] are defined pre-

cisely so that one may relate the properties of the “Newton–Wigner face”

of a fermion—real classical particles measured in real experiments—to the

“Dirac–Pauli face” of the fermion—which, in the case of the massive leptons,

is a structureless point charge. However, it should be noted that the Sachs

form factors effectively only take into account the lowest order effects of the

Foldy–Wouthuysen transformation, namely, those listed above; despite their

usefulness, the physical validity of these form factors—in terms of the above

interpretation—cannot be assumed away from the region around q2 = 0.

See [92] for a thorough discussion of the issues involved.)

4.4.2 The Heisenberg equations of motion

Let us start with the minimally-coupled Hamiltonian in the Dirac–Pauli rep-

resentation for a pure electric charge q:

HDP = βm + α·(b− qA). (4.74)

Since we know that the Foldy–Wouthuysen transformation will yield a “pure

Dirac” magnetic moment,

µDirac =
q

2m
σ, (4.75)
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let us therefore add a Pauli term

HPauli = −(g − 2)q

8m
βσµνFµν

to the Hamiltonian (4.74) so that the overall magnetic moment of the particle

is given by

µtotal =
gq

4m
σ (4.76)

with g arbitrary—the pure Dirac result (4.75) applying for g = 2. We now

apply the Foldy–Wouthuysen transformation to obtain the Hamiltonian in

the Newton–Wigner representation; it is straightforward to show (see, e.g.,

[88, 45, 108, 26]) that the result is

HNW = βm + β
(b− qA)2

2m
+ qϕ− gq

4m
βσ ·

{{
B − g − 1

g

βb

m
×E

}}

+
1

2m

g − 1

g

q

2m
ρext + O(1/m2), (4.77)

where we are using the symmetrisor notation of Section A.6.3 to extract

physically meaningful operators.

The last term of (4.77) is the Darwin term, which we shall not be inter-

ested in here.

The first three terms of (4.77) seem to represent the mechanical energy

of the particle, to order 1/m, plus the electric charge interaction; we shall

have more to say on this shortly.

The fourth (symmetrised) term of (4.77), on the other hand, seems to rep-

resent a magnetic dipole moment interaction of the particle with the external

field, of moment given by (4.76), since the operator βb/m is, to lowest order

in 1/m, just the velocity operator. However, there are obvious complications;

we shall discuss these in the next section.

Let us, first, simply see what Heisenberg equations of motion are obtained

from the Newton–Wigner representation Hamiltonian (4.77). It is straight-

forward to show [88, 108, 26, 11] that the Heisenberg equation of motion for
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the position operator x yields

mdtx = b− qA− g − 1

g
µ×E + O(1/m)

≡ pnaive; (4.78)

and, in turn, for this operator pnaive,

Fnaive ≡ dtpnaive

= qE +
g − 1

g

{
(µ·∇)B − µ̇×E + µ×J ext

}

+
1

g
∇(µ·B) + O(1/m). (4.79)

These results, (4.78) and (4.79), have been collected together and cleaned up

somewhat by the author, based on the expressions found by previous workers

[88, 108, 26, 11]; but the author has not changed their mathematical content

in any respect.

4.4.3 Intepretation of the equations of motion

We now turn to the question of interpreting the equations of motion (4.78)

and (4.79), and indeed the Hamiltonian (4.77). This question has been con-

sidered, over the years, by a number of workers; the author has, for example,

found the discussions of Barone [26] and Anandan [11, 12, 14] most helpful;

the following conclusions are in large part due to those authors.

The most puzzling aspect of the results (4.77), (4.78) and (4.79), even at

first sight, is the recurring presence of the factor

g − 1

g
.

Let us first obtain a clear understanding of what this factor represents. In

the case of a “pure Dirac” moment, i.e., an electric charge only in the Di-

rac–Pauli representation, we have g = 2, and hence

g − 1

g

∣∣∣∣∣
Dirac only

=
1

2
.
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On the other hand, for a Pauli moment only , and no electric charge, we

effectively have |g| → ∞, and hence

g − 1

g

∣∣∣∣∣
Pauli only

= 1.

Thus, the factor (g− 1)/g in front of a term tells us that, for the anomalous

part of the magnetic moment, the term is fully manifested; but for the Dirac

part of the magnetic moment, it is reduced by a factor of one-half.

Let us first consider the factor (g−1)/g in the Hamiltonian (4.77): it is the

best-known appearance of this factor. It represents, of course, the Thomas

precession reduction of the spin-orbit coupling of the electron, that allows

the g = 2 electron to still have the correct energy levels in the hydrogen

atom [213, 214]. As such, it is highly desirable, and it was an early success of

the Dirac equation that it should yield this relativistic effect automatically.

Naturally, this factor of (g − 1)/g propagates through from the Hamilto-

nian to the Heisenberg equations of motion. Of fundamental concern is its

presence in the relation between the canonical and mechanical momentum

operators, equation (4.78). (The keeping of terms up to order m0 essen-

tially places us in the rest frame of the particle; i.e., terms of order v are

neglected.) One can already begin to sense the incorrectness of the iden-

tification “p” for mdtx, by realising that a purely kinematical effect—the

Thomas precession—is purporting to modify the dynamical definition of ex-

tended minimal coupling [11].

But the clincher comes when one examines in turn the equation of motion

for this “p” operator, namely, equation (4.79): we find that a proportion

(g − 1)/g of this equation is given by the accepted equation of motion for

a magnetic moment, while the remaining 1/g of it is the rejected equation

of motion! This nonsensical result is of course a result of the destruction,

implied by (4.78), of the extended minimal coupling between p and b.

It has been pointed out by Wignall [236] that, were this to be true, it
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would mean that the “pure Dirac” and “anomalous” parts of the magnetic

moment would be classically distinguishable, in contradiction to all known

experiments performed to date, and with perplexing side-effects if the particle

in question were to be part of a larger system. For example, if the spin-half

particle in question were to be chosen as a quark inside a nucleon, such a

distinguishability would presumably allow us to measure the relative weights

of the quark Dirac and anomalous moments simply by measuring the classical

motion of the nucleon—a highly dubious possibility. (Incidentally, it was

this suggestion by Wignall, linking nucleon constituent quark questions to

classical magnetic dipole force questions, that is responsible for the author’s

transition from his Fourth Year work on the former, to this Ph.D. thesis on

the latter.)

Barone [26] discussed the problem of the factor (g − 1)/g most clearly in

1973, highlighting its relationship with the earlier extensive arguments based

on “hidden momentum”. The stated purpose of his paper was to suggest

that the correct definition of the mechanical momentum operator should , in

fact, be the extended minimal coupling result,

p = b− qA− µ×E,

W = H − qϕ + µ·B, (4.80)

which he noted was a correctly Lorentz-invariant four-vector definition; one

can now of course write the Hamiltonian manifestly covariantly, in the form

p 2 ≡ (b− qA− µ ·F̃ )2 ≡ m2,

for which (4.77) (excluding the kinematical Thomas precession term) is the

first approximation for b 0 ≡ H. (It should by now be apparent why the first

three terms of (4.77) do not actually represent the “mechanical energy” of

the particle fully: they only take on this rôle for a pure electric charge in the

Newton–Wigner representation—i.e., the case g = 0, where the added Pauli
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moment actually cancels with the Dirac moment.) If one now obtains the

Heisenberg equation of motion for the operator p of (4.80), for the Hamil-

tonian (4.77), one in fact finds that it now agrees with the accepted force

law of previous sections; the splitting off of the 1/g term disappears. (The

redshift force is not present; but we shall show shortly that it vanishes to the

order of expansion considered here.)

Anandan [11, 12, 14] also came to the same conclusions as Barone, on the

basis of group theoretical considerations, and provided a physical explana-

tion for the discrepancy between (4.78) and (4.80): essentially, because of the

Thomas precession of the rest frame of the particle, one must perform a fur-

ther transformation of HNW to take one into the Fermi–Walker-transported

coördinate system (which the author has termed the “pre-relativistic” coörd-

inate system in this thesis); in this frame, the relations (4.80) hold rigorously.

The motivation stated by Anandan [11] for this clarification was the state-

ment by Goldhaber [94] that the coupling of a quantised spin to the Maxwell

field is isomorphic to the interaction of an isospin with the Yang–Mills field;

this is reflected in the coupling (4.80), and of course is destroyed in the näıve

result (4.78).

It may be thought that the transformation of Anandan puts in jeopardy

the original successful application of the Thomas precession effect, namely,

the calculation of the spin-orbit coupling for the energy levels in the hydro-

gen atom. However, this is not so: for the hydrogen atom application, the

electron is “moving”, but the frame we are interested in (the rest frame of the

centre of mass of the atom) is not ; thus, for the purpose of computing energy

eigenvalues, it is appropriate to use the untransformed Hamiltonian (4.77).

Conversely, one may view Thomas’s original argument for his precession—

the difference between viewing the hydrogen atom in the atom’s frame and

the electron’s co-accelerated frame—as showing why the Anandan transfor-

mation from the former to the latter is necessary for one to obtain relativis-

tically correct Heisenberg equations of motion for the position operator.
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If we accept the above line of argumentation by Barone and Anandan—

which the author does,—then it is clear that, in the co-accelerated frame,

the Dirac equation agrees with the results found in previous sections of this

chapter (except for the redshift force), and hence with all previous workers

who have suggested the nonrelativistic limit of these results previously. Of

course, the controversial “Anandan force” [10, 11, 49], depending only on the

anomalous moment of the neutron, is supported without qualification by the

Dirac equation.

We must now discuss the redshift force found by the author in the closing

days of his candidature. Now, since, to lowest order, the acceleration v̇ of the

particle is given by qE/m, and since the expression for the redshift force itself

contains another explicit factor of E, we see that this effect is quadratic in

E; but, more importantly, it also involves an extra factor of 1/m. Thus, the

Foldy–Wouthuysen transformation—which is, most rigorously, an expansion

in the mathematical parameter 1/m—would need to be taken to another

order than that listed above in (4.77), in order for us to obtain the redshift

force.

The author has not of course performed this task; the results would no

doubt be interesting; we leave it as an exercise for the reader.
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Chapter 5

The Retarded Fields

I have preferred to seek an explanation of the facts by supposing them
to be produced by actions which go on in the surrounding medium as
well as in the excited bodies, and endeavouring to explain the action
between distant bodies without assuming the existence of forces capable
of acting directly at sensible distances.

—— J. C. Maxwell [149]

5.1 Introduction

The electromagnetic field has gained somewhat in status since Maxwell’s day.

Today, even high school students know that an electric charge is surrounded

by an electric field ; if something shakes this charge (say, the voltages in an

antenna), then its emits electromagnetic radiation. In order to learn exactly

what fields are generated by an electric charge, when it is in arbitrary mo-

tion, one generally has to do a undergraduate degree in Physics or Electrical

Engineering; but, nevertheless, the explicit expressions are there for us, listed

in any standard textbook on electromagnetism.

The average high school student would also know that the space around a

magnet is filled with a magnetic field ; a piece of paper, some iron filings, and

a fridge magnet are all the experimental apparatus necessary to drive this

point home quite beautifully. If pressed, such a student would probably also
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hazard a guess that, if one were to shake the magnet around vigorously , some

sort of electromagnetic radiation should, by rights, be “shook off”—just as

happens with an electric charge. However, an analogue of the radio antenna

example is, in this case, not so easy to think of. And what about exact

expressions for the electomagnetic fields generated by magnets, in arbitrary

motion: are these in all the standard textbooks? The student would be sadly

disappointed if they assumed so.

There is, fundamentally, no good reason why the fields generated by mag-

netic or electric dipoles, in arbitrary motion, should be treated any differently

to those generated by electric charges—other than that of pure lack of in-

terest. Particles carrying dipole moments do, naturally, require a somewhat

more careful treatment than those simply carrying electric charge—after all,

they contain a certain amount of “structure”; but, on the other hand, the

particles of Nature, to which we usually apply the equations of classical

electrodynamics, generally come with magnetic dipole moments already in-

stalled: a fundamental particle without a magnetic moment is a rarity.

To repair this deficiency in most textbooks’ treatments of the retarded

electromagnetic fields, we will, in this chapter, derive explicit expressions for

the fields generated by a point particle carrying electric and magnetic dipole

moments, as well as electric charge—and, moreover, will obtain them in a

very simple form. The mood of the author, in this chapter, is to essentially

provide a derivation of the retarded dipole fields that could, with very little

work, be grafted on as an extra section in Jackson’s textbook [113]—the

concepts, methods and notation used essentially mirroring those used in that

text.

In Section 5.2, we briefly review the history of the search for the retarded

fields for particles with dipole moments. In Section 5.3, we review the deriva-

tion of the standard Liénard–Wiechert fields for an electrically charged point

particle, both to ground our notation, and to establish the general method

of attack on such problems. We then, in Section 5.4, turn these techniques
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to particles carrying dipole moments, and obtain new, simplified expressions

for the results. Finally, in Section 5.5, we review various aspects of the static

fields from such particles, insofar as are required for the radiation reaction

calculations to be undertaken in Chapter 6; as a by-product, we obtain the

expression for the extra delta-function field required on the worldline of the

particle, in the case of a magnetic moment, in order that the Maxwell equa-

tions be correctly satisfied.

5.2 History of the retarded dipole fields

That the fields generated by a particle carrying a dipole moment are richer

(and, correspondingly, more mathematically complicated) than those gener-

ated by an electric charge can be appreciated before even writing down an

equation. Firstly, one knows that a dipole must have internal degrees of free-

dom describing the orientation of the dipole in the rest frame of the particle;

these degrees of freedom (and, in particular, their rates of change) will enter

into the equations for the generated fields, in addition to those quantities

already present in the electric charge case. Secondly, the static fields of a

dipole fall off like R−3 (rather than R−2 as for an electric charge), which

means that two time derivatives of the velocity and/or spin must be present

to generate the “radiation” fields. (This can be seen on dimensional grounds:

the four-velocity and unit four-spin are themselves dimensionless; there are

no other kinematical quantities available apart from the proper time; and

the radiation fields must, by definition, fall off like R−1 so that the energy it

carries may propagate out indefinitely.)

Perhaps due to this premonitory warning of extra complexity, the question

of obtaining the general retarded fields for a particle with a dipole moment

has not attracted much attention over the decades. Bhabha and Corben [40]

appear to have been the first to make a substantial attack on this problem,

in 1941, using methods developed two years earlier by Bhabha [39]. (See
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also [41] and [148] for a discussion of related problems.) Bhabha and Corben

obtained exact expressions for the generated fields, which can be found in

Appendix A of their paper [40]. Despite (or perhaps because of) their being

manifestly-covariant, the physics behind the many terms present in the their

expressions is not, unfortunately, easy to visualise conceptually.

The field appears to have then lain relatively dormant until the early

1960s. In a series of papers in the period 1963–6, Ellis [79, 80] and Ward [229,

230, 231] proceeded to attack the same problem. (Bialas [43, 44] also con-

sidered the case of particles with dipole moments in 1962.) Initially, they

appeared to be oblivious not just to each other, but also to their prede-

cessors; but by the end of the series of papers, they had found that their

independent analyses essentially agreed with each other (see [231]), and with

that of Bhabha and Corben (see [80]).

The form of the results presented by Ellis was essentially the same as

that of Bhabha and Corben (manifestly covariant), but those of Ward were

in terms of explicit three-vectors, and lab-time derivatives. The author con-

siders the method of presentation of either author to have both its pros and

cons: the manifestly covariant expressions are, as noted, intuitively obscure,

but at least their covariance is manifest; the explicit expressions of Ward

are somewhat more visualisable, but, unfortunately, the presence of numer-

ous levels of “nested” time-derivatives—not actually evaluated—leaves one

again floundering for a simple understanding.

The next attack on the same problem appears to have been that of Kol-

srud and Leer [124] in 1967, who concentrated their efforts mainly on the

four-potential; the field strengths were obtained in terms of proper-time

derivatives, but Kolsrud and Leer only actually computed these derivatives

explicitly for the radiation fields, for which they made a number of valuable

comments. (They were aware of the previous work of Ward and Ellis, so in a

sense there was no need to re-compute the other expressions that they were

not interested in.) Again, their results were in accord with those of previous
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workers.

In 1969, Cohn [53] unfortunately attacked the problem anew, unaware of

the previous work in the area. (Somewhat surprisingly, the paper is pub-

lished in the same journal that carried Ellis’s final results just three years

earlier.) The reason that Cohn’s paper is unfortunate—rather than simply

another instance of blissful ignorance—is that, unlike the previous partici-

pants in the saga, he got the analysis wrong. This was quickly pointed out

by Kolsrud [125] in that same journal.

Fortunately, Cohn did not retreat from the subject; six years later, he and

his Ph.D. student Wiebe attacked this problem again [54], making due note

of Cohn’s earlier mistakes; and, this time, the correct results were obtained.

Cohn and Wiebe based their results on the four-potential expression obtained

by Kolsrud and Leer [124]; their manifestly-covariant field expressions are, in

the opinion of the author, the easiest to come to grips with, from the view-

point of modern notation and concepts, out of the various treatments listed

above (although, mathematically speaking, they are all ultimately equiva-

lent).

As far as the author can ascertain, the field then again lay essentially dor-

mant for another seventeen years, until the author, as blissfully unaware of

his predecessors as they were of their predecessors, attacked the same prob-

lem again, from first principles. The motivation for this was that, following

the successful derivation of the dipole equations of motion of Chapter 4, the

author wished to use the retarded fields, together with the dipole equations

of motion, to obtain the radiation reaction equations of motion for particles

with dipole moments. Not being, at the time, able to find the retarded fields

listed anywhere in the literature (the works cited in this section essentially

being a set of measure zero, compared to the total volume of physics litera-

ture of the past century), the author proceeded to derive the desired results

from scratch.

The results found by the author are presented in the following sections
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of this chapter. After they were obtained, the author became aware of the

Cohn–Wiebe paper. As might be expected, the author had chosen a differ-

ent set of “convenient quantities” with which to express his results than did

Cohn and Wiebe; but, nevertheless, the fundamental quantities used in the

computations were basically compatible. (There is considerable freedom in

deciding how one is to treat the internal degrees of freedom of the dipole mo-

ments; this is partially the reason why some of the earlier results are difficult

to interpret, intuitively.) After some work (now presented in Appendix D),

the author was able to verify that his manifestly-covariant expressions were,

indeed, in all ways equivalent to those of Cohn and Wiebe (and, consequently,

to those of their predecessors).

However, the author wished to take the problem one step further: namely,

an evaluation of the retarded field expressions in terms of the explicit, non-

covariant quantities, such as v, v̇, σ, σ̇, etc., that are used to great effect

in the Thomas–Bargmann–Michel–Telegdi equation. When the author’s at-

tempt towards this end was first begun,—by using the identities, derived by

the author, now listed in Section G.4,—the resulting expressions were horren-

dous. But then, bit by bit, many of the terms began to cancel out with each

other; and, after some further pain, the author found a number of additional

quantities (specifically, the vectors n′ and n′′, to be introduced later; and,

most importantly, the FitzGerald spin vector σ′) that simplified the results

remarkably. The net result is that the expressions found by the author are

not only built out of quantities (such as v̇) that one can understand intu-

itively, they furthermore are actually simpler than the manifestly-covariant

expressions from which they are derived. This was an unexpected bonus.

Finally, while writing the computer algebra program radreact to com-

plete the horrendously complicated algebraic computations of the radiation

reaction calculations of Chapter 6, the author made a slight detour, and

wrote another small program, using the same algebra libraries, to comprehen-

sively check the results of this chapter (see Section G.2.2), starting with the

177



manifestly-covariant field expression that had been explicitly verified against

those of Cohn and Wiebe.

The program verified the author’s explicit results unequivocally. The au-

thor therefore confidently asserts that the results are, without doubt, correct.

Now to return to the beginning of the saga, with details filled in.

5.3 The Liénard–Wiechert fields

In this section, we briefly review the computation of the retarded fields gen-

erated by a pointlike charged particle in arbitrary motion. Our treatment

generally follows that of modern texts; e.g., Jackson [113, Secs. 12.8, 12.11,

14.1]. We emphasise those aspects of the derivation which are to be gener-

alised for the analogous derivation of the retarded dipole fields in Section 5.4.

Note that we do not here consider the fields on the worldline of the gen-

erating point particle; this question is considered separately, in Section 5.5.

5.3.1 The field Lagrangian

The classical Lagrangian density for the free electromagnetic field is (see,

e.g., [113, Sec. 12.8])

Lfree =
1

4
F αβFαβ, (5.1)

where, as usual, the field strength tensor F (x) is obtained from the four-

potential A(x) by means of the definition (B.1):

Fαβ ≡ ∂αAβ − ∂βAα. (5.2)

The four-potential components Aµ(x) are considered to be the Lagrangian

degrees of freedom for the field, at each spacetime point x.

One’s next task is to include the interaction Lagrangian density when

electrical sources are present. Pretend, for the moment, that one does not

already know the answer, and consider the problem from first principles; this
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exercise will be of use in guiding us in future sections. We know that, for

the purpose of computing a charged point particle’s equations of motion, the

electric charge interaction Lagrangian is

Lint = qUαAα. (5.3)

We can turn this Lagrangian into a Lagrangian density by converting the

point particle’s electromagnetic current, qUα, into a current density, Jα(x),

via

Jα(x) ≡
∫

dτ qUα(τ) δ(4)[x− z(τ)] . (5.4)

Then (5.3) is equivalent to the Lagrangian density

Lint = JαAα, (5.5)

and so the complete Lagrangian density, as far as the electromagnetic field

is concerned, is simply the sum of (5.1) and (5.5):

L = Lfree + Lint =
1

4
FαβFαβ + JαAα. (5.6)

5.3.2 The Maxwell equation

A straightforward application of the field Euler–Lagrange equations to the

Lagrangian density (5.6) yields the familiar (inhomogeneous) Maxwell equa-

tion, equation (B.7) of Section B.2.7:

∂µF
µν = Jν . (5.7)

5.3.3 Solution of the Maxwell equation

One’s next task is to determine the solution of (5.7) for some given electric

current distribution Jν(x). While it is possible to obtain this information

directly from (5.7), it is simpler to employ again the four-potential Aµ, purely
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as a mathematical aid—it not being, in itself, a physically observable quantity

in classical physics. In terms of the Aµ, the Maxwell equation (5.7) is

∂2Aµ − ∂µ(∂νA
ν) = Jµ. (5.8)

It now simplifies the computations to choose a Lorentz gauge, in which

∂νA
ν
LG = 0. (5.9)

This choice, of course, destroys gauge invariance, so we should aim to re-

turn to the gauge-invariant (and physically meaningful) field strength tensor

F (x) as soon as the possibility arises. With the choice (5.9), equation (5.8)

becomes

∂2Aµ
LG = Jµ. (5.10)

The utility of the choice (5.9) lies with the fact that (5.10) now represents

four uncoupled differential equations in Minkowski space, one for each µ =

0, 1, 2, 3. It therefore suffices to find a Green function D(x, x′) satisfying the

equation

∂2
xD(x, x′) = δ(4)(x− x′). (5.11)

Now, this is a merely mathematical problem; the standard textbook solution

(see, e.g., [113, pp. 609–11] for a derivation) is

Dr(x− x′) =
1

2π
ϑ(x0 − x′ 0) δ

[
(x− x′)2

]
, (5.12)

where we have selected the retarded solution, and ϑ(t) is the Heaviside step

function of Section A.5.3. Using this Green function, the solution to (5.10)

can be written down directly:

Aµ
LG(x) = Aµ

in(x) +
∫

d 4x′ Dr(x− x′)Jµ(x′), (5.13)

where Aµ
in(x) represents the Lorentz-gauge four-potential of any radiation

“incoming”, that is not due to the particle in question. Since the equations

are linear, we can omit the term Aµ
in(x) from our explicit considerations, it

being understood that the incoming fields may simply be added to the fields

generated by the particle in question at the end of the analysis.
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5.3.4 The fields for a point particle

The result (5.13) holds for arbitrary electric charge distributions Jµ(x′). We

now determine the retarded fields from the electric charge of a point particle

by substituting the current density expression for a point charge, equation

(5.4):

Aµ
LG(x) =

q

2π

∫
dτ Uµ(τ)

∫
d 4x′ ϑ(x0−x′ 0) δ

[
(x− x′)2

]
δ(4)[x′ − z(τ)] . (5.14)

Integrating this expression over d 4x′, we find

Aµ
LG(x) =

q

2π

∫
dτ Uµ(τ) ϑ

[
x0 − z0(τ)

]
δ
{
[x− z(τ)]2

}
. (5.15)

Clearly, this integral will only contain a contribution from z(τ) on the back-

wards light cone of x, i.e., the particular τ = τret for which [x− z(τret)]
2 = 0

and z0(τret) < x0.

We now discard the Lorentz-gauge four-potential Aµ
LG in favour of the

physically meaningful field strengths Fαβ, using the definition (5.2). Let us

first concentrate on the first term on the right-hand side of (5.2), namely,

∂αAβ. The partial derivative ∂α, acting on the Heaviside step function, will

give us a Dirac delta function at the four-position of the charge; since we

shall be treating the fields on the worldline of the particle separately, in

Section 5.5, we can ignore this contribution for the current analysis. We are

thus left with

∂αAβ =
q

2π

∫
dτ Uβ(τ) ϑ

[
x0 − z0(τ)

]
∂αδ

{
[x− z(τ)]2

}
. (5.16)

To proceed from here, one needs to recall the chain rule of differentiation,

namely

∂ug[f(u, τ)] ≡ ∂uf · dfg[f(u, τ)] . (5.17)

Applying this to the case of the partial derivative ∂α (for which the variable

u in (5.17) is the component xα), and noting that we ultimately wish to
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integrate over the proper time τ , we write

∂αg[f(x, τ)] = ∂αf · dfg[f(x, τ)] ≡ ∂αf · (dτf)−1 · dτg[f(x, τ)] . (5.18)

In (5.16) we have g[f ] = δ[f ] and f(x, τ) = [x− z(τ)]2, and so in this case

dτf = −2 U · (x− z) (5.19)

(since dτz
α(τ) ≡ Uα(τ)), and

∂αf = 2(x− z)α,

so that

∂αδ
[
(x− z)2

]
= − (x− z)α

U · (x− z)
dτδ

[
(x− z)2

]
, (5.20)

where we are now taking the τ -dependence of zα and Uα to be understood.

Inserting (5.20) into (5.16) then yields

∂αAβ = − q

2π

∫
dτ

(x− z)αUβ

U · (x− z)
ϑ(x0 − z0) dτδ

[
(x− z)2

]
. (5.21)

We can now compute the field strength tensor (5.2) by antisymmetrising

(5.21). Performing the τ integration by parts, the boundary term vanishes

on account of the delta function, and we are left with

F q =
q

2π

∫
dτ dτ

[
(x− z)∧U

U · (x− z)

]
ϑ(x0 − z0) δ

[
(x− z)2

]
,

where ∧ represents the wedge-product operation of Section A.8.11. We fur-

ther make use of the fact that, for purposes of integration over τ ,

δ[f(τ)] =
∑
τz

δ(τ − τz) |dτf(τ)|−1
τz

, (5.22)

where τz are the zeroes of f(τ). Using (5.19), we thus have

F q =
q

4π [ U · (x− z) ]τret
dτ

[
(x− z)∧U

U · (x− z)

]

τret

, (5.23)
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where, again, τret is the retarded proper time.

It is convenient, both here and with an eye to the next section, to define

three new quantities ζα, ϕ and χ̇, according to

ζα ≡ (x− z)α, (5.24)

ϕ ≡ 1

U · (x− z)
≡ 1

(U · ζ)
, (5.25)

χ̇ ≡ U̇ · (x− z) ≡ (U̇ · ζ). (5.26)

(Note that χ̇ is not actually the derivative of any previously defined quantity

χ; the overdot added to the symbol will be convenient for our later purposes,

and is motivated by the fact that χ̇ involves the quantity U̇ .) Equation

(5.23), rewritten in terms of ζ and ϕ, is

4πF q = qϕdτ

{
ϕζ∧U

}
.

Differentiation by the product rule, and a collecting together of terms, yields

4πF q = qϕϕ̇ζ∧U + qϕ2ζ∧U̇ ,

where we have noted that

dτζ ≡ −dτz ≡ −U,

and we have used the identity

U∧U ≡ 0.

Now, differentiating (5.25), we find that

ϕ̇ = ϕ2(1− χ̇), (5.27)

so that

4πF q = qϕ3(1− χ̇)ζ∧U + qϕ2ζ∧U̇ . (5.28)
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Equation (5.28) is, in the above notation, the manifestly covariant ex-

pression for the retarded fields generated by the point charge. It is, however,

useful to further split it into two parts: F q
1 , which has a dependence on ζ of

ζ−1; and F q
2 , which has a dependence on ζ of ζ−2; while we are at it, we shall

also deal with the ever-inconvenient factor 4π, and the value of the electric

charge, q:

F q ≡ q

4π

{
F q

1 + F q
2

}
.

An examination of (5.28), and the definitions (5.24), (5.25) and (5.26), allows

us to slot the terms of (5.28) into F q
1 and F q

2 :

F q
2 = ϕ3ζ∧U,

F q
1 = ϕ2ζ∧U̇ − ϕ3χ̇ζ∧U. (5.29)

5.3.5 Explicit form for the retarded fields

While being mathematically elegant, it is somewhat difficult to appreciate the

true physical content of the expressions (5.29), as they stand. One therefore

usually reëxpresses them in terms of explicit, non-covariant quantities : the

fields E and B in the case of Fαβ, and the kinematical quantities v and v̇ in

the case of Uα and U̇α. The lightlike four-separation ζα ≡ (x− z)α between

the observation point xα and the retarded lightcone four-position zα may be

parametrised as

(x− z)0 ≡ R,

(x− z) ≡ Rn, (5.30)

where n2 = 1. Clearly, n can be interpreted as the unit normal in the direc-

tion of the observation point, from the position of the charge as it was at the

retarded time τret; R is the simple three-distance between these temporally-

separated events. From the relations listed in Section G.4.7, and the defini-
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tions (5.25) and (5.26), one can verify that

χ̇ = γ3ϕ−1(v ·v̇)− γ2R(v̇ ·n), (5.31)

ϕ =
1

γR [1−v ·n]
. (5.32)

(These results are also verified explicitly by the computer algebra program

kinemats, in Section G.4.11.) We can now compute the components of elec-

tric and magnetic field, given by E ≡ F i0 and B ≡ −1
2
εijkF

jk. Performing

the relevant substitutions in (5.28), and manipulating the results somewhat

using vector identities, one finds that

Eq =
q [n−v]

4πγ2[1−v ·n]3R 2
+

q n×([n−v]×v̇)

4π[1−v ·n]3R
, (5.33)

where it is understood that the particle quantities v and v̇ are evaluated at

the retarded time, τret. The result (5.33) is in the form presented, for example,

in Jackson’s textbook [113, Eq. (14.14)]; it is described there as “inelegant,

but perhaps more intuitive” than its manifestly-covariant counterpart. We

shall attempt to improve its “elegance rating” somewhat, shortly.

To compute the retarded magnetic field Bq, one need not start from

scratch, but rather one may make good use of the identities in Section G.4.

By writing out the expressions explicitly, one can verify that, if a term of

F is proportional to U (wedged with some other four-vector), then, for that

term,

B = v×E; (5.34)

alternatively, if a term of F is proportional to ζ (again, wedged with some

other four-vector), then, for that term,

B = n×E. (5.35)

Clearly, all of (5.28) satisifes (5.35), and the first term also satisfies (5.34).

Using the former of these properties, one may most simply write

Bq = n×Eq; (5.36)

185



this is Jackson’s equation (14.13) [113].

With an eye to the next section, we now define the convenient quantities

E′q
1 , E′q

2 , B′q
1 and B′q

2 :

Eq ≡ q

4π

{
E′q

1

R
+

E′q
2

R2

}
,

Bq ≡ q

4π

{
B′q

1

R
+

B′q
2

R2

}
, (5.37)

as well as the (unprimed) quantities Eq
1, Eq

2, Bq
1 and Bq

2:

Eq
n ≡

E′q
n

Rn
,

Bq
n ≡

B′q
n

Rn
.

It will also be fruitful to define the two new three-vectors

n′ ≡ n− v (5.38)

and

n′′ ≡ n′ − v×(n×v), (5.39)

as well as the “Doppler factor”

κ ≡ 1

1− (v ·n)
. (5.40)

In terms of these quantities, the retarded electric charge fields (5.33) and

(5.36) can be written

E′q
1 = κ3n×(n′×v̇), (5.41)

E′q
2 = γ−2κ3n′, (5.42)

and

B′q
1 = n×E′q

1 , (5.43)

B′q
2 = n×E′q

2 = v×E′q
2 , (5.44)
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where in (5.44) we have noted that Bq
2 (and hence B′q

2 ) satisfies both (5.34)

and (5.35).

Equations (5.41), (5.42), (5.43) and (5.44) are the final, simplified ex-

pressions for the retarded fields generated by a point electric charge, in the

author’s notational system.

5.4 The retarded dipole fields

In this section, we compute the retarded electromagnetic fields generated by

an arbitrarily moving particle possessing magnetic and electric dipole mo-

ments , in addition to electric charge.

It will be found convenient to assume from the outset that the dipole

moments are fixed in magnitude, such as is true for the intrinsic moments

of spin-half particles. We may then employ the unit spin four-vector Σ α of

Section G.4.4 to denote the direction of the dipole moment from the outset,

with a constant numerical coëfficients d and µ. However, it should be noted

that the angular momentum connotation of Σ is not used at all, in the

considerations of this chapter. In other words, the results are completely

applicable to classical dipoles in which the (fixed) dipole moment vector and

the spin angular momentum vector have no definite relationship; one should,

in these cases, simply replace σ, in the results of this chapter, by d or µ as

appropriate.

5.4.1 The field Lagrangian

Our first step is to return to the classical free-field Lagrangian density of the

electromagnetic field, equation (5.1):

Lfree =
1

4
F αβFαβ.

To this Lagrangian density we must add terms corresponding to the interac-

tion between the electromagnetic field and the electric and magnetic dipole
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moments of a particle. There are a number of ways of doing this; here, we

follow the same method as was used in the Section 5.3.1: we start with the

interaction Lagrangian for a point particle carrying such moments. From

equation (E.7) of Section E.4, we have

Lint = qUµAµ + µαF̃αβUβ + dαFαβUβ,

We now need to generalise the latter two terms to the case of arbitrary dipole

densities , analogous to the generalisation, in Section 5.3.1, of the first term

from charged current to charged current density. To this end, we define two

antisymmetric density tensors d̃αβ(x) and µ̃αβ(x) for the point particle, thus:

d̃(x) ≡
∫

dτ U(τ)∧d(τ) δ(4)[ x− z(τ) ] , (5.45)

µ̃(x) ≡
∫

dτ U(τ)∧µ(τ) δ(4)[ x− z(τ) ] . (5.46)

The combined field–particle Lagrangian density may then be written

L =
1

4
FαβFαβ + JαAα − 1

2
µ̃αβF̃αβ − 1

2
d̃αβFαβ. (5.47)

5.4.2 The dipole current density tensor

It is possible to simplify the last two terms of (5.47) a little further. Ex-

panding out the dual field strength tensor in terms of its definition (B.3),

F̃αβ ≡ −1
2
εαβµνF

µν , we have

−1

2
µ̃αβF̃αβ − 1

2
d̃αβFαβ =

1

4
µ̃αβεαβµνF

µν − 1

2
d̃αβFαβ.

Relabelling indices, this last expression becomes

1

4
µ̃µνε

µναβFαβ − 1

2
d̃αβFαβ.

We now define the dipole current density tensor , J̃αβ(x), as

J̃αβ(x) ≡ d̃αβ(x)− 1

2
εαβµνµ̃µν(x). (5.48)
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In terms of J̃(x), the complete field Lagrangian density (5.47) then takes its

simplest form:

L =
1

4
FαβFαβ + JαAα − 1

2
J̃αβFαβ. (5.49)

5.4.3 The generalised Maxwell equation

We now compute the Euler–Lagrange equations for the electromagnetic po-

tentials using the Lagrangian density (5.49). The canonical field Πµν(x)

conjugate to Aα is given by

Πµν ≡ ∂∂µAνL = Fµν − J̃µν . (5.50)

(Explicitly computed, only the combination J̃[µν] contributes to Πµν ; it is

basically for this reason that we were free to arbitrarily define J̃ to be anti-

symmetric in (5.48).) Furthermore, we have

∂AνL = Jν .

The field Euler–Lagrange equations for the fields Aµ(x) thus yield

∂µ∂∂µAνL − ∂AνL = ∂µ
(
Fµν − J̃µν

)
− Jν = 0,

or, upon reärranging, and employing component-free notation,

∂ ·F = J + ∂ ·J̃ . (5.51)

Equation (5.51) is the generalised inhomogeneous Maxwell equation for the

case of both monopolar (i.e., electric charge) and dipolar sources, for ap-

plications in which it is convenient to separate the former from the latter.

(Fundamentally, of course, the dipole moments are implicitly included in the

source term Jα(x) of the regular inhomogeneous Maxwell equation (5.7); the

source vector Jα appearing in (5.51) should properly be referred to as that

due to free charge only .)
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It can be noted that equation (5.51) includes, as a special case, the

Maxwell–Lorentz theory of macroscopic fields, for which Jαβ represents the

“average magnetisation” and “average polarisation” of the particles compris-

ing the “medium”. However, (5.51) is, as a differential equation, in fact exact

microscopically (within the domain of the classical limit, of course), and does

not require any “averaging” for its validity.

(To make this connection complete, one needs to know that a careful re-

analysis shows that, while we have in the above assumed the dipole moments

to be fixed in magnitude, the equation (5.51) is, in fact, true for any dipole

source densities—whether fixed, or “induced” by external fields. However,

this property lies beyond the requirements of this thesis; and we will, shortly,

introduce assumptions into our analysis that will again restrict the validity

of the results to particles with fixed moments only.)

5.4.4 Solution of the generalised Maxwell equation

We now seek a general solution to (5.51) for arbitrary free charge and dipole

densities, J(x) and J̃(x). Again, we seek to phrase the problem in such a

way that a minimal amount of new work must be performed. Employing

the four-potential Aµ, as we did for the analogous problem in Section 5.3.3,

(5.51) becomes

∂2Aν − ∂ν(∂µA
µ) = Jν + ∂µJ̃

µν .

In Section 5.3.3, we employed a Lorentz gauge, characterised by the condition

∂µA
µ
LG = 0, to simplify the left hand side; here, that choice yields

∂2Aν
LG = Jν + ∂µJ̃

µν ,

or, on dropping the free electric charge source term Jν (which we have already

treated in Section 5.3),

∂2Aν
LG = ∂µJ̃

µν . (5.52)
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There are at least two ways in which we could proceed from equation

(5.52). The most obvious path would be to use the Green function solution

(5.12) of (5.11) for each of the four values of ν. This then requires that we

integrate by parts, shifting the derivative operator ∂µ′ to Dr(x − x′), and

then use its antisymmetry to convert this into ∂µ, and thence into proper-

time derivatives.

Instead, we follow a slightly different procedure, which shows most explic-

itly how the current derivation parallels that of equation (5.10): we introduce

an additional mathematical aid which, like the four-potential Aµ, is unobserv-

able physically: the tensor potential Ãαβ(x). It is defined by two properties.

Firstly, we deem that it satisfies the equation

∂2Ãαβ = J̃αβ. (5.53)

Secondly, we deem that the Lorentz-gauge four-potential Aν
LG be derivable

from the tensor potential Ãαβ by means the relation

Aν
LG ≡ ∂µÃ

µν . (5.54)

It is clear that, if a tensor function Ãαβ(x) can be found that satisfies the

equation (5.53), then the definition (5.54) ensures that the derived Lorentz-

gauge four-potential Aα
LG(x) will satisfy (5.52); and hence the field strength

tensor Fαβ(x) derived in turn from Aα
LG will satisfy the inhomogeneous dipo-

lar part of the generalised Maxwell equation (5.51). Thus, our work has

been reduced to finding a solution to (5.53) for a given dipole current den-

sity J̃αβ(x), which is the tensor analogue of the derivation proceeding from

(5.10). A general solution can therefore be written down immediately:

Ãµν(x) = Aµν
in (x) +

∫
d 4x′ Dr(x− x′)J̃µν(x′), (5.55)

where Dr(x−x′) is given by (5.12). The retarded fields generated by a particle

carrying both electric charge and dipole moments can thus be computed via
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the overall Lorentz-gauge four-potential Aµ
LG(x), now given by

Aµ
LG(x) = Aµ

charge(x) + ∂νÃ
νµ(x),

where Aµ
charge(x) is given by equation (5.13) of Section 5.3.3.

5.4.5 The fields for a point particle

We can now determine the retarded fields that are generated by a classi-

cal point particle carrying electric and magnetic dipole moments. As noted

earlier, we are, for practical simplicity, parametrising the dipole moment

four-vectors dα and µα in terms of the unit four-spin vector Σ α:

dα = dΣ α,

µα = µΣ α,

where the rest-frame dipole moment magnitudes d and µ are fixed. The

analogue of (5.4) can then be written down by using equations (5.45), (5.46)

and (5.48):

J̃αβ(x) =
(
d gαµgβν − 1

2
µ εαβµν

)∫
dτ δ(4)[ x− z(τ) ] U[µ(τ)Σν](τ). (5.56)

Substituting (5.12) and (5.56) into (5.55), and integrating over d 4x′, we find

Ãαβ(x) =

(
d

2π
gαµgβν − µ

4π
εαβµν

)∫
dτ U[µΣν]ϑ(x0 − z0) δ

[
(x− z)2

]
, (5.57)

which is the analogue of (5.15).

We now discard the tensor potential Ãµν(x)—and, indeed, the Lorentz-

gauge four-potential Aµ
LG(x) itself—in favour of the field strength tensor

Fαβ(x). From (5.2) and (5.54) we have

Fαβ ≡ ∂α∂µA
µ
β − ∂β∂µA

µ
α. (5.58)
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It is clear that, to carry out the partial derivatives present in (5.58), we shall

need to compute derivatives such as

∂α∂βg[f(x, τ)] , (5.59)

where g[f ] is either a Heaviside step function or Dirac delta function. Clearly,

the derivatives of the step function will yield terms that are non-vanishing

only on the worldline, which we are again ignoring in this section. Now, from

(5.17) we have

∂u∂vg[f(u, v, τ)] = ∂v

{
∂uf · dfg[f(u, v, τ)]

}
.

Carrying out the v differentiation by the product rule, we obtain

∂u∂vf · dfg[f ] + ∂uf · ∂v

(
dfg[f ]

)
.

To compute this last term, one can consider dfg[f ] as some new function,

h[f ], upon which we perform the same process as carried out in (5.17). One

then finds that

∂u∂vg[f(u, v, τ)] = ∂u∂vf · dfg[f ] + ∂uf · ∂vf · d 2
f g[f ]. (5.60)

We now proceed to replace the df derivatives in (5.60) by derivatives with

respect to τ . We again use the chain rule, namely

df ≡ dfτ · dτ ,

d 2
f ≡ dfdf ≡ d 2

f τ · dτ + (dfτ)2 · d 2
τ .

From the above, it is also clear that

d 2
f τ ≡ −d 2

τ f · (dτf)−3.

Using these identities in (5.59), we finally obtain the desired relation:

∂α∂βg[f ] = ∂α∂βf · (dτf)−1 · dτg[f ]

+ ∂αf · ∂βf · (dτf)−2 · d 2
τ g[f ]

− ∂αf · ∂βf · d 2
τ f · (dτf)−3 · dτg[f ]. (5.61)
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Applying (5.61) to the delta function in (5.57), we have g[f ] = δ[f ] and

f(x, τ) = (x− z)2 ≡ ζ2. The relevant derivatives are then given by

∂αf = 2(x− z)α ≡ 2ζα,

∂α∂βf = 2gαβ,

dτf = −2 U · (x− z) ≡ −2ϕ−1,

d 2
τ f = 2

[
1− U̇ · (x− z)

]
≡ 2(1− χ̇),

which, in (5.61), yield

∂α∂β δ(ζ2) = −ϕgαβdτδ(ζ
2) + ϕ2ζαζβd 2

τ δ(ζ2) + ϕ3ζαζβ(1− χ̇)dτδ(ζ
2). (5.62)

Inserting this result into (5.57), performing the τ integration by parts (twice,

for the last term of (5.62)), and using (5.22) and (5.58), we find

F = F d + F µ,

where

4πF d = ϕdτ{2ϕU∧Σ }
− ϕdτ

{
ϕ3(1− χ̇)ζ∧

(
ϕ−1Σ − (Σ · ζ)U

)}

+ ϕd 2
τ

{
ϕ2ζ∧

(
ϕ−1Σ − (Σ · ζ)U

)}
, (5.63)

and

4πF µ = ϕdτ

{
2ϕU×Σ

}

− ϕdτ

{
ϕ3(1− χ̇)ζ∧(ζ×Σ×U)

}

+ ϕd 2
τ

{
ϕ2ζ∧(ζ×Σ×U)

}
. (5.64)

We concentrate first on the fields generated by an electric dipole moment

d. Defining the symbol ψ as

ψ ≡ (Σ · ζ), (5.65)
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equation (5.63) can be written

4πF d = ϕdτ

{
2ϕU∧Σ − ϕ2(1− χ̇)ζ∧Σ − ϕ3(1− χ̇)ψζ∧U

}

+ ϕd 2
τ

{
ϕζ∧Σ − ϕ2ψζ∧U

}
.

Making the further definitions

χ̈ ≡ dτ χ̇ ≡ [ζ ·Ü ], (5.66)

ϑ̇ ≡ [U ·Σ̇ ], (5.67)

η̈ ≡ [ζ ·Σ̈ ], (5.68)

and noting that

dτ ψ̇ ≡ [ζ ·Σ̈ ]− [U ·Σ̇ ] ≡ η̈ − ϑ̇,

one finds

F d =
d

4π

{
F d

1 + F d
2 + F d

3

}
, (5.69)

where

F d
3 = ϕ3U∧Σ − 3ϕ5ψζ∧U (5.70)

F d
2 = ϕ2U̇∧Σ + ϕ3[ζ∧Σ̇ ] + ϕ3ψU∧U̇ − ϕ3χ̇U∧Σ

+ 6ϕ5χ̇ψζ∧U − 3ϕ4ψ̇ζ∧U − 3ϕ4ψζ∧U̇ + ϕ3ϑ̇ζ∧U (5.71)

F d
1 = ϕ2[ζ∧Σ̈ ]− ϕ3ψ[ζ∧Ü ] + ϕ4ψχ̈ζ∧U − 2ϕ3ψ̇ζ∧U̇ + 3ϕ4χ̇ψ̇ζ∧U

− ϕ3χ̇[ζ∧Σ̇ ]− ϕ3η̈ζ∧U − 3ϕ5χ̇2ψζ∧U + 3ϕ4ψχ̇ζ∧U̇ . (5.72)

The order of R of each of term in (5.70), (5.71) and (5.72) may be verified

by noting that ϕ is of order R−1; ϑ̇, U , Σ , and overdots are of order R 0;

and η̈, χ̇, ψ and ζ are of order R 1. It will be noted that all terms in F d
3 ,

F d
2 and F d

1 have zero, one and two overdots respectively, in agreement with

the dimensional argument presented in Section 5.1. (It is to simplify this

bookkeeping that the symbols χ̇, ϑ̇ and η̈ were defined in such a way so as

to “conserve the number of overdots”.)
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The results above are for a particle with an electric dipole moment d.

For a magnetic dipole moment µ, one could likewise proceed from equation

(5.64), just as we proceeded above from equation (5.63). It may be verified

that this computation simply gives us the electromagnetic duals of the terms

appearing in (5.70), (5.71) and (5.72); we shall not explicitly write out the

detailed analysis here.

Since the explicit results (5.70), (5.71) and (5.72) are not widely known,

and since a significant amount of further analysis in this thesis is based upon

them, it is desirable to verify that they are indeed correct. In Appendix D,

we show that the results above are, in fact, identical to those obtained by

Cohn and Wiebe [54], and hence to those of all workers who have considered

this question (see the discussion in Section 5.2).

5.4.6 Explicit form for the retarded fields

We now obtain more explicit expressions for the retarded fields generated by

a particle carrying a dipole moment, in the same way as was done for an

electric charge in Section 5.3.5.

We again restrict our attention to the case of an electric dipole; the mag-

netic case follows by duality. Defining

Ed ≡ d

4π

{
E′d

1

R
+

E′d
2

R2
+

E′d
3

R3

}
,

Bd ≡ d

4π

{
B′d

1

R
+

B′d
2

R2
+

B′d
3

R3

}
, (5.73)

as well as the (unprimed) quantities Ed
n and Bd

n:

Ed
n ≡

E′d
n

Rn
,

Bd
n ≡

B′d
n

Rn
,
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and employing the FitzGerald spin three-vector σ′ of Section G.4.5,

σ′ ≡ σ − γ

γ + 1
(v ·σ)v, (5.74)

one finds (after an excruciating amount of algebra) that

E′d
1 = n×

{
[n−v]×σ̈′ + v̇×σ̇′

[1−v ·n]3
+

(σ′·n)[n−v]×v̈

[1−v ·n]4

+ 3

(
(σ̇′·n)

[1−v ·n]4
+

(σ′·n)(v̇ ·n)

[1−v ·n]5

)
[n−v]×v̇

}
,

E′d
2 =

3 (σ̇′ ·{[n−v]− v×(n×v)}) [n−v]

[1−v ·n]4
− σ̇′

γ2[1−v ·n]3

+
3 (σ′ ·{[n−v]− v×(n×v)}) n×([n−v]×v̇)

[1−v ·n]5

+
3 (σ′·n) (v̇ ·{[n−v]− v×(n×v)}) [n−v]

[1−v ·n]5

− σ′×([n−v]×v̇) + (v̇ ·n)σ′

[1−v ·n]3
+

(σ̇′·v)[n−v]

[1−v ·n]3
,

E′d
3 =

3 (σ′ ·{[n−v]− v×(n×v)}) [n−v]

γ2[1−v ·n]5
− σ′

γ2[1−v ·n]3
.

In order to obtain these results, it is necessary to use the relations listed in

Section G.4 extensively; many of the hundreds of terms that result cancel

among themselves; the remainder simplify into the expressions above. The

results are further simplified—notationally, at least—by using the convenient

quantities n′, n′′ and κ of (5.38), (5.39) and (5.40). One then finds

E′d
1 = κ3n×

{
n′×σ̈′ + v̇×σ̇′ + κ(σ′·n)n′×v̈

+ 3κ
[
(σ̇′·n) + κ(σ′·n)(v̇ ·n)

]
n′×v̇

}
, (5.75)

E′d
2 = 3κ4

{
(σ̇′·n′′)n′ + κ(σ′·n′′)n×(n′×v̇) + κ(σ′·n)(v̇ ·n′′)n′

}

− κ3
{
γ−2σ̇′ + σ′×(n′×v̇) + (v̇ ·n)σ′ − (σ̇′·v)n′

}
, (5.76)

E′d
3 = γ−2κ3

{
3κ2(σ′·n′′)n′ − σ′

}
. (5.77)
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(One should carefully note that the spin derivatives σ̇′ and σ̈′ appearing

here are the lab-time derivatives of the FitzGerald spin definition (5.74), in

accordance to the precedence-of-operations rules of Section A.3.8; they are

not the “FitzGerald–Lorentz contractions” of the standard spin derivatives

σ̇ and σ̈.)

To compute the magnetic field expressions B′d
n , we can again use the

properties (5.34) and (5.35). Inspection of (5.70) and (5.72) shows that B′d
1

satisfies (5.35) and B′d
3 satisfies (5.34). However, (5.71) is more problem-

atical, mixing terms of both types, and indeed having one term of neither

type. If one inspects the detailed expressions carefully, and performs some

algebraic shuffling, one finds that B′d
2 can ultimately be written as the sum

of a term like (5.35), and two additional terms. The complete results are

then

B′d
1 = n×E′d

1 , (5.78)

B′d
2 = n×E′d

2 + κ2σ′×v̇ + κ3n′×
[
n×(σ′×v̇)

]
, (5.79)

B′d
3 = v×E′d

3 . (5.80)

The corresponding results for a point particle carrying a magnetic dipole

moment are, of course, simply the electromagnetic duals of these expres-

sions—plus an extra Maxwell term at the position of the particle, which will

be discussed in Section 5.5.

5.4.7 Simplicity of the author’s expressions

The equations (5.75), (5.76), (5.77), (5.78), (5.79) and (5.80) are the author’s

final results for the retarded fields from an electric dipole. They are, arguably,

as simple as one can get.

An illustration of this assertion is the fact that, even though the expres-

sions above are in fact true for an arbitrary velocity v of the particle, the

quantity v itself only appears once, in one of the terms of E′d
2 ; and the cor-

198



responding gamma factor γ(v) only appears twice, in the form γ−2. The

velocity-dependencies of the results are, in effect, almost entirely “encapsu-

lated” in the four introduced quantities σ′, n′, n′′ and κ. Thus, even if one

goes to the instantaneous rest frame of the particle, one cannot improve on

the simplicity of the expressions much further: all that happens is that the

aforementioned term in E′d
2 disappears; the factors κ and γ disappear, being

trivially equal to unity; the dashes are dropped on n′, n′′, σ′ and σ̇′; and we

must make the simple substitution

σ̈′ −→ σ̈ − (v̇ ·σ)v̇.

(This last subtlety comes about because, in computing two temporal deriva-

tives of the FitzGerald spin definition (5.74), a term survives in which both

factors of v have been differentiated into v̇; it has a coëfficient of unity, rather

than the one-half implied by γ/(γ +1), because of the quadratic dependence

on v.)

It should, at this point, be noted that the expressions (5.75), (5.76),

(5.77), (5.78), (5.79) and (5.80) are only as simple as they are because they

use the FitzGerald three-spin, σ′, and its lab-time derivatives. If expressed in

terms of the standard three-spin, σ, and its derivatives, the results are much

more complicated: there are many more terms, most of which contain explicit

factors of v, γ and (γ + 1). Indeed, the author only invented the FitzGerald

three-spin, originally, in an attempt to obtain just such a simplification. (The

quantity σ′ was actually introduced by the author, previously, as one of the

many “convenient quantities” useful for the expanded-out dipole equations

of motion (see Appendix F, and [62, 63, 64, 65]), but its usefulness as a

general analytical tool was not realised at the time.) The basic reason why

the FitzGerald three-spin yields simpler expressions than the standard three-

spin can be gleaned from the expressions listed in Section G.4: in terms of

σ′, the components of the four-spin Σ have the simple coëfficients 1 and

γ2; but in terms of σ, there is, instead of γ2, a coëfficient of γ2/(γ + 1);

199



under differentiation, the latter expression generates even more complicated

coëfficients (compare the lengthy Σ -derivative expressions in Section G.4.7

and Section G.4.8 to their much simpler counterparts in Section G.4.9).

Returning, now, to the expressions (5.75), (5.76), (5.77), (5.78), (5.79)

and (5.80), one can immediately recognise familiar faces among the results.

Most obviously, the 1/R3 electric field (5.77) contains the static dipole field

expression most transparently:

E′d
3

∣∣∣
v=0

= 3(n·σ)n− σ;

the full velocity dependence of the result (5.77) merely incorporates the

Lorentz transformation of these static fields by the velocity v. (The fac-

tor of 1/r3 ≡ 1/R3 is of course encapsulated in the notational definitions of

(5.73).) The corresponding 1/R 3 magnetic field of (5.80) is, as one would

expect, simply the cross-product of the three-velocity and the corresponding

electric field (5.77). (That one would expect this result, in advance, is recog-

nised by noting that the Lorentz-boosted electric charge static fields (5.42)

and (5.44) themselves possess this property; if one considers a static electric

dipole to consist of two spatially separated electric charges in the rest frame

of the particle,—which themselves will be stationary, if the dipole moment

is not precessing,—then the transformation properties of the dipolar static

fields under Lorentz boosts must be identical to those of the electric charge.)

Likewise, the 1/R electric and magnetic fields of (5.75) and (5.78) are,

manifestly , perpendicular to both the normal vector n, and to each other,—

and of the same magnitude,—as must of course be the case for an electromag-

netic radiation field. (Indeed, this follows from the fact that the covariant

field expressions (5.70), (5.71) and (5.70) of Section 5.4.5 are in accord with

the Goldberg–Kerr theorem [93]).

The particular terms contained in the results (5.75), (5.76) and (5.79)

would not, of course, be very familiar to many readers. But the author

suggests that this unfamiliarity is due solely to one’s simply not having been
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introduced to them before, not because they exhibit any inherent complexity.

In fact, if one examines the terms in (5.75) and (5.76) particularly, one finds

that, really, they are pretty well what one would expect to find, simply on

dimensional and consistency grounds. For starters, one knows that, since the

fields are being generated by a electric dipole moment d—represented here

by d σ,—each term in the field expressions must contain one, and only one,

factor of σ′, or one of its time-derivatives. Furthermore, one knows that,

simply on dimensional grounds, the terms in the 1/R2 and 1/R fields must

contain a total of one and two overdots, respectively—since the three-vectors

v, σ′, n, and their cohorts, are all dimensionless. One is then simply left

with the therapeutic pastime of slotting together the available three-vectors,

and the available number of overdots, into terms of the correct parity (axial

vectors for the terms in braces in (5.75); polar vectors for the terms in (5.76)).

As already noted, the three-vector v is itself only used once; a priori , one

would not expect such a dramatic simplification of the gameplay. From here,

one must then simply sprinkle the scalar factors γ and κ (and the numerical

coëfficient 3) around liberally, for one to end up with expressions looking like

(5.75) and (5.76).

In any case, regardless of their æsthetic merit, the author believes the ex-

pressions (5.75), (5.76), (5.77), (5.78), (5.79) and (5.80) to be most definitely

correct, so one will now have to live with them, regardless of one’s opinions

of them.

5.5 The static fields

We now wind back the throttles on our analytical engines somewhat, to pro-

vide an overview of the standard textbook problem of obtaining the static

fields of a point particle carrying electric charge and electric and magnetic

dipole moments; and, in particular, the behaviour of these fields at the posi-

tion of the particle.
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Because the field expressions diverge at this point, we “regularise” the

physical situation by considering not a point particle, which possesses the

source densities

aρ(r) = aδ(r)

(where a = q, d, µ), but rather we consider a particle which is a three-sphere of

radius ε, over which the electromagnetic moments are uniformly distributed .

(The relativistic subtleties of such a model when the particle in question is

accelerated are described in detail in Chapter 3.) At the end of the calcula-

tions, one may, if one wishes, shrink the body back to a point, by taking the

limit ε → 0; but, in fact, we shall, in Chapter 6, need a number of results

computed here before the point limit is taken, i.e., those results for which ε

is kept finite.

Whilst there is nothing new in this section, over what is contained in any

undergraduate course in electrostatics and magnetostatics, we include here

the derivation to highlight those aspects and results that are of importance

to the radiation reaction calculations of Chapter 6.

5.5.1 The fields from an electric charge

The static field of a finite sphere of uniform electric charge density is simple

and well known; since Poisson’s equation covers electrostatics and Newtonian

gravitostatics equivalently, the electric field of a uniformly charged sphere is

the same as the Newtonian gravitational field from a spherical volume of

uniform mass density [158, Prop. lxxiii, Book i]:

Eq(r) =





qrn

4πε3
, r < ε,

qn

4πr2
, r > ε,

(5.81)

where q is the total charge of the sphere, and where, for simplicity, we place

the centre of the sphere at the origin of coördinates, r = 0.
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One can very simply verifiy that the stated result (5.81) is correct for

a uniformly charged sphere, by taking its divergence and curl. Noting that

the expression (5.81) is continuous everywhere (in particular, there are no

abrupt jumps anywhere on the surface of the sphere, where the functional

form of the result changes), and making use of the identities of Section B.3,

one finds

∇·Eq(r) =





3q

4πε3
, r < ε,

0, r > ε,

(5.82)

which is of course recognised as the correct density of electric charge, when

one recalls that the volume of the sphere is 4πε3/3. The curl of (5.81) is, of

course, zero.

(The boundary condition implicitly assumed in obtaining (5.81) as the

integral of (5.82) is, of course, that the fields vanish at spatial infinity.)

5.5.2 The fields from an electric dipole

For a spherical body throughout which an electric dipole moment density is

uniformly distributed, we may obtain the static field most simply by not-

ing that each elementary constituent dipole is equivalent to two equal and

opposite electric charges placed infinitesimally close together, aligned in the

direction of d; and that all of the d three-vectors of the constituent dipoles

are coherently aligned, when the body as a whole is static. This means

that we may simply superpose the fields of the constituents according to the

relation valid for each:

Ed(r) = −1

q
(d ·∇)Eq(r).

(The minus sign appears because by separating the charges by an infinites-

imal amount we are actually shifting the origin of coördinates, not the po-

sition where we measure the field.) By obtaining the gradient of the charge
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expression (5.81) in the direction of d, by direct calculation, we thus find

that

Ed(r) =





− d

4πε3
, r < ε,

3(n·d )n− d

4πr3
, r > ε.

(5.83)

5.5.3 The fields from a magnetic dipole

Now consider a spherical body over which a magnetic dipole moment density

is uniformly distributed. Näıvely, one might expect the result to be simply

the electromagnetic dual of the electric dipole result, (5.83). However, one

must remember that the magnetic and electric dipole results should only be

expected to be electromagnetically dual away from sources—since the inho-

mogeneous Maxwell equations do not , of course, possess duality symmetry at

all (since magnetic charge is not allowed). By assuming the magnetic dipole

result to be the dual of the electric, one would be assuming that it could,

by the above, be obtained by considering infinitesimally separated magnetic

charges; this is plainly unphysical.

The problem may be seen by computing the divergence of (5.83). Let

us assume, for simplicity, that d is in the z-direction. At the diametrically

opposite points on the surface of the spherical body along the z-axis, we find

∇·Ed
∣∣∣
x=y=0, z=±ε

= ∂zE
d
z

∣∣∣
x=y=0, z=±ε

= ± 3

4πε3
δ(z − ε),

due to the step-function change in Ed
z in crossing the edge of the body. On

the other hand, in the x–y plane, we find

∇·Ed
∣∣∣
x2+y2=ε2, z=0

= 0,

since the field (5.83) matches smoothly across this circular boundary. We

thus find the familiar picture of a spherical, uniformly electrically polarised

volume as being in all respects equivalent to a sphere with a surface charge
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sheet wrapping the sphere, with the charge density being positive in the

direction of d, negative antiparallel to d, and zero perpendicular to d (more

specifically, varying as sin θ, where θ = π/2 in the direction of d, and −π/2

antiparallel to d).

But this cannot, of course, be generalised to the magnetic case, since

we would then have a magnetic charge sheet wrapping the spherical volume,

which is, as noted, fundamentally disallowed by the Maxwell equations. How-

ever, we do know that the field external to the spherical source volume will

be the dual of the electric case. Let us then write

Bµ(r) =





− µ

4πε3
+ Bµ

M(r), r < ε,

3(n·µ)n− µ

4πr3
, r > ε,

where the extra magnetic Maxwell field , Bµ
M(r), will be constructed so as to

repair the breach of Maxwell’s equations that would otherwise occur. Now,

since there is no net electric current in the interior of the sphere (since the

effects of any current loop at one position would be cancelled out by that

of its neighbour—except on the surface of the sphere—due to the fact that

the polarisation is uniform), and since everything is electromagnetostatic,

Maxwell’s equations require

∇·Bµ
M = 0

and

∇×Bµ
M = 0;

hence, Bµ
M must be constant throughout the sphere. We must therefore only

determine its magnitude and direction. Clearly, the direction of Bµ
M singles

out one particular direction in space; since the only special direction we have

available to us is µ, we must have

Bµ
M(r) = Bµ

M µ̂.
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We now note that the non-zero electric charge density of (5.83) arises solely

because the electric field at x = y = 0, z = ±ε has a value 2d/4πε3 outside

the sphere, but −d/4πε3 inside; if the internal field were increased to 2d/4πε3

(by adding an amount 3d/4πε3), then the divergence would vanish. We thus

conclude that the extra Maxwell field should be

Bµ
M(r) =





3µ

4πε3
, r < ε,

0, r > ε,

(5.84)

and hence the total magnetic field is

Bµ(r) =





+
2µ

4πε3
, r < ε,

3(n·µ)n− µ

4πr3
, r > ε.

(5.85)

To verify that the result (5.85) is, indeed, physically acceptable, we must

first recall that the smooth matching of Ed around the surface of the sphere

in the x–y plane will now not be the case, since the extra internal field

3µ/4πε3 of (5.84) applies there also. However, this step change in the field

does not add any magnetic charge, since the step is in the z-component of

B, but occurs in traversing the boundary in the x and/or y directions; there

is no contribution to the divergence of B. Rather, we find a delta-function

contribution to the curl of B—and, hence, find the familiar picture of a

uniformly magnetically polarised sphere as being in all fundamental aspects

equivalent to a sphere with a current sheet wrapped around its surface, where

the current density has a cos θ dependence.

5.5.4 Point dipole fields, and Dirac delta functions

We now clarify an aspect of the static dipole fields, derived in the previous

sections, that is often muddied somewhat in textbook descriptions: namely, a
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correct description of the fields of point particles, by making use of the three-

dimensional Dirac delta function δ(r) to represent the field at the position

of the particle.

The motivation behind such an approach is easily appreciated, if one

considers (5.83) or (5.85) in somewhat more detail: The field strength inside

the spherical source volume is constant, and diverges like ε−3; but on the

other hand, the volume of the sphere is of order ε+3; thus, the product of the

two is independent of ε. Explicitly, we find
∫

r<ε

d 3r Ed(r) = −1

3
d, (5.86)

∫

r<ε

d 3r Bµ(r) = +
2

3
µ, (5.87)

where the difference between (5.86) and (5.87) is attributable to the extra

Maxwell magnetic field (5.84). One is therefore naturally led to think of a

three-dimensional Dirac delta function as a convenient description for the

internal fields, since it also has the property of diverging at the origin, while

having a constant, finite volume integral.

The problem arises when one tries to formulate this property mathema-

tially. One approach is to simply “rip the guts” out of the dipolar inverse-

cube function
3(n·σ)n− σ

4πr3
, (5.88)

—namely, one simply defines a new function that has, by decree, the value

zero at r = 0. Let as refer to this “gutted” function as the principal value of

the function (5.88), and denote it by prefixing the function by the symbol ‘P ’.

Such an operation may be carried out by considering a limiting procedure

akin to that used for the spherical body above: one may define

P 3(n·σ)n− σ

4πr3
≡ lim

ε→0





0, r < ε,

3(n·σ)n− σ

4πr3
, r > ε;

(5.89)
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clearly, for any ε, this parametrisation of the principal value function vanishes

around r = 0, and hence also does so in the point limit. In terms of (5.89),

the point particle dipole results, from (5.83), (5.85), (5.86) and (5.87), can

be written

Ed
point(r) = P 3(n·d )n− d

4πr3
− 1

3
d δ(r),

Bµ
point(r) = P 3(n·µ)n− µ

4πr3
+

2

3
µ δ(r). (5.90)

There is, however, somewhat of a philosophical objection to the “gutting”

procedure used to define the principal value function, expression (5.89), which

can be understood as follows: The electric dipole result for a small sphere,

equation (5.83), was obtained by considering the superposition of a continu-

ous volume of infinitesimal dipoles. Unlike the magnetic case, no extra fields

were added, by hand, to the result. Thus, one could, conceptually, consider

shrinking the dipole generating the field (5.83) itself to a point—and then

use this as a constituent in an a larger finite sphere dipole; and so on, ad

infinitum. It therefore seems arguably natural to simply define the dipolar

inverse-cube function to be the limit of the result (5.83), in the point limit.

Let us refer to this as the regularised value of the function (5.88), and denote

it by prefixing the function by the symbol ‘R’:

R3(n·σ)n− σ

4πr3
≡ lim

ε→0





− σ

4πε3
, r < ε,

3(n·σ)n− σ

4πr3
, r > ε;

(5.91)

The reason for christening it so is that, regardless of which way one “regu-

larises” the function (5.88)—in other words, modifying its definition so that it

remains finite, rather than mathematically divergent,—one invariably finds a

result equivalent to (5.83), in the point limit, rather than that of the principal

value (5.89). (See Chapter 6 for an example of this.)
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Regardless of the philosophical arguments one way or the other, it is nev-

ertheless true that the principal value definition, (5.89), and the regularised

value definition, (5.89), are equally valid mathematical choices, provided one

is consistent about which definition one uses .

In terms of the regularised function (5.91), the static electric and magnetic

dipole fields for pointlike particles can thus be written

Ed
point(r) = R3(n·d )n− d

4πr3
,

Bµ
point(r) = R3(n·µ)n− µ

4πr3
+ µ δ(r). (5.92)

The conceptual advantage in using this method of expression, for our present

purposes, is clear: the electric dipole field—obtainable directly from that of

the electric monopole (charge) field—is simply the näıve gradient of the latter

in the direction of d; the magnetic dipole field, on the other hand—which

requires the addition of the extra Maxwell contribution BM(r),—exhibits

this extra contibution manifestly in (5.92):

Bµ
M(r) = µ δ(r). (5.93)

Again, regardless of one’s choice, one must simply ensure that one sticks to

it consistently.

5.5.5 Point particle source terms

For convenience, we list here the electric source terms ρ(r) and J(r) that

appear in the Maxwell equations corresponding to a point electric charge,

point electric dipole moment and point magnetic dipole moment.

For a point electric charge, we clearly have

ρq(r) = qδ(r),

Jq(r) = 0.
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For a point electric dipole moment, we note that it is fundamentally

formed by the infinitesimal separation of positive and negative charge; we

thus have

ρd(r) = −(d ·∇)δ(r),

Jd(r) = 0.

(The sign in ρ is negative because the derivative dtδ(t) of the Dirac delta

function δ(t) is negative for t > 0 and positive for t < 0; an infinitesimal

dipole has, by convention, the senses of its charges reversed from this.)

Finally, for a point magnetic dipole moment, we must be a little more

careful. The net charge density for such an object vanishes :

ρµ(r) = 0.

The dipole moment of course arises from the circulating electric current at

the position of the dipole; clearly, we then have

Jµ(r) = −µ×∇δ(r).

5.5.6 Mechanical properties of the self-fields

We now consider the mechanical energy, mechanical momentum and me-

chanical angular momentum stored in the static fields of the uniform-density

spherical body. As pointed out by Einstein [76], the electromagnetic me-

chanical energy of the static fields will contribute to the mass of the body.

A non-vanishing total electromagnetic mechanical momentum of the static

fields would violate relativistic principles. The total electromagnetic me-

chanical angular momentum, on the other hand, may be interpreted as a

contribution to the mechanical angular momentum of the body in question

(or “mechanical spin”), in the same way as the mechanical energy contributes

to the mass.
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We assume that the electric and magnetic dipole moments of the body

are, in fact, parallel , in the following discussion; this has not been assumed in

the previous sections of this chapter, but is, of course, the case for spin-half

particles.

5.5.7 Mechanical field expressions

The densities of the electromagnetic mechanical energy, mechanical momen-

tum and mechanical angular momentum are given by [113, Sect. 6.8]

Wρ(r) =
1

2

{
E2(r) + B2(r)

}
, (5.94)

pρ(r) = E(r)×B(r), (5.95)

sρ(r) = r×pρ(r). (5.96)

It should be noted that, due to the nonlinearity of these relations, we must

consider all of the possible combinations of multiple moments explicitly: we

cannot superpose the results for the moments considered individually.

5.5.8 Electric charge mechanical field properties

If the body possesses electric charge only, then, since it generates no static

magnetic field, relations (5.95) and (5.96) show that its mechanical self-

momentum and mechanical angular self-momentum vanish identically. From

(5.81) and (5.94), its mechanical self-energy is given by

mq
e.m. =

1

2

∫

r<ε
d 3r

q2r2

16π2ε6
+

1

2

∫

r>ε
d 3r

q2

16π2r4

=
3q2

20πε

≡ 1

2
q2η1, (5.97)
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where the convenient constant η1 will play a significant rôle in Chapter 6.

This contribution to (or “renormalisation of”) the mass is, for a point par-

ticle, infinite; in the classical theory, one must assume that there are other

(non-electromagnetic) contributions to the mass of the body that approach

minus infinity in the point limit, leaving a finite mass overall.

5.5.9 Electric dipole mechanical field properties

For a body possessing an electric dipole moment only, we again find that the

mechanical self-momentum and mechanical angular self-momentum vanish

identically. From (5.83) and (5.94), its mechanical self-energy is given by

md
e.m. =

1

2

∫

r<ε
d 3r

d 2

16π2ε6
+

1

2

∫

r>ε
d 3r

{3(n·d )n− d}2

16π2r6

=
d 2

8πε3

≡ 1

2
d 2η′3, (5.98)

where the convenient constant η′3 will again play a significant rôle in Chap-

ter 6.

Again, (5.98) represents an infinite renormalisation of the mass of the

body in the point limit.

5.5.10 Magnetic dipole mechanical field properties

For a body possessing a magnetic dipole moment only, we again find vanish-

ing mechanical self-momentum and mechanical angular self-momentum. Of

importance is the fact that the mechanical self-energy is not equivalent to

the electric dipole case, since the contribution from the internal field is four

times as large (since the magnitude of the internal field is twice that of the

electric case, due to the addition of the extra Maxwell magnetic field Bµ
M).
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From (5.85) and (5.94), one finds

mµ
e.m. =

1

2

∫

r<ε
d 3r

4µ2

16π2ε6
+

1

2

∫

r>ε
d 3r

{3(n·µ)n− µ}2

16π2r6

=
µ2

4πε3

= µ2η′3; (5.99)

in other words, the contribution to the mass is twice that which one would

näıvely assume if one did not consider the extra field Bµ
M of (5.84).

The mass contribution is, of course, again an infinite renormalisation in

the point limit.

We now consider particles which carry multiple electromagnetic moments.

5.5.11 Particle with electric and magnetic moments

For the case of a body possessing both an electric and a magnetic dipole

moment, we note that the mechanical self-energy density will be simply the

sum of the individual densities (since the static electric dipole generates no

magnetic field, and the static magnetic dipole generates no electric field).

The mechanical self-momentum density will at all points in space vanish,

since the electric field of the electric dipole and the magnetic field of the

magnetic dipole are, at all points in space, in the same direction (even though

the internal fields have a different overall magnitude and sign), and hence

their cross product vanishes. This also implies that the mechanical angular

self-momentum density vanishes at all points in space.

5.5.12 Charged magnetic dipole

For the case of a body carrying both electric charge and a magnetic dipole

moment, we note, again, that the mechanical self-energy density is simply

the sum of those of the charge and the magnetic dipole individually, because
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the former generates solely an electric field, and the latter solely a magnetic

field. However, the mechanical self-momentum density as a function of r

does not vanish: it is given by

pqµ
ρ (r) =





+
2qrn×µ

(4π)2ε6
, r < ε,

− qn×µ

(4π)2r5
, r > ε.

Now, these expressions are both odd in r, and hence vanish when integrated

over all space; there is no net mechanical self-momentum. However, when

we cross the vector r into pqµ
ρ (r), to compute sqµ

ρ (r), we find

sqµ
ρ (r) =





+
2qr2{(n·µ)n− µ}

(4π)2ε6
, r < ε,

−q{(n·µ)n− µ}
(4π)2r4

, r > ε,

which are of course even in r. Upon integration, we thus find that

sqµ
e.m. =

∫

r<ε
d 3r

2qr2{(n·µ)n− µ}
(4π)2ε6

−
∫

r>ε
d 3r

q{(n·µ)n− µ}
(4π)2r4

=
qµ

10πε

=
1

3
qµη1. (5.100)

Thus, a charged magnetic dipole has an electromagnetic contribution to its

mechanical spin angular momentum, in the direction of the magnetic moment

(which, for spin-half particles, will be in the direction of its bare mechanical

spin), of value qµη1/3. This repesents an infinite renormalisation of the spin

of the body .

5.5.13 Charged electric dipole

For a body possessing both electric charge and electric dipole moment, there

is again only an electric field generated, and hence the mechanical self-
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momentum and mechanical angular self-momentum vanish trivially. The

mechanical self-energy density, on the other hand, is given by

W qd
ρ (r) =

1

2
E2(r)

=
1

2

{
Eq(r) + Ed(r)

}2

=
1

2
Eq 2(r) +

1

2
Ed 2(r) + Eq(r)·Ed(r). (5.101)

Now, the first two terms on the last line of (5.101) are just the mechanical

self-energy densities for the electric charge and the electric dipole moment

when they are considered singly , as was done in Sections 5.5.8 and 5.5.9; we

need not analyse these expressions anew. However, the final , “cross” term in

(5.101), arising through the nonlinearity of (5.94), represents an interference

between the charge and dipole fields . Let us concentrate on this interference

term, and denote it by ∆W qd
ρ (r):

∆W qd
ρ (r) ≡ Eq(r)·Ed(r). (5.102)

Using (5.81) and (5.83), we find

∆W qd
ρ (r) =





−qr(n·d )

(4π)2ε6
, r < ε,

+
2q(n·d )

(4π)2r5
, r > ε.

(5.103)

Now, both of the expressions in (5.103) are odd in n; thus, when we integrate

∆W qd
ρ (r) over all space, we obtain no net contribution to the mechanical self-

energy of the charged electric dipole.

It would be convenient if that were the end of the story. However, the

alert reader will realise that the spatial asymmetry of the expression (5.103)

has a subtle, almost sinister, by-product: the mechanical centre of energy

of the self-field does not cöıncide with the centre of charge and polarisation.
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The position of the mechanical centreof energy, zCoE, is, of course, simply

the energy-weighted expectation value of the position operator r:

zCoE ≡
∫
d 3r rWρ(r)∫
d 3r Wρ(r)

. (5.104)

If one goes back and examines the expressions carefully, one finds that the me-

chanical self-energy densities considered in previous sections were all even in

r (automatically ensured, of course, if the density is simply a sum of squared

fields, as it was in those sections); application of (5.104) then trivially yields

zCoE = 0, the centre of our sphere. But since the expression (5.103) for the

interference contribution ∆W qd
ρ (r) is odd in r, the subsequent contribution

to (5.104) then yields a non-zero result; specifically,

(mq
e.m. + md

e.m.)z
qd
CoE = −

∫

r<ε
d 3r

qr2(n·d )n

(4π)2ε6
+

∫

r>ε
d 3r

2q(n·d )n

(4π)2r4

=
3qd

20πε

=
1

2
qdη1. (5.105)

We can see, from the result (5.105), that the mechanical centre of energy

of the uniform-density spherical charged electric dipole is offset from the

centre of the sphere, in the direction of the electric dipole moment d. On

the other hand, this offset vanishes in the point limit, since md
e.m. is of order

ε−3, whereas the right-hand side of (5.105) is only of order ε−1.

This effect has serious ramifications for the radiation reaction calculations

of Chapter 6 (which uses just such a model to regularise the pointlike charged

electric dipole); we clearly need to add a “mass dipole” to the system to

return the mechanical cenre of energy to the centre of the spherical body.

Note that, since the radiation reaction calculation proceeds on the basis of

finite ε, with the point limit only being taken at the end of the calculations,

we cannot simply rely on the vanishing of the centre-of-energy offset in the

point limit for the radiation reaction calculations themselves.
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5.5.14 Particle with all three moments

As noted in Secion 5.5.7, the nonlinearity of the mechanical field density ex-

pressions (5.94), (5.95) and (5.96) means that we have to consider separately

the cases of all possible combinations of the three electromagnetic moments of

interest to us (charge, electric dipole moment, and magnetic dipole moment).

In Sections 5.5.8, 5.5.9 and 5.5.10, we considered the (3
1) = 3 combinations

of moments taken singly (q, d and µ); and then, in Sections 5.5.11, 5.5.12

and 5.5.13, the further (3
2) = 3 combinations of moments taken doubly (dµ,

qµ and qd). It therefore only remains for us to consider the (3
3) = 1 way of

taking all three moments triply (i.e., qdµ).

This remaining task is, however, rendered trivial by virtue of the fact

that the mechanical field density expressions (5.94), (5.95) and (5.96) are

all quadratic in the fields of the particle: if we insert into them the sums of

the fields from the three types of moment, the terms that will result from

an expansion via the distributive law will contain the fields of the moments

either taken pair by pair, or else quadratically in the field of a single mo-

ment; and hence the results for the triply-momented particle are, in fact, the

superpositions of corresponding results found in Sections 5.5.8, 5.5.9, 5.5.10,

5.5.11, 5.5.12 and 5.5.13.

We shall, for conciseness, refer to this general propery of quadratic expres-

sions by the term pairwise superposition; the mechanical field self-densities

are thus pairwise superposable.

5.5.15 The relativistic worldline fields

Finally, we consider the problem of obtaining the correct contribution to the

retarded field expressions on the worldline of the generating point particle.

From the analyses of the previous sections, we know that, even for a static

particle, the dipole moments have a somewhat subtle behaviour at the posi-

tion of the particle. The question then arises: how are these results modified
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when the particle is in arbitrary motion—i.e., when v̇, σ̇, etc., are not zero?

It is tempting to think that one may proceed simply from the static case,

by formulating a Lorentz-covariant expression, and then deeming that this

holds in all frames. But this brings us dangerously close to the error that

Cohn made in his unfortunate 1969 paper [53]: one cannot simply analyse

a static system, boost the results, and hope for the best, since the effects

of acceleration will then automatically be lost—as a static system knows

nothing of acceleration, and hence cannot possibly have terms involving it as

a factor.

Instead, we must proceed a little more carefully. Our plan of attack is

as follows: Firstly, we shall evaluate the full expressions for the arbitrary-

motion retarded fields, obtained in Section 5.4.6, for the extended model

considered in the previous sections—namely, an infinitesimally small sphere

(in its instantaneous rest frame) which has a uniform density of electromag-

netic moment. We shall then (for technical reasons) shrink these expressions

to a point, but then “regularise” them again using a mathematical trick used

in standard electrodynamics textbooks. We shall then compute the three-

divergence of the regularised point particle electric and magnetic fields thus

computed: this will, from Maxwell’s equations, tell us what source densities

are, assuming the expressions of Section 5.4.6 only . Finally, we can then add

extra fields—such as the extra Maxwell field of Section 5.5.3—so that the

Maxwell equations indicate the physically correct source current densities.

To perform this procedure, however, we face a problem of a logistical

nature, which is somewhat of an embarassment to the author: namely, in

carrying out the steps above, we would in fact need to compute almost all

of the aspects of the radiation reaction calculations, that is actually going

to take up the remaining chapter of this thesis. It may therefore seem that

it would have been better if the author had postponed this section to the

end of Chapter 6, by which time all of those prerequisite results had in fact

been presented. But the problem is that the worldline fields are, themselves,
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also inputs to the radiation reaction calculations. We thus are faced with a

veritable Catch 22 situation, in which we must obtain the results of Chapter 6,

before that chapter is even begun.

To short-circuit this paradoxical situation, we violate logical causality,

and present the findings of the point particle three-divergence computations

now, with the promise that the loop will be closed by the end of Section 6.6

of Chapter 6.

It is found, in Section 6.6, that, in the instantaneous rest frame of the

point particle, the divergences of the full retarded field expressions of Sec-

tion 5.4.6 are, in fact, identical to those for a static electric dipole. Thus,

after somewhat of a theoretical anticlimax, we need only find a relativis-

tic generalisation of the magnetic Maxwell field BM(r), equation (5.93) of

Section 5.5.3. Clearly, the function

F µ
M(x) = µ×U δ(ζ) (5.106)

will perform this task.

Our considerations of the retarded fields are now complete.
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Chapter 6

Radiation Reaction

According to our fundamental assumptions, each element of volume of
an electron experiences a force due to the field produced by the particle
itself, and the question now arises whether there will be any resultant
force acting on the electron as a whole.

—— H. A. Lorentz (1906) [137]

6.1 Introduction

If a pointlike charged particle is accelerated, and hence emits electromagnetic

radiation, who pays for the mechanical energy contained in the radiated

fields? Clearly, the particle itself has to pay; there is no one else around to

pick up the bill. But if the point charge is paying out hard-earned mechanical

energy, it must be at the expense of its kinetic energy—the particle having

no other negotiable currency in its possession. It therefore effectively has a

“dragging” force applied to it, the reaction of its own emitted radiation.

As such, the logic of this argument is easy to understand. To figure out

what the radiation reaction force is, we need simply invoke the methods of

Sherlock Holmes: whatever mechanical energy the radiation field eventually

flees with must be the kinetic energy lost by the particle.

But this situation is not entirely satisfactory. Firstly, if we concentrate

our attention on only the radiation fields (i.e., those that escape to infinity,
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that fall off as R−1), then we are ignoring the mechanical energy contained

in the near fields (those that fall off as R−2)—and, indeed, the interference

between the near and far fields. Of course, if the system is accelerated for a

certain finite period of time, and then left alone forever after, the near fields

will eventually stabilise themselves, and only the mechanical energy pilfered

by the radiation fields will come off the bottom line of the balance sheet

for the mechanical energy. But this small amount of information is rarely

acceptable to us: we would generally like to know what is happening now to

the electric charge—as it is radiating—not what it will be doing next week.

Thus, we clearly need to expand our considerations, to also take into account

the near fields of the charge.

But now we hit another problem: as we approach the position of the

point charge, we find that the field (and hence mechanical energy density)

expressions grow divergently . We must therefore be extremely careful how

we evaluate integrals of the mechanical field energy density: we need to

“regularise” them in such a way that we avoid any danger of manipulating

infinite expressions meaninglessly. One way we can do this is to let the point

particle have a finite size to start off with, and then shrink it to a point at the

end of the calculations. Another way is to exclude a small region surrounding

the charge, and take into account the energy and momentum crossing the

boundary of this region when computing our balance sheets. Whichever way

we proceed, we find that we can, in fact, obtain meaningful answers.

But there is another, more deeply philosophical question that one may

ask: who is responsible for this radiation reaction force? We have figured out

what its effects are—by some nifty detective work,—but we have not really

pinpointed its fundamental source. The Lorentz force law—which we can de-

rive, most elegantly, from the interaction Lagrangian—does not give us any

clue whatsoever that such a force is lurking on our doorsteps. Where else,

then, could it come from? Maybe we have to add extra terms to our funda-

mental Lagrangian, by hand, that yield the correct force? Unfortunately—or,
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perhaps, fortunately,—such a “fudge factor” approach cannot even be made

to work. We are thus left with the Lagrangian on the one hand, describing

all of the evolution of the system except for the effects of radiation reaction;

and the radiation reaction terms on the other, sticking out like the canine’s

proverbials.

And then Lorentz makes the statement quoted at the head of this chapter.

When first heard, it invariably sounds absurd. Imagine, for example, a small

sphere, uniformly charged throughout its volume. The Coulomb field of

each infinitesimal volume of charge imparts an electric force on every other

infinitesimal volume of charge in the sphere. Indeed, the like charges all

repel, and the sphere explodes. This is not our intention; let us, therefore,

add other, non-electromagnetic forces that balance the Coulomb forces, and

hence bind the infinitesimal constituent charges together. These rigid body

forces are completely internal, so they do not contribute to the motion of

the centre of mass of the body. Lorentz’s statement then amounts to saying:

let’s add up all the Coulomb forces, and see what the resultant net force on

the body as a whole is. But of course it is zero: the force of the Coulomb

field of constituent charge A on constituent charge B is, quite trivially, equal

and opposite to that of constituent B on constituent A.

But still Lorentz insists that we should add up the interactions between

the constituents of the charge. To extract any physics from such an intuitively

useless pastime is the mark of sheer brilliance. One is therefore completely

humbled when one realises that one has, in fact, forgotten Maxwell’s words,

quoted at the head of Chapter 5: “. . .without assuming the existence of

forces capable of acting directly at sensible distances.” The Coulomb force is

not instantaneously propagated from sender to receiver; it propagates at the

speed of light. The Coulomb force felt now by constituent A is determined

by the motion of constituent B as it was some time ago; the Coulomb force

felt now by constituent B is likewise determined by the motion of constituent

A as it was some time ago. We may still fail to see, through this observation,
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any solution to our problem: if A and B are rigidly connected, then surely

their respective motions, “some time ago”, were identical?

The crucial realisation is that the retarded time of constituent A, as

seen by constituent B, is not , in general, the same as the retarded time of

constituent B, as seen by constituent A, if the body is being accelerated . This

fact can be recognised from first principles: Imagine that the spherical body,

of radius ε, is being accelerated in the positive-x direction, which we shall

describe as being “to the right” of the origin; let us take the body to be

stationary, centred on the origin, at t = 0, which we shall describe as “now”;

and let us take, for simplicity, the points A and B at diametrically opposite

ends of the sphere, along the x-axis, with A at the position x = +ε, and

B at the position x = −ε. Clearly, in the past, the centre of the sphere

was always to the right of the origin (since, for nonrelativistic motion, we

have xcentre = 1
2
at2; the sphere has reached the minimum of its trajectory,

along the x-axis); thus, the points A and B were, in the past, to the right of

where they are now. But this means that, for constituent B to send a light

beam to constituent A, the beam only has to travel a shorter distance than

their separation (now) of 2ε; and for constituent A to send a light beam to

constituent B, the beam has to travel a longer distance than 2ε. But the

retarded time, in naturalised units, is simply equal to the distance the light

has to travel; hence, A “sees” B as he was a short time ago, but B “sees”

A as he was a longer time ago. This seemingly counterintuitive result is, of

course, simply another consequence of Einstein’s second postulate: that the

speed of light is an invariant, independent of the velocity of the sender.

Now, since the magnitude of the electric field generated by a charge is

determined by the velocity and acceleration of the charge as “seen” at the re-

tarded time, as well as directly depending (as 1/R or 1/R 2) on this retarded

distance itself,—and since the velocity and acceleration are themselves chang-

ing with time,—then it is clear that the retarded Coulomb force of A on B

will, in the general case, be different to that of B on A.
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Lorentz performed this calculation quantitatively,—using, however, Gal-

ilean rigidity,—and found, in the rest frame of the body,

Fself = −4

3
mq

e.m.v̇ +
2

3

q2

4π
v̈ + O(ε), (6.1)

where mq
e.m. is the static field mechanical self-energy (5.97) of Section 5.5.8,

and where the terms of order ε and higher in (6.1) disappear in the point

limit ε → 0.

The properties of (6.1) are, arguably, quite astounding. Firstly, we note

that (6.1) has been derived directly from the Lorentz force law ; thus, while

it is has not been obtained explicitly from a Lagrangian, it is nevertheless

implicitly contained in the Lagrangian derivation of the Lorentz force law

itself, when the fields E and B appearing therein are taken to be the total

fields, including the self-fields.

Secondly, it was shown by Abraham [3] that the second term in (6.1)

completely describes the force of radiation reaction. (For example, for circular

motion, v̇ is radially inwards, and hence v̈ is antiparallel to the velocity v;

the coëfficient (2/3)(q2/4π) gives the correct balancing of the loss of energy.)

Thirdly—and, perhaps, most remarkably—the first term of (6.1) pro-

vides a completely dynamical explanation of how the “inertial mass” of the

charge’s self-field works: it provides a real, quantifiable force opposite to the

acceleration of the charge; one does not have to insert this inertial property

by hand. Of course, the factor of 4/3 in this term of Lorentz’s result is in-

correct; the coëfficient should be unity. It has been shown by a number of

authors, in numerous instructive ways, that this is due to an inappropriate

use of nonrelativistic concepts; we shall discuss this in greater detail shortly.

It may seem that the author is devoting an unjustifiable amount of effort

to simply re-tell a story that is already told in any good electrodynamical

textbook (see, e.g., [113]). Perhaps so. But the author wishes to emphasise

most strongly that the Lorentz method of derivation of the radiation reaction
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force is not only more powerful than the method of considering the mechan-

ical stress-energy tensor of the field (perfected, in the fully relativistic case,

by Dirac [68])—the latter requiring reasonable but underivable assumptions

to be made, and arbitrary constants to be fitted; the Lorentz method is also

intuitively simple to understand . The relativistic shortcomings of Lorentz’s

original derivation are simply repaired, using the formalism of Chapter 3;

one is then left with a complete, rigorous, intuitive and æsthetically pleasing

method of derivation of the radiation reaction equations of motion.

It is this method that we shall use, in this final chapter, to derive the

classical radiation reaction equations of motion for point particles carrying

electric charge and electric and magnetic dipole moments. In Section 6.2, we

review the work of Bhabha and Corben, who considered this problem in 1941,

using the Dirac stress-energy method; and a related analysis undertaken re-

cently by Barut and Unal, using not the classical spin formalism of this thesis,

but rather a semiclassical “zitterbewegung” model of spin. We then attack

the problem anew, beginning, in Section 6.3, with a consideration of various

aspects of the use of an infinitesimal rigid body. In Section 6.4 we introduce

the sum and difference constituent position variables, and show that their

use is not a trivial as one might näıvely expect. We then compute, in Sec-

tion 6.5, the retarded kinematical quantities of the constituents of the body,

and use these results to obtain the retarded self-field expressions. The three-

divergences of these expressions are computed in Section 6.6, as the final step

of the computation of the relativistic worldline fields considered in Chapter 5.

Some necessary subtleties involved with the integration of terms in the analy-

sis of an inverse-cube dependence are discussed in Section 6.7. In Section 6.8

we compute the radiation reaction equations of motion themselves; these are

discussed in Section 6.9. Finally, in Section 6.10, we apply one of the equa-

tions obtained to the Sokolov–Ternov and Ternov–Bagrov–Khapaev effects,

and highlight both the successes and limitations of the completely classical

analysis.
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6.2 Previous analyses

To the author’s knowledge, the classical radiation reaction problem for par-

ticles carrying dipole moments has only been considered twice before: by

Bhabha and Corben [40] in 1941, using the Dirac stress-energy method of

derivation; and in a related analysis in 1989 by Barut and Unal [35], which

did not consider the problem on completely classical grounds, but instead

employed a semiclassical “zitterbewegung” model of spin.

In Section 6.2.1, we briefly review the work of Bhabha and Corben, fol-

lowing by a review of the Barut–Unal analysis in Section 6.2.2.

6.2.1 The Bhabha–Corben analysis

As should by now be apparent, Bhabha and Corben attacked most of the

oustanding problems of classical particles carrying dipole moments in their

1941 paper [40]. The question of the radiation reaction is no exception.

Bhabha and Corben used the method developed by Dirac only a few years

earlier [68], of surrounding the worldline of the particle with a small tube,

and considering the mechanical energy, momentum and angular momentum

crossing this tube, for arbitrary motion of the particle. From conservation

requirements, one can then deduce the force and torque on the particle.

The method of Dirac was, at the time, a vast improvement on the Lorentz

method of derivation, as it was manifestly covariant . The resulting covari-

ant radiation reaction equation of motion for a charged particle is for this

reason referred to as the Lorentz–Dirac equation. However, the basic Dirac

method also has its drawbacks, alluded to in Section 6.1. In its raw form,

it requires the form and coëfficient of the inertial term to be simply guessed

at (see Dirac’s derivation [68]). This problem of arbitrariness has been over-

come, in more recent times, by considering the retarded and advanced fields

with somewhat more care [203, 204, 205]; or, somewhat more elegantly, math-
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ematically speaking, by performing an analytical continuation of the fields

right up to the worldline of the particle [28, 29, 30]. Of course, these more

advanced techniques were not available to Bhabha and Corben.

The Bhabha–Corben analysis of the radiation reaction question is, as with

all parts of their paper, performed completely in manifestly covariant form.

The argumentation is very clear and straightforward to understand, as are

some of the final results that they analysed for special circumstances (e.g., a

free particle), but their general results may only be described as “lengthy”.

Indeed, they relegate even the listing of the results to the Appendix; the fol-

lowing comment of theirs summarises the flavour of the algebra involved [40]:

Since F (2)
µν given by (114) contains no less than 18 terms, Tµν

which is quadratic in Fµν contains some 324 terms. Some of

these, of course, vanish at once from symmetry, or due to (18),

but nevertheless the calculation is very lengthy and tedious. We

have not found a way of shortening it.

The author will, indeed, have similar comments to make by the end of this

chapter; fortunately, the final expressions of the author will not be quite as

complicated as this.

The explicit results listed by Bhabha and Corben are not transparently

understandable—except for the electric charge results, of course, which yield

simply the Lorentz–Dirac equation. The Bhabha–Corben covariant force and

torque expressions are actually given not as final expressions, as with the

Lorentz–Dirac equation, but rather as expressions containing many unper-

formed proper-time derivatives of terms, each containing a number of kine-

matical factors. The said force and torque expressions each contain 91 terms,

which between them contain 417 kinematical factors which would require

proper-time differentiation by the product rule in order for one to obtain

explicit results. It it therefore not too surprising that the Bhabha–Corben

results do not appear to have been put to any substantial practical purpose,
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other than pedagogy, in the past fifty-three years.

The Bhabha–Corben analysis, however, appears to most definitely be

based on a correct method of derivation. Whilst one cannot know whether

their algbraic manipulations of such lengthy expressions can be fully relied

on, the correct physics should be in there—somewhere. We therefore exam-

ine only the broader features of their results. Firstly, they find that time-

derivatives up to the fourth order are required in the force equation, and up

the third order in the torque equation. Secondly, the coëfficients of the terms

that they find all have denominators from the following set of numbers:

1, 3, 5, 6, 15, 35.

Thirdly, they find numerous terms that depend on ε−3 and ε−1, but only a

few dependent on ε−2. They state that these terms were “expected”; the

author is still coming to grips with the detailed arguments for them.

Beyond this, it is difficult to go, without examining the Bhabha–Corben

equations in explicit detail.

It is clear that any new classical analysis of this problem should be com-

pared against the Bhabha–Corben results. However, due to the complexity

of their findings, such a comparison is not performed in this thesis, other

than a comparison of the broad features listed above. It is, perhaps, left as

an exercise for the reader!

6.2.2 The Barut–Unal analysis

In 1989, Barut and Unal [35] considered anew the question of the generali-

sation of the Lorentz–Dirac equation to particles possessing spin.

Their method of doing so, however, did not follow the completely classical

path of Bhabha and Corben (which is also to be followed by the author in

this chapter). Rather, Barut and Unal considered a “zitterbewegung” model

of spin, developed by Barut and collaborators in previous years [31, 33, 34,
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32, 36]. This model of spin incorporates the simplicity of classical trajectories

of translational motion, while incorporating the spin degrees of freedom à

la the Dirac equation, by means of an elegant symplectic formalism, not by

using the classical spin vector or tensor.

The radiation reaction equation of motion found by Barut and Unal is

π̇µ = eF µν
extvν + αg̃µν

{
2

3

v̈ν

v2
− 9

4

(v ·v̇)v̇ν

v4

}
. (6.2)

where α ≡ e2/4π, and where

g̃µν ≡ gµν − vµvν

v2
.

We have not converted the notation of the equation (6.2) to the conventions

of this thesis, because the quantities involves are not of quite the same na-

ture. The “four-velocity” vµ appearing in (6.2) exhibits the “zitterbewegung”

motion of the model, in a similar way that the velocity operator of the

Dirac equation does in the Dirac–Pauli representation. The Barut–Unal

four-velocity does not satisfy v2 = 1; indeed, it is not even real: its com-

plex oscillation represents the spin angular momentum of the particle. It is

for this reason that Barut and Unal only require one equation of motion,

namely, (6.2): it contains the reaction on the translational and the spin

motion in one equation.

The author must now pass comment on the Barut–Unal analysis. Firstly,

the author cannot see much practical use in the Barut–Unal equation (6.2),

as it stands. The equation is a remarkably simple expression of the effects of

radiation reaction, but the “four-velocity” involved has no direct connection

with the four-velocity measured by experimentalists in the real world. From

the discussion of Section 4.4.1, it should be clear that the author considers

the concept of “zitterbewegung”, as a classical explanation, dubious at the

best of times. Now, if the Barut–Unal equation were to be subjected to the

semiclassical equivalent, in the Barut model, of some sort of a “Foldy–Wout-

huysen transformation”, then the resulting equations of motion would be of
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immediate practicality, since then we would again have position, velocity,

mechanical momentum and spin quantities that would have a direct con-

nection with classical physics. But the author has not seen such a suitable

transformation provided.

The author’s ire is raised beyond the point of containment by several

comments in the Barut–Unal paper [35]. Let us reproduce them here for the

consideration of the reader:

In the Bhabha–Corben equations, v2 is taken to be unity; hence

v ·v̇ = 0 and the term with coefficient 9
4

is missing, and vµS
µν = 0.

Both of these relations do not hold here; the BC equation is an

approximation to ours.

And the concluding paragraph, in full:

Our main result is Eq. (12) [or (18)]. We believe that it is the

first relativistic symplectic formulation of both coordinates and

spin and the first significant generalization of the Lorentz–Dirac

equation since 1938. In the second term of (12) we have the LD

term 2
3
(v̈ν/v2)g̃µν but also the new term −9

4
[(v·v̇)v̇ν/v4]. Another

difference from the LD equation is that on the left-hand side

we have π̇µ instead of mẍµ. The Bhabha–Corben equation is

not derived from an action principle, but from considerations of

energy conservation of a magnetic dipole moment, and the new

term −9
4
[(v·v̇)v̇ν/v4] is missing. They have assumed a mass point

with charge g1 and dipole moment g and put v2 = 1, SµνS
µν = 0,

and Sµνv
ν = 0 from the beginning.

What rot. Of course Bhabha and Corben take v2 = 1: they are considering

standard classical mechanics. To describe the term with coëfficient 9/4 as

“missing” carries with it the completely misleading implication that Bha-

bha and Corben obtained simply the Barut–Unal result, but with that single
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term omitted! This attempt at self-aggrandisement fails as soon as the reader

consults the original Bhabha and Corben paper, to find out what they actu-

ally found. The only similarity between the Bhabha–Corben results, and the

Barut–Unal equation (6.2), is that the Lorentz–Dirac equation for a charge

is contained in the Barut–Unal result when v2 = 1. The Bhabha–Corben

results for dipole moments contain—as described and lamented in the pre-

vious section—dozens of terms, over and above the Lorentz–Dirac equation.

These are conveniently ignored by Barut and Unal.

As to the statement that “the BC equation is an approximation to ours”,

one wonders whether Barut and Unal actually read the Bhabha–Corben pa-

per at all. The Barut–Unal and Bhabha–Corben results appear to both con-

tain the correct physics, but in completely different ways. To state that one

is more accurate than the other would require them to be expressed in sim-

ilar form, and the conclusions compared. The author has already suggested

above that a semiclassical “Foldy–Wouthuysen transformation” of the Barut

“zitterbewegung” model is desirable; if performed, a direct comparison on

classical terms could be made. It would be difficult to see how one could

transform the Bhabha–Corben results to the Barut model. In any case, a di-

rect comparison between the Bhabha–Corben and Barut–Unal results cannot

be made at this stage.

The author agrees that the Barut–Unal analysis may well be “the first

relativistic symplectic formulation of both coordinates and spin”, for this

application. But to state that it is “the first significant generalization of the

Lorentz–Dirac equation since 1938” is yet another self-aggrandising attempt

to rewrite history.

In summary, the author considers the mathematical techniques of Barut

and Unal to be elegant and ingenious, and a promising start to a new line of

attack on this problem. But he finds their comments reprehensible.
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6.3 Infinitesimal rigid bodies

We now consider afresh the problem of deriving the radiation reaction equa-

tions of motion for a point particle carrying electric charge and electric and

magnetic dipole moments, based on the results of the previous chapters.

From the discussion of Section 6.1, we know that it is necessary to “regu-

larise” a pointlike particle, before we compute self-fields or self-interactions,

if one is to obtain meaningful answers. Since we have chosen to follow the

Lorentz self-interaction method of derivation of radiation reaction, it is only

natural that we employ his technique of expanding the point particle into a

small rigid sphere, of radius ε.

Now, in Chapter 3, we considered the various problems associated with

defining rigidity in a relativistically meaningful way. It was found that, in-

deed, it is possible to define rigidity in a meaningful way, but that the con-

stituents of such a rigid system may well end up “crossing the accelerative

horizon” if the body is subject to a sufficiently large acceleration.

If we consider an infinitesimal relativistically rigid body, however, such a

problem disappears, in the transition to the point limit. For the acceleration

v̇ of the system is a finite, “external” quantity, that does not vary as we take

the point limit; hence, the “accelerative horizon” is, at any time of a particle’s

motion, at some particular fixed distance from the centre of the system; and

thus, as we shrink the body smaller and smaller, all of its constituents must

eventually, at some point of this transition, be contained completely within

this horizon.

6.3.1 Orders of expansions

If we are solely concerned with interactions, propagated at the speed of light,

within the infinitesimal sphere—as we are for the self-interaction calcula-

tions,—then clearly the maximum temporal period that will be of relevance
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to us will be on the order of the time required for light to cross the station-

ary body—which, in naturalised units, is just 2ε. (From the arguments of

Section 6.1, it is clear that times greater than this static light-distance are

relevant, but they are all larger by a dimensionless factor: they are still of

order ε.) The spatial distances of relevance to us are also, clearly, of order ε.

Thus, in distinction to the analysis of Chapter 3, where we merely ex-

pressed the system’s trajectory in terms of a Taylor series in time for conve-

nience, for the current application we may expand our expressions out both

temporally and spatially in the small parameter ε—and, more importantly,

we can extract exact self-interaction results, in the point limit ε → 0, since

any terms of order ε or higher in these final expressions will vanish rigorously

in this limit.

6.3.2 Electromagnetic moment densities

There arises the question, in any use of a spherical body in the regularisation

of a point particle, of how one is to distribute the electromagnetic moments

throughout the interior of the volume. The external fields are, for any sensible

choice of distribution, unconcerned about how the sources are arranged (for

the case of the electric charge, this is most simply recognised by considering

Gauss’s law); but the computed mechanical self-field quantities are of course

modified, since they have contributions from the fields both internal and

external to the sphere, which are the same order of magnitude (see, e.g.,

Section 5.5 of Chapter 5).

For the case of simply an electric charge, a spherical charge shell is often

employed (i.e., a sheet of charge around the surface of the sphere). With such

a choice, the charge density is still infinite on the surface, but this infinity is

now one-dimensional, rather than three-dimensional as with a point charge.

This reduction in pathology is , in fact, sufficient for one to analyse the system

without infinities entering the expressions of relevance. It also has the added
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benefit that, by Gauss’s law, there is no electric field inside the sphere, and

hence one does not have any “internal” contribution to the mechanical self-

energy.

For the purposes of this thesis, however, a spherical shell of source density

is less than desirable. Firstly, we do not know, a priori , that the infinite-

ness of the source density on the surface is sufficiently benign for the physical

expressions arising from the presence of dipole moments to be sufficiently reg-

ularised. Secondly, we already have numerous elementary analyses of of the

static self-fields and mechanical self-quantities of dipole moments uniformly

distributed thoughout the spherical volume (see, e.g., [113], or the analysis

of Section 5.5). Thirdly, and ultimately most relevantly, the author cannot

quite understand why one would wish to use a shell density instead of a uni-

form density anyway: all one could possibly achieve with such a choice is an

introduction of bothersome delta-function contributions to one’s expressions

on the boundary surface of the volume of integration, the pitfalls of which

one could no doubt avoid by clever footwork, but which one can avoid even

more simply by not digging them for oneself in the first place. In any case,

it will be found that we shall already find a sufficient number of subtleties

involving infinities to deal with, without introducing more of them.

Thus, we shall, for the remainder of this thesis, consider the electric

charge, electric dipole moment and magnetic dipole moment to be uniformly

distributed throughout the spherical volume:

aρ(r) =





3a

4πε3
, r < ε,

0, r > ε,

(6.3)

where a = q, d, µ is the electric charge, electric dipole moment or magnetic

dipole moment of the particle respectively, and we have noted that the volume

of a sphere of radius ε is 4πε3/3.
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6.3.3 Sending and receiving constituents

It follows from the discussion of Section 6.1 that a calculation of the self-

interaction equations of motion involves two steps: Firstly, we need we need

to consider the fields generated by all of the constituents, as given by the

retarded field expressions of Chapter 5. Secondly, we need to compute the

forces that these fields exert on all of the other constituents of the body. (We

shall consider the term “forces” to encompass the three related concepts of

“force on”, “power into” and “torque on” a particle, where unambiguous;

there does not appear to be another word covering this concept with any less

ambiguity).

To link the two parts of our calculation, we must essentially determine the

path travelled by the retarded fields in going from “sender” to “receiver” (as

we shall henceforth call them); from this information, we can compute the

appropriate kinematical quantities of the sending and receiving constituents,

which appear in the generated field and received force expressions respec-

tively.

From the considerations of Chapter 3, it is clear that the forces on the

body are most simply considered at the instant that the body is at rest with

respect to the Lorentz frame that one chooses. We shall therefore choose

precisely such a frame in which to base our considerations. The centre of

the sphere is, as in Chapter 3, considered to be at the origin of spatial and

temporal coördinates, and the receiving constituents are labelled by their

three-position r in this rest frame:

|r| ≤ ε.

Now, consider a particular constituent r. This constituent will “see”

all of the other constituents of the body, at their various retarded times:

a short time ago for those constituents near to r; a longer time ago for

those constituents far from r; and, from the discussion of Section 6.1, the
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particular times depend on the acceleration, etc., of the body as a whole.

Now, the forces on the receiving constituent r, due to the retarded fields

generated by all of the other constituents, are to be summed together to

obtain the net forces on the constituent r; and then, in turn, the forces on

all of the constituents r are to be weighted by the accelerative redshift factor

λ(r), and then summed together to obtain the forces on the body as a whole.

Clearly, in carrying out this procedure, we must have some way of la-

belling the generating constituents of the body. We are not talking about

the task of finding the actual retarded time, retarded position, etc.,—this

will be considered in the following sections; rather, we simply need some

way to identify the generating constituents. This may seem trivial, but the

situation is somewhat subtle. To perform the first-mentioned sum above—

namely, that of all of the forces on some particular constituent r due to the

retarded fields of all of the other constituents—we need to perform some sort

of integral over the “sending” sphere. But the various constituents of this

“sending” sphere are all “seen” as they were at different times in the past;

we must effectively integrate the “sending” sphere over a quite complicated

spacetime hypersurface, not over one of its rest-hypersurfaces. And then we

must ensure that we have correctly calculated the relevant transformation

properties of the source densities , over this complicated hypersurface.

The way out of this conceptual nightmare is to label the sending con-

stituents by the simple three-vector r′, which represents the three-position of

the sending constituent in the rest frame of the body :

|r′| ≤ ε.

One then computes the particular retarded four-position of this sending con-

stituent in order that one can compute the generated fields; but one does not

try to use this four-position as the variable for integrating over. Rather, the
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“sending” sphere integral is simply one over r′:
∫

r′≤ε

d 3r′.

This procedure automatically ensures that the source densities are correct (in

fact, they are then trivially constant, over this volume), while still yielding a

relativistically correct evaluation of the self-interactions—which will thus be

of the form
ab

4π

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ λ(r)f(r, r′), (6.4)

where a, b = q, d, µ (a being the moment generating the fields, b the moment

receiving them), and f(r, r′) is the computed force (or power, torque) on the

constituent r due to the retarded fields of the constituent r′. (We include

the ever-inconvenient factor of 1/4π in (6.4), as it always appears due to

the similar factor present in the retarded field expressions. As with the

expressions of Chapter 5, we shall absorb this factor into our notational

definitions shortly.)

The difference between the label three-vector r′, and the relative three-

spatial position of this constituent with respect to the centre of the body

∆zr′(tret), of course trivially vanishes for the Galilean model of rigidity used

by Lorentz in his original self-interaction calculations. It is thus actually

due the requirements of relativistic invariance that our considerations of this

section are more subtle than those of Lorentz [137].

We shall not comment here on the irony of Lorentz using the Galilean

rather than the Lorentz transformation in his computations.

6.4 The sum and difference variables

Before we launch into the detailed algebraic calculations of the retarded self-

fields and consequent self-interactions, for arbitrarily complicated motion

of the particle, it is instructive to first consider a much simpler case, to
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ground our understanding of the quantities involved: the case of a stationary

particle. Now, from the discussion of Section 6.1, we know that this example

is trivial: there is no self-interaction at all. But the fundamental quantities

involved in obtaining this null result are, naturally, the zeroth-order terms

of the corresponding quantities when arbitrary motion is considered, and

hence will provide us with a leading-order intuitive understanding of the

complicated algebraic expressions to be considered shortly.

Let us first consider the retarded field experienced by the receiving con-

stituent r due to the retarded sending constituent r′. The relative separation

three-vector from r′ to r is, of course, simply

r − r′.

This will, in the static case, be the quantity Rn of the retarded field ex-

pressions, according to the notation of Chapter 5. Let us make the simple

notational definition

R ≡ Rn. (6.5)

Then, from the above, we have

R(r, r′)|static = r − r′. (6.6)

Now, the time that it takes for the electromagnetic field to propagate from

the sending constituent r′ to the receiving constituent r is simply given (in

naturalised units) by R, the distance that the light has to travel. We can

extract R from (6.6) by taking the magnitude of the vector:

R(r, r′) ≡ |R(r, r′)| ;

in the static case, (6.6) then yields

R(r, r′)|static = |r − r′| ≡
{
(r − r′)2

}1/2
. (6.7)
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Since we have set our origin so that the receiving constituents are all at

t = 0, the sending constituents are “seen”, by the receiving constituents, at

the (earlier) retarded times tret(r, r′) < 0. In particular, we have

tret(r, r′) ≡ −R(r, r′), (6.8)

—not just in the static case, but in general: (6.8) simply says that the speed

of light is unity, in naturalised units. From (6.7) and (6.8), we thus have, for

the static case,

tret(r, r′)|static≡ −
{
(r − r′)2

}1/2
. (6.9)

Now, when we shortly consider the case of arbitrary motion, we shall of course

be employing the Taylor series expansions of Chapter 3 for the motional and

spin trajectories of the various constituents r′, as functions of time. To obtain

the retarded kinematical quantities of the sending constituent r′, as seen by

the receiving constituent r, we will then simply substitute the retarded time

tret(r, r′) into these trajectory expressions.

In the static case, the results are trivial: the kinematical properties of

the particle are constant throughout time. But just imagine if we were to

substitute even the static retarded time expression (6.9) into some Taylor

series expression in t: we would end up with terms looking like
{
(r − r′)2

}1/2
, (r − r′)2,

{
(r − r′)2

}3/2
, (r − r′)4, . . . , (6.10)

for the polynomials t, t2, t3, t4, . . . , respectively.

Now, the terms (6.10) are somewhat ugly and awkward, but they are

nevertheless manageable. The problem arises when we wish to compute the

integrals (6.4). Would you like to have to integrate terms like those in (6.10),

over a spherical volume of r, and then over another spherical volume of r′?

They are not simple.

Instead, to simplify the integrals considerably, one generally defines the

sum and difference constituent three-vector variables:

rd ≡ r − r′,
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rs ≡ r + r′, (6.11)

whence the reverse transformation is

r ≡ 1

2

(
rs + rd

)
,

r′ ≡ 1

2

(
rs − rd

)
. (6.12)

Then the integrals, over rd- and rs-space, of the terms in (6.10) are much

simpler: the terms all involve rd, and are independent of rs.

Of course, when we perform the full calculations, we will find that not

all terms will possess these simplifying qualities—recall, we only substituted

the static retarded time expression above; nevertheless, most terms will , in

fact, be of this form, and the remainder can be treated as special cases.

The change of variable (6.11) may seem obvious; indeed, it is usually

glossed over in most accounts of the Lorentz method of derivation. However,

it is, in reality, far from trivial . In the following sections we examine the

subtleties accompanying any use of the transformation (6.11), without due

regard for which one cannot validly proceed any further whatsoever.

6.4.1 The six-dimensional hypervolume

The problem with the tranformation (6.11) from r–r′ space to rd–rs space

is that our original integrals over r and r′ were each over finite volumes—

namely, two independent three-spheres—rather than over all space. The

regions of integration for rs and rd are thus dependent , rather than indepen-

dent.

The essence of the complication can be seen by considering the simplified

case in which r and r′ are one-dimensional, rather than three-dimensional:

the double-integral ∫ ε

−ε
dx

∫ ε

−ε
dx′
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is over a square region in the x–x′ plane; the domains of x and x′ are each

from −ε to ε, independent of the value of the other. If we define the new

variables

xd ≡ x− x′,

xs ≡ x + x′,

the domains of xd and xs are now clearly from −2ε to 2ε. The Jacobian

∂(x, x′)
∂(xs, xd)

=
1

2

balances only half of this apparent fourfold increase in the area of integration.

The other half is of course due to the fact that the original square area of

integration has been rotated into a diamond shape. The consequence is that

the limits of integration of the “inner” integral are no longer constant, but

are rather dependent on the value of the variable in the “outer” integral.

Explicitly, if we perform the xd integral outermost, the limits of integration

for the inner xs integral are

|xs| ≤ 2ε− |xd| ;

the domain of integration for xs is now, on the average, half as long as the

näıve maximum-minus-minimum calculation would suggest.

The results of the equivalent considerations in the fully three-dimensional

case are not as obvious—because we are not so adept at visualising six-di-

mensional geometry,—but nevertheless proceed in the same manner. The

self-interactions that we are considering in this chapter are of the general

form (6.4), namely

ab

4π

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ λ(r)f(r, r′).
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We define

η0 ≡ 1

4π

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′

≡ 1

4π
.

The six-dimensional region of integration in r–r′ space is defined by the

constraints

|r| ≤ ε,

|r′| ≤ ε. (6.13)

The transition to the variables rd and rs mixes components of r and r′. Since

we know, from the discussion of the previous section, that the three-vector rd

will dominate our considerations, with rs playing a considerably lesser rôle,

we shall usually choose to perform the the rd integral outermost. The region

of integration of rd will then be determined only by the maximum values

attainable by rd; but the region of integration for rs will depend on the value

of rd in the outer integral . It is clear, from the definitions (6.11), that rd

may take any value within a three-sphere of radius 2ε, i.e.,

rd ≤ 2ε, (6.14)

and thus this larger three-sphere is the region of integration for rd; we shall

call this volume Vd. The constraints (6.13) require that

|rs + rd| ≤ 2ε, (6.15)

|rs − rd| ≤ 2ε; (6.16)

i.e., the region of integration is the intersection of these two regions. Now, for

any given value of rd, these constraints define two three-spheres in rs-space,

each of radius 2ε, that are offset by ±rd from the origin; their common

volume—which looks like a three-sphere with a central slice taken out and
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the remaining pieces glued together—is the volume of integration for rs; we

shall call this intersection volume Vs. Taking into account the Jacobian (of

value 1/23 = 1/8), we thus have

∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ =
1

8

∫

Vd

d 3rd

∫

Vs

d 3rs . (6.17)

6.4.2 Symmetry arguments

Clearly, integrals in rd–rs space are not straightforward with such a strange

region of integration as that described in the previous section: at the least,

we have lost spherical symmetry for rs.

However, there is one consideration that allows us to simplify matters

considerably. It will be noted that, since the two defining three-spheres in

rs-space are offset by ±rd, then a parity operation rd → −rd in rd-space

leaves the rs integration region (and hence the value of the inner rs integral)

invariant . Since the rd integral is itself over a three-sphere, we thus find that

integrals odd in rd vanish, regardless of their dependence on rs.

Likewise, we could have alternatively presented the above with the rs

integral outermost (since, fundamentally, the definitions (6.11) of rd and rs

are symmetrical), and thus conclude that integrals odd in rs vanish, again

regardless of their dependence on rd.

6.4.3 Explicit inner integrals

We now consider the explicit expressions involved in performing integrals

over the hypervolume specified by Vd and Vs.

We consider the rd integral to be performed “outermost”, and the rs inte-

gral “innermost”. The process may be visualised by analogy with a computer

program with six nested loops: we are here specifying that the three com-

ponents of rd are to be incremented in the three outermost loops; the three

components of rs are incremented in the three innermost loops. The starting
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and ending values of each loop are not fixed, but rather are determined by

the values of the counters in all of the loops that are outside the loop in

question. Inside the innermost loop is the function itself, which is evaluated

for each value of the counters in the six loops, and the resulting value added

to the running sum.

We shall, to simplify the following considerations, construct a new set of

spatial axes (x, y, z) for rs-space, in such a way that the particular values

that the components of rd have, as we enter the rs integration, are such that

the vector rd is in the z-direction; we parametrise rd in terms of the new

dimensionless quantity α:

rd = 2ε(0, 0, α);

i.e., 0 ≤ α ≤ 1. The particular set of axes (x, y, z) used for one “entry”

to the innermost three loops is not, of course, the same as that for another

“entry”; but they are always related by a rotation. Clearly,

α ≡ rd
2ε

(6.18)

in general.

In terms of this new set of axes, we perform the z-integral outermost,

followed by the y-integral, and then finally the x-integral. Now, the volume

Vs specified by (6.15) and (6.16) clearly has its extremities on the z-axis at

values ±2ε(1 − α). For a given value of z, the region of integration in the

x–y plane will then be the interior of a circle, of radius ρ, where

ρ2(z, α) = 4ε2 − (|z|+ 2εα)2.

We thus find that

∫
d 3r

∫
d 3r′ =

1

8

∫

Vd

d 3rd

∫ 2ε(1−α)

−2ε(1−α)

dz
∫ ρ(z,α)

−ρ(z,α)

dy
∫
√

ρ2(z,α)−y2

−
√

ρ2(z,α)−y2

dx, (6.19)

where the final two sets of integration limits simply specify the interior of a

circle of radius ρ(z, α).
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We shall, at this point, perform a small feat of mathematical clairvoyance,

and predict that the only even integrals that we shall ultimately have need

to perform in rs-space, in the remainder of this thesis, are of two types: those

independent of rs, namely, ∫

Vs

d 3rs 1; (6.20)

and those with two factors of rs, namely,
∫

Vs

d 3rs ri
sr

j
s , (6.21)

with no extra factors of the magnitude rs in either case. For the case (6.20),

we find

∫

Vs

d 3rs 1 =
∫ 2ε(1−α)

−2ε(1−α)

dz
∫ ρ(z,α)

−ρ(z,α)

dy
∫
√

ρ2(z,α)−y2

−
√

ρ2(z,α)−y2

dx

=
∫ 2ε(1−α)

−2ε(1−α)

dz
∫ ρ(z,α)

−ρ(z,α)

dy 2
√

ρ2(z, α)− y2

=
∫ 2ε(1−α)

−2ε(1−α)

dz π
{
4ε2 − (|z|+ 2εα)2

}

=
4

3
π(2ε)3

{
1− 3

2
α +

1

2
α3

}
;

hence, ∫

Vs

d 3rs 1 =
4

3
π(2ε)3

{
1− 3

2

(
rd
2ε

)
+

1

2

(
rd
2ε

)3
}

, (6.22)

where we have used (6.18) to replace α by rd/2ε. Although unfamiliar, the

result (6.22) can be verified to have intuitively correct properties. For rd = 0,

the region of integration in rs-space is just a three-sphere of radius 2ε, and

(6.22) gives the expected volume 4π(2ε)3/3. For rd = 2ε, the two offset three-

spheres cease to intersect, and the volume (6.22) vanishes as expected. If we

integrate (6.22) in turn over all Vd, using spherical coördinates, we find that

∫

Vd

d 3rd

∫

Vs

d 3rs 1 =
4

3
π(2ε)3

∫ 2ε

0
drd 4πr2

d

{
1− 3

2

(
rd
2ε

)
+

1

2

(
rd
2ε

)3
}
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=
1

8

(
4

3
π(2ε)3

)2

, (6.23)

which is the expected result—the factor of 1/8 = 1/2 3 taking care of the

“other half” of the factor of 2 6 = 64 apparent increase in volume of the

6-dimensional integration space (the Jacobian providing the other factor of

1/8).

We defer a computation of the integral (6.21) to Section 6.4.5; we shall

first need to derive integrals over Vd more complicated than (6.23).

6.4.4 Explicit outer integrals

While we have predicted that the rs-dependencies of the terms in our ra-

diation reaction expressions will only be of one of the two forms (6.20) or

(6.21), the rd-dependencies of the terms do not have such simplicity. In fact,

they involve an almost arbitrary number of factors of rd, as well as factors

rn
d of the magnitude rd of rd. (The latter can be understood in terms of

the discussion of Section 6.4: they arise as the leading-order term of single

powers of R, the magnitude of R, which is also the negative of the value of

the retarded time tret(r, r′).)

Now, since the region of integration Vd is spherically symmetric, the angu-

lar and radial integrals may be decoupled by the use of spherical coördinates.

We shall consider the angular integrations shortly. For the case where the in-

tegrand in question is independent of rs, we simply need to consider integrals

of the form

ηm ≡ 1

4π

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′
1

rm
d

,

where we are here defining the symbols ηm, promised in Chapter 5. As with

(6.23), these may be computed by elementary integration; by using the result

(6.22), and simplifying somewhat, one finds that

ηm =
72

(2ε)m(3−m)(4−m)(6−m)
η0. (6.24)

246



The result (6.24) is not intuitively obvious, and would have been perplexing

if we had not explicitly outlined its method of derivation above. Of particular

interest to our considerations, we have

η1 =
6

5ε
η0, (6.25)

η2 =
9

4ε2
η0, (6.26)

η3 = ∞. (6.27)

The infiniteness of η3 is simply understood: the Jacobian factor 4πr2
d is, in

this case, insufficient to overcome the factor of 1/r3
d in the integrand. We

shall examine the subtle consequences of this result in Section 6.7.

6.4.5 Quadratic inner integrals

We now consider the calculation of rs integrals with two factors of rs present,

as promised in Section 6.4.3, viz., those of the form (6.21).

We firstly note that, at each level of integration in (6.19), the domain of

integration of x, y or z is from −A to +A (where A is some number), and

any extra factors present are even functions of x, y or z. Thus, for integrands

(6.21) where i 6= j, we find a vanishing integral on symmetry grounds.

For the case i = j, the circular symmetry of the expressions around the

z-axis means that it suffices to compute the integral of z2, as well as that of

either x2 or y2; we choose to integrate y2.

Firstly, for the integral of z2, we use the results of Section 6.4.3 for the x

and y integrals of unity, and find

∫

Vs

d 3rs z2 =
∫ 2ε(1−α)

−2ε(1−α)

dz πz2
{
4ε2 − (|z|+ 2εα)2

}

= 2π
∫ 2ε(1−α)

0

dz z2
{
4ε2 − (|z|+ 2εα)2

}
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=
4

3
π(2ε)5

{
1

5
− 3

4
α + α2 − 1

2
α3 +

1

20
α5

}
. (6.28)

We note that, when α = 1, (6.28) vanishes, as required. Turning now to the

integral of y2, we find

∫

Vs

d 3rs y2 =
∫ 2ε(1−α)

−2ε(1−α)

dz
∫ ρ(z,α)

−ρ(z,α)

dy 2y2
√

ρ2(z, α)− y2

=
∫ 2ε(1−α)

−2ε(1−α)

dz
1

4
πρ4(z, α)

=
1

2
π

∫ 2ε(1−α)

0

dz
{
4ε2 − (|z|+ 2εα)2

}2

=
4

3
π(2ε)5

{
1

5
− 3

8
α +

1

4
α3 − 3

40
α5

}
. (6.29)

Again, when α = 1, (6.29) vanishes, as required. Also, for α = 0, the results

(6.28) and (6.29) are equal—as they should be, by symmetry, since for α = 0

the region of integration is simply a sphere.

We now do away with our interim (x, y, z) set of axes, and rewrite the re-

sults (6.28) and (6.29) using only the components of the quantity rd. Clearly,

we have
∫

Vs

d 3rs ri
sr

j
s =

4

3
π(2ε)5

(
rd
2ε

){
−3

8
+

(
rd
2ε

)
− 3

4

(
rd
2ε

)2

+
1

8

(
rd
2ε

)4
}

ni
dn

j
d

+
4

3
π(2ε)5

{
1

5
− 3

8

(
rd
2ε

)
+

1

4

(
rd
2ε

)3

− 3

40

(
rd
2ε

)5
}

δij. (6.30)

To check that the calculation of the result (6.30) is in fact correct, we compute

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ ri
sr

j
s

=
1

8
η0

(
4

3
πε3

)−2∫

Vd

d 3rd

∫

Vs

d 3rs ri
sr

j
s

= η0 (2ε)2
(

4

3
πε3

)−1∫

Vd

d 3rd

(
rd
2ε

){
−3

8
+

(
rd
2ε

)
− 3

4

(
rd
2ε

)2

+
1

8

(
rd
2ε

)4
}

ni
dn

j
d
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+ η0 (2ε)2
(

4

3
πε3

)−1∫

Vd

d 3rd

{
1

5
− 3

8

(
rd
2ε

)
+

1

4

(
rd
2ε

)3

− 3

40

(
rd
2ε

)5
}

δij. (6.31)

Now, as will be shown shortly, the angular integration of two factors of nd

yields ∫

Vd

d 3rd ni
dn

j
d f(rd) =

1

3
δij

∫

Vd

d 3rd f(rd);

thus, (6.31) yields

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ ri
sr

j
s

= η0 (2ε)2
(

4

3
πε3

)−1∫ 2ε

0
4πr2

d drd

{
1

5
− 1

2

(
rd
2ε

)
+

1

3

(
rd
2ε

)2

− 1

30

(
rd
2ε

)5
}

=
2ε2

5
η0

=
1

3
η−2. (6.32)

That this result, η−2/3, is indeed correct follows from the fact that we could

have alternatively computed it as the integral of ri
dr

j
d ; the normals ni

dn
j
d con-

tribute the factor of 1/3, and the magnitudes r2
d contribute the integral η−2.

We now employ clairvoyance once again, and predict that the only inte-

grals involving ri
sr

j
s that we shall have need to perform will be of the form

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r−m
d r2

s ni
sn

j
s f(nd), (6.33)

where m = 2 or 3 only . While the integral over nd cannot be performed

without the explicit f(nd) being supplied, we can nevertheless perform the

complete rs integral, as well as the integral over rd, following the same method

as above. When this is done for m = 2, one finds

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r−2
d r2

s ni
sn

j
s f(nd)

= η0

∫
d 2nd

{
3

2
δij − 1

2
ni

dn
j
d

}
f(nd) (6.34)
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where by the notation
∫
d 2nd we mean the integral over the angular degrees

of freedom of rd, but divided by 4π. (E.g.,
∫
d 2nd 1 = 1.) The effect of the

result (6.34) may be equivalently incorporated into our calculations, in the

following sections, by means of the prescription

r−2
d r2

s ni
sn

j
s −→

3

2
δij − 1

2
ni

dn
j
d, (6.35)

followed by an rd integration performed as if there had been no rs-dependence

at all.

Because the result (6.35) has a direct and major influence on the final

radiation equations of motion that will be obtained, it is important to cross-

check it in some way. The most obvious method is to integrate it over all

d 3r and d 3r′:

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r−2
d r2

s ni
sn

j
s =

{
3

2
− 1

2
· 1

3

}
η0 δij =

4

3
η0 δij, (6.36)

and then to note that, had we exchanged rd and rs before performing the

integral, the ni
dn

j
d factors would then trivially contribute a factor of 1/3; this,

together with (6.36), implies that

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r−2
d r2

s = 4. (6.37)

If we could prove the result (6.37) quickly and simply, from first principles,

then we would be implicitly verifying the result (6.36), and hence (6.35).

Unfortunately, the author has not been able to obtain any simple analytical

computation of the integral (6.37), other than that used to derive (6.36).

For this reason, a small and rudimentary computer program, checkrs, was

written to perform the integral (6.37) numerically; the output is listed in

Section G.8 of Appendix G. (The source code is only supplied with digital

copies of this thesis; see Appendix G for details.) It will be noted that the nu-

merically integrated result very quickly converges to the value 4; this verifies

the integral (6.36), and strongly suggests that (6.35) is, indeed, correct.
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The case of (6.33) with m = 3 is more subtle, again due to the fact that

the radial rd integral is, due to its inverse-cube nature, infinite. The term

proportional to ni
dn

j
d in (6.33) avoids this fate (due to the fact that it contains

an extra power of rd/2ε in all terms), but the term proportional to δij does

not. However, it will be found that, in fact, terms involving δij will all cancel

in our final expressions, before they need to be integrated; let us therefore

simply write its integral, unperformed, as I ij
3 .

Performing, then, the integral of the ni
dn

j
d part explicitly, we find

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r−3
d r2

s ni
sn

j
s f(nd) = −η1

∫
d 2nd ni

dn
j
d f(nd) + I ij

3 ,

(6.38)

Again, the result (6.38) may be equivalently incorporated into our calcula-

tions by making the simple substitution

r−3
d r2

s ni
sn

j
s −→ I ij

3 − r−1
d ni

dn
j
d, (6.39)

and then performing the rd integration as if there had been no rs-dependence

at all.

Unfortunately, it is not so simple to devise such a straightforward cross-

check of (6.39) as was performed earlier for (6.35), due to the presence of

the divergent integral I ij
3 . Instead, the author has thoroughly verified this

result by directly comparing the term-by-term integrations of r−3
d with those

of r0
d (which latter have been verified above), which are of course in the

ratio (n + 1)/8ε3(n − 2) if the overall integrand (including 4πr2
d factor) has

dependence rn
d . (This can be seen quickly by integrating the polynomials from

first principles, and noting that the extra factor of r3
d contributes (2ε)3.)
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6.4.6 Angular outer integrals

We now turn to the question of performing integrals over the angular coörd-

inates nd of rd, viz., integrals of the form

∫
d 2nd f(nd). (6.40)

Clearly, since the volume of integration of rd is a simple sphere, we may

separate the rd and nd integrals completely by employing spherical coördin-

ates. (This was not possible for the rs integrals above, since the volume Vs is

not, in general, spherical.) Obviously, if the f(nd) in (6.40) contains an odd

number of factors of nd, the integral will vanish identically, by symmetry.

We are thus left with integrals of the form

∫
d 2nd ni

dn
j
d,

∫
d 2nd ni

dn
j
dn

k
dn

l
d,

∫
d 2nd ni

dn
j
dn

k
dn

l
dn

m
d nn

d , (6.41)

and so on. We shall at this point employ clairvoyance for the third and

final time, and predict that the integrals (6.41) exhaust those that we shall

need in the radiation reaction calculations. Now, consideration of three-space

covariance alone requires the integrals (6.41) to be able to be written solely

in terms of the three-covariant quantity δij—there being no other covariant

quantity available after the integration has been performed. This, together

with due consideration of the symmetry of the expressions (6.41), already

tells us that the answers must be of the form

∫
d 2nd ni

dn
j
d = β2 δij,

∫
d 2nd ni

dn
j
dn

k
dn

l
d = β4

{
δijδkl + δikδjl + δilδjk

}
,

∫
d 2nd ni

dn
j
dn

k
dn

l
dn

m
d nn

d = β6

{
δijδklδmn + δijδkmδln + δijδknδlm
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+ δikδjlδmn + δikδjmδln + δikδjnδlm

+ δilδjkδmn + δilδjmδkn + δilδjnδkm

+ δimδjkδln + δimδjlδkn + δimδjnδkm

+ δinδjkδlm + δinδjlδkm + δinδjmδkl
}

, (6.42)

where the constants β2m must now be determined. To do so, it suffices to set

all of the indices in the expressions (6.42) to the value z; noting that for 2m

factors of nd there are (2m−1)!! terms in the symmetrised expansion (6.42),

and using the angular part of spherical coördinates, we find

∫
d 2nd (nz

d)
2m =

1

4π

∫ 2π

0
dφ

∫ 1

−1
d[sin θ] sin2mθ =

1

2m + 1
;

hence,

β2m =
1

(2m + 1)!!
. (6.43)

Explicitly,

β0 = 1,

β2 =
1

3
,

β4 =
1

15
,

β6 =
1

105
. (6.44)

Thus, practically speaking, when one encounters an integrand with 2m fac-

tors of nd present, one multiplies it by the corresponding β2m from (6.44),

and then replaces it with the (2m − 1)!! terms obtained by inserting Kro-

necker delta functions, in all possible ways, for the factors of nd. (In fact,

the computer algebra library for the programs radreact and test3int

performs this computation recursively , and hence can handle an arbitrary

number of normal factors, not just six.)
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6.4.7 Is there an easier way?

It might be wondered whether the somewhat tortuous considerations of this

section might be unnecessary if one were simply to avoid choosing the three-

sphere as a region of integration for r altogether, and instead integrate over

all space.

However, the problem would just be pushed somewhere else: we would

require the use of some suitable non-trivial moment-density function ρa(r)

that ensures that the electromagnetic moments are confined to a volume

of spatial extent of order ε. To maintain the simplicity of the centre-of-

moment calculations, this moment density would be most simply chosen to

be a function of radial distance only: ρ = ρ(r). But then, in transforming to

the new variables rs and rd, the moment density expressions ρ(r) and ρ(r′)

would themselves be converted into hopelessly complicated functions of the

vectors rs and rd; the resulting integrals would be intractable. Furthermore,

as already discussed in Section 6.3.2, we would then need to compute anew

the static fields of a particle with such a modified moment density function,

which may themselves be intractable.

Thus, the considerations of this sections are the simplest way that one

can proceed, as far as the author can ascertain.

6.5 Retarded kinematical quantities

We shall now proceed to calculate the retarded kinematical quantities of

the sending constituent r′, that will be used to compute the retarded fields

generated by the particle.

6.5.1 The retarded radius vector

The three-vector R, of (6.5), is simply given by the three-displacement be-

tween the receiving constituent r at t = 0, and the generating constituent r′
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at t = tret ≡ −R; thus,

R ≡ r − zr′(tret). (6.45)

Using (3.23), we have

zr′(t) = r′ +
1

2
t2v̇ +

1

6
t3v̈ − 1

2
t2(r′·v̇)v̇ +

1

24
t4

...
v − 1

3
t3(r′·v̇)v̈

− 1

6
t3(r′·v̈)v̇ +

1

2
t2(r′·v̇)2v̇ +

1

120
t5

....
v − 1

8
t4(r′·v̇)

...
v

− 1

8
t4(r′·v̈)v̈ − 1

24
t4(r′·...v)v̇ − 1

8
t4v̇2(r′·v̇)v̇ +

1

2
t3(r′·v̇)2v̈

+
1

2
t3(r′·v̇)(r′·v̈)v̇ − 1

2
t2(r′·v̇)3v̇ + O(ε6). (6.46)

Thus, by (6.45),

R = r − r′ − 1

2
R2v̇ +

1

6
R3v̈ +

1

2
R2(r′·v̇)v̇ − 1

24
R4...v − 1

3
R3(r′·v̇)v̈

− 1

6
R3(r′·v̈)v̇ − 1

2
R2(r′·v̇)2v̇ +

1

120
R5....v +

1

8
R4(r′·v̇)

...
v

+
1

8
R4(r′·v̈)v̈ +

1

24
R4(r′·...v)v̇ +

1

8
R4v̇2(r′·v̇)v̇ +

1

2
R3(r′·v̇)2v̈

+
1

2
R3(r′·v̇)(r′·v̈)v̇ +

1

2
R2(r′·v̇)3v̇ + O(ε6). (6.47)

6.5.2 Length of expressions

Because the expressions from this point become exceedingly long, we shall

omit terms of lower orders in the explicit expressions listed here, where such

an omission leads to a considerable shortening; the full expressions are given

in Section G.6 of Appendix G.

However, the O(εn) notation included here still indicates the order re-

tained in the full expressions , ignoring the fact that terms have been omitted

for typographical sanity.
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6.5.3 Final expression for the retarded radius vector

We now rewrite (6.47) in terms of the variables rd and rs of Section 6.4:

R = rd − 1

2
R2v̇ +

1

6
R3v̈ − 1

4
R2(rd ·v̇)v̇ +

1

4
R2(rs ·v̇)v̇ + · · · + O(ε6). (6.48)

To eliminate R2, R3, R4 and R5, we firstly square equation (6.48) itself to

get

R2 = r2
d −R2(rd ·v̇) +

1

4
R4v̇2 +

1

3
R3(rd ·v̈)− 1

2
R2(rd ·v̇)2

+
1

2
R2(rd ·v̇)(rs ·v̇) + · · · + O(ε7).

Substituting this equation back into itself until R is eliminated from the

right-hand side, we thus find that

R2 = r2
d

{
1− (rd ·v̇) +

1

2
(rd ·v̇)2 +

1

4
r2
d v̇2 +

1

3
rd(rd ·v̈) +

1

2
(rd ·v̇)(rs ·v̇)

+ · · · + O(ε5)
}

. (6.49)

Employing the unit vectors nd and ns,

nd ≡ rd

rd
,

ns ≡ rs

rs
, (6.50)

to more explicitly exhibit the dimensionalities of the various terms in each

expression, and using the binomial theorem on (6.49), we thus find

R = rd

{
nd − 1

2
rdv̇ +

1

6
r2
d v̈ +

1

4
r2
d (nd ·v̇)v̇ +

1

4
rdrs(ns ·v̇)v̇ + · · · + O(ε5)

}
.

(6.51)

6.5.4 The retarded normal vector

The retarded field expressions of Chapter 5 do not explicitly use the three-

vector R; rather, they are somewhat simplified by using n. We can compute

256



n via the inverse of (6.5), namely,

n ≡ R

R
.

By using (6.51) and (6.49), one finds that

n = nd − 1

2
rdv̇ +

1

2
rd(nd ·v̇)nd +

1

6
r2
d v̈ − 1

8
r2
d v̇2nd +

1

8
r2
d (nd ·v̇)2nd

− 1

6
r2
d (nd ·v̈)nd − 1

4
rdrs(nd ·v̇)(ns ·v̇)nd +

1

4
rdrs(ns ·v̇)v̇ + · · · + O(ε5).

(6.52)

6.5.5 Retarded velocity and derivatives

Taking successive t-derivatives of (6.46), we have

vr′(t) = tv̇ +
1

2
t2v̈ − t(r′·v̇)v̇ +

1

6
t3

...
v − t2(r′·v̇)v̈ − 1

2
t2(r′·v̈)v̇

+ t(r′·v̇)2v̇ +
1

24
t4

....
v − 1

2
t3(r′·v̇)

...
v − 1

2
t3(r′·v̈)v̈ − 1

6
t3(r′·...v)v̇

− 1

2
t3v̇2(r′·v̇)v̇ +

3

2
t2(r′·v̇)2v̈ +

3

2
t2(r′·v̇)(r′·v̈)v̇ − t(r′·v̇)3v̇

+ O(ε5), (6.53)

v̇r′(t) = v̇ + tv̈ − (r′·v̇)v̇ +
1

2
t2

...
v − 2t(r′·v̇)v̈ − t(r′·v̈)v̇ + (r′·v̇)2v̇

+
1

6
t3

....
v − 3

2
t2(r′·v̇)

...
v − 3

2
t2(r′·v̈)v̈ − 1

2
t2(r′·...v)v̇ − 3

2
t2v̇2(r′·v̇)v̇

+ 3t(r′·v̇)2v̈ + 3t(r′·v̇)(r′·v̈)v̇ − (r′·v̇)3v̇ + O(ε4), (6.54)

v̈r′(t) = v̈ + t
...
v − 2(r′·v̇)v̈ − (r′·v̈)v̇ +

1

2
t2

....
v − 3t(r′·v̇)

...
v − 3t(r′·v̈)v̈

− t(r′·...v)v̇ − 3tv̇2(r′·v̇)v̇ + 3(r′·v̇)2v̈ + 3(r′·v̇)(r′·v̈)v̇

+ O(ε3). (6.55)
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Using the fact that tret ≡ −R, and employing the expression (6.49), we thus

have

vret = −rdv̇ +
1

2
r2
d v̈ +

1

2
rdrs(ns ·v̇)v̇ − 1

6
r3
d

...
v − 1

8
r3
d v̇2v̇ − 1

8
r3
d (nd ·v̇)2v̇

+
1

12
r3
d (nd ·v̈)v̇ − 1

2
r2
d rs(ns ·v̇)v̈ − 1

4
r2
d rs(ns ·v̈)v̇ − 1

4
rdr

2
s (ns ·v̇)2v̇

+ · · · + O(ε5), (6.56)

v̇ret = v̇ − rdv̈ +
1

2
rd(nd ·v̇)v̇ − 1

2
rs(ns ·v̇)v̇ +

1

2
r2
d

...
v − 1

2
r2
d (nd ·v̇)v̈

+
1

4
r2
d (nd ·v̇)2v̇ − 1

2
r2
d (nd ·v̈)v̇ + rdrs(ns ·v̇)v̈ +

1

2
rdrs(ns ·v̈)v̇

− 1

2
rdrs(nd ·v̇)(ns ·v̇)v̇ +

1

4
r2
s (ns ·v̇)2v̇ + · · · + O(ε4), (6.57)

v̈ret = v̈ − rd
...
v + rd(nd ·v̇)v̈ +

1

2
rd(nd ·v̈)v̇ − rs(ns ·v̇)v̈ − 1

2
rs(ns ·v̈)v̇

+ · · · + O(ε3). (6.58)

6.5.6 Constituent retarded FitzGerald spins

For purposes of calculating the retarded fields, we need to use the FitzGerald

spin vector, σ′
r′(t), and its derivatives. Using (6.56) and (6.49) in (3.24) and

its derivatives, we find

σ′
ret = σ − rdσ̇ +

1

2
r2
d σ̈ − 1

2
r2
d (v̇ ·σ)v̇ +

1

2
rdrs(ns ·v̇)σ̇

+ · · · + O(ε5) (6.59)

σ̇′
ret = σ̇ − rdσ̈ + rd(v̇ ·σ)v̇ +

1

2
rd(nd ·v̇)σ̇ − 1

2
rs(ns ·v̇)σ̇

+ · · · + O(ε4), (6.60)

σ̈′
ret = σ̈ − (v̇ ·σ)v̇ + · · · + O(ε3). (6.61)
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6.5.7 Computer algebra

All of the quantities listed to this point were originally calculated by hand, by

the author, to the full order of ε indicated. It should be apparent, upon re-

flection of the lengthy nature of the explicit expressions listed in Appendix G,

why it was not feasible to continue to compute such expressions by hand.

Thus, the author decided to investigate methods of calculating and verify-

ing the algebra by computational means. A description of this investigation

is given in Section G.2 of Appendix G.

From this point, the expressions listed in Section G.6 were calculated to

one lower order by hand; the computer algebra programs verified these lower-

order results, as well as providing the next order of terms. Only one error

was found in the manually-computed expressions, that had not yet been used

for any consequential computations. Once the error in the manual expression

had been located and corrected, the computer algebra program was used to

verify the electric charge field results through to completion (which had also

been completed, manually), and to compute, for the first time, the dipole

field and radiation reaction results.

6.5.8 Gamma factor

Returning, now, to the algebraic derivation, we note that two terms in the

retarded field expressions of Chapter 5 involve the Lorentz gamma factor γret;

however, it will be noted that, in both cases, it appears in the form

γ−2
ret ≡ 1− v2

ret.

To compute γ−2
ret , we use (6.56); the result (to the lower order of ε actually

required for this particular quantity) is

γ−2
ret = 1− r2

d v̇2 + r3
d (v̇ ·v̈) + r2

d rsv̇
2(ns ·v̇) + · · · + O(ε6). (6.62)
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6.5.9 Modified retarded normal vectors

We now compute the quantities n′ and n′′, introduced in Chapter 5 to sim-

plify the retarded field expressions:

n′ ≡ n− vret,

n′′ ≡ n′ − vret×(n×vret).

Using (6.52) and (6.56), we have

n′ = nd +
1

2
rdv̇ +

1

2
rd(nd ·v̇)nd − 1

3
r2
d v̈ − 1

8
r2
d v̇2nd +

1

8
r2
d (nd ·v̇)2nd

− 1

6
r2
d (nd ·v̈)nd − 1

4
rdrs(nd ·v̇)(ns ·v̇)nd − 1

4
rdrs(ns ·v̇)v̇

+ · · · + O(ε5), (6.63)

and

n′′ = nd +
1

2
rdv̇ +

1

2
rd(nd ·v̇)nd − 1

3
r2
d v̈ − 9

8
r2
d v̇2nd + r2

d (nd ·v̇)v̇

+
1

8
r2
d (nd ·v̇)2nd − 1

6
r2
d (nd ·v̈)nd − 1

4
rdrs(nd ·v̇)(ns ·v̇)nd

− 1

4
rdrs(ns ·v̇)v̇ + · · · + O(ε5). (6.64)

6.5.10 Retarded Doppler factor

We now compute the expression for the retarded Doppler factor, κ, intro-

duced in Chapter 5:

κ ≡ 1

1− (v ·n)
.

One finds

κ = 1− rd(nd ·v̇) +
1

2
r2
d v̇2 +

1

2
r2
d (nd ·v̈) +

1

2
r2
d (nd ·v̇)2

+
1

2
rdrs(nd ·v̇)(ns ·v̇) + · · · + O(ε5). (6.65)
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6.5.11 Final redshift expression

Finally, from the definition (3.21), we have

λ = 1 +
1

2
rd(nd ·v̇) +

1

2
rs(ns ·v̇). (6.66)

6.5.12 Retarded field expressions

We can now use the preceding expressions to compute the various retarded

fields of the particle, generated by the sending constituent r′ and received

by the receiving constituent r.

It will be noted that, in all cases, the “accelerative redshift” factor λ(r)—

that relates the constituent proper-time derivatives to body proper-time

derivatives—will be multiplied in as the final step of the self-interaction cal-

culations. Most of these calculations will involve the self-generated electric

and magnetic fields as a simple factor; for these calculations, it is convenient

to compute λ times the electric or magnetic field from the outset.

On the other hand, the self-interaction terms involving spatial gradients

of the electromagnetic fields must be treated more carefully. Here, we must

note that the operations of multiplying by λ(r), and that of taking the spatial

derivative ∇r in r-space, do not commute, because λ(r) of course has an

explicit dependence on r. Thus, we may not compute (for example)

(σ ·∇)λ(r)E(r);

we must , rather, compute

λ(r)(σ ·∇)E(r).

The explicit expressions for the retarded self-fields of the particle are

lengthy; we list them explicitly in Section G.6.19 of Appendix G.
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6.6 Divergence of the point particle fields

In this section, we compute the spatial divergence of the fields generated by

a pointlike particle, in the vicinity of the particle’s worldline, by analysing

the explicit expressions listed in Section G.6.19.

Our reasons for carrying out such a procedure are threefold:

Firstly, it will provide an explicit check of the veracity of the self-field ex-

pressions computed in the previous section, since, from Maxwell’s equations,

we know in advance what the divergence of the fields should be: the source

expressions are simple at the instant that the particle is at rest.

Secondly, such a computation provides the concrete basis on which to add

the extra contact field required for a magnetic dipole, over and above that

of the dual of the electric dipole field, in the case of arbitrary motion of the

particle. (This task was performed, on the basis of the results in this section,

in Section 5.5.15.)

Thirdly, the method used to regularise the point particle expressions pro-

vides us with a suitable framework for carrying out, in the following sections,

subtle but important integrations of divergent expressions in the radiation

reaction calculations.

We begin, in Section 6.6.1, by explaining the particular regularisation pro-

cedure that we will use for the divergent point particle fields expressions; the

explicit substitutions required are detailed in Sections 6.6.2 and 6.6.3. Vari-

ous spatial gradients of these basic quantities are computed in Sections 6.6.4

and 6.6.5. These results are then used in Sections 6.6.6 and 6.6.7 to carefully

examine the spatial gradients of the monopolar inverse-square and dipolar

inverse-cube fields, and again in Section 6.6.8 for various inverse-square terms

in the retarded dipole fields of Section G.6.19.
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6.6.1 Regularisation procedure

Because the generated electromagnetic fields diverge at the worldline of a

pointlike particle, we clearly need to “regularise” the field expressions, i.e.,

modify the problem slightly so that all expressions are finite, and then take

the point limit after we have computed gradients.

One possible approach would be to analyse the fields of the extended

rigid body—as an expansion in ε, at any rate—by integrating the fields

Ea
n(rd, rs, ε) and Ba

n(rd, rs, ε) over the three-sphere of integration of r′, i.e.,

by performing an integration over the generating volume only. But then we

would be performing no integral over r itself; as a result, a simple integration

in rd–rs space would no longer be possible. Indeed, the author has not been

able to find any tractable way of computing the integrals in this way.

Instead of this, we will instead consider the expressions for a point particle

from the outset, and employ a subtle limiting procedure to obtain our results.

Clearly, we may effectively shrink our body to a point by setting r′ = 0 in all

expressions, and then examining how the fields behave around the position

r = 0. The quantity ε is now first order in r alone; we shall find that the

resulting expressions do, in fact, possess sufficient orders of ε for us to take

divergences, etc., of the self-fields around the origin of r—the position of the

point particle at t = 0.

There are a number of methods that one can employ to regularise math-

ematical expressions around r = 0, but—to the author, at least—the most

conceptually straightforward is to append an extra (Euclidean) dimension

to r-space. In other words, we consider a new, Euclidean four -dimensional

space, referred to as appended space or r̃-space, possessing explicit Cartesian

position coördinates

r̃ ≡ (w, x, y, z). (6.67)

The presence of the extra dimension w generates a continuous range of three-

dimensional subspaces rw in r̃-space; we consider the value of w to be a
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“godlike” parameter, i.e., one whose value is set by the author, but, once

set, cannot be changed by any of the operators in the equations being con-

sidered. Thus, we immediately rule out the operator ∂w, the generator of

w-translations, from being able to take any part in our considerations. The

gradient operator is therefore still only a three-vector, namely, ∇; there is no

operator ∇̃ in r̃-space.

Quantities are computed in r̃-space as they are in r-space, except that,

where necessary, the appended dimension w is discarded, when a purely

three-vector quantity is required; this is deemed to occur implicitly if an

operation being performed is an explicit three-vector operation, e.g., dot-

products and cross-products. We then consider the resulting expressions in

the limit w → 0, after all necessary mathematical manipulations have been

performed.

It should be noted that the process employed here is essentially a rigorous

generalisation of the “a-potential” trick used by Jackson [113, Sec. 1.7].

6.6.2 Radial magnitude

The radial magnitude r̃ of r̃ is given by the standard Euclidean result:

r̃ ≡ (r̃2)1/2 ≡ (w2 + x2 + y2 + z2)1/2. (6.68)

We deem that, in extending divergent three-space expressions into appended

space, the radial magnitude r is to be replaced by r̃ wherever it appears.

6.6.3 Directional normals

From the definitions (6.67) and (6.68) for the appended position vector and

radial magnitude in r̃-space, we can construct a unit vector ñ:

ñ ≡ r̃

r̃
. (6.69)

Clearly, ñ2 = 1.
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We must be careful in our notation, however, when discarding the w-com-

ponent of ñ: we write

nr̃ ≡ r

r̃
. (6.70)

The reason that we need to be careful is that this new three-vector, nr̃, is

not equal to the simple three-vector n:

n ≡ r

r
; (6.71)

the subscript r̃ in (6.70) denotes this distinction; on the other hand, the lack

of a tilde on nr̃ denotes that it is in fact a three-vector. Note that nr̃ does

not , however, have unit magnitude:

n2
r̃ =

r2

r̃2
6= 1. (6.72)

We deem that, in extending divergent three-space expressions into ap-

pended space, the directional normal n is to be replaced by ñ wherever it

appears. However, since the resulting ñ will always be either dot- or cross-

producted into another three-vector, or have its appended w-component dis-

carded for a three-vector result, it is simpler to consider the replacement as

being n → nr̃ from the outset.

6.6.4 Radial magnitude gradients

We now compute the three-gradient of the radial magnitude r̃ in r̃-space:

∇r̃ ≡ ∇(w2 + x2 + y2 + z2)1/2

=
(x, y, z)

(w2 + x2 + y2 + z2)1/2

=
r

r̃
; (6.73)

hence,

∇r̃ = nr̃. (6.74)
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Using the chain rule on (6.74), we find

∇ 1

r̃m
= −mnr̃

r̃m+1
. (6.75)

6.6.5 Directional normal gradients

We now compute the gradient ∂inr̃j:

∂inr̃j ≡ ∂i
rj

r̃

=
1

r̃
∂irj + rj∂i

1

r̃

=
δij

r̃
− nr̃irj

r̃2
;

hence,

∂inr̃j =
δij − nr̃inr̃j

r̃
. (6.76)

By contracting (6.76) with δij, we immediately find

(∇·nr̃) =
1

r̃

{
3− r2

r̃2

}
; (6.77)

by contracting it with εijk, we find

∇×nr̃ = 0; (6.78)

and by contracting it with an arbitrary three-vector ai we find

(a·∇)nr̃ =
a− (nr̃ ·a)nr̃

r̃
. (6.79)

We further note that

∇(nr̃ ·a) ≡ (a·∇)nr̃ + a×(∇×nr̃)

=
a− (nr̃ ·a)nr̃

r̃
+ a×0;

hence,

∇(nr̃ ·a) =
a− (nr̃ ·a)nr̃

r̃
. (6.80)
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Taking the dot-product of (6.80) with another arbitary vector b, we find

(b·∇)(nr̃ ·a) =
(a·b)− (nr̃ ·a)(nr̃ ·b)

r̃
. (6.81)

Finally, in the case when b = nr̃, we find

(nr̃ ·∇)(nr̃ ·a) =
(nr̃ ·a)− n2

r̃(nr̃ ·a)

r̃
;

employing (6.72), we thus find that

(nr̃ ·∇)(nr̃ ·a) =
(nr̃ ·a)

r̃

{
1− r2

r̃2

}
. (6.82)

6.6.6 The monopolar inverse-square field

We now consider carefully the monopolar inverse-square field, employing the

r̃-space:
nr̃

4πr̃2
. (6.83)

Our purposes in doing so are twofold. Firstly, we shall find that the r̃-space

provides a quick yet powerful way of divining the delta-function divergence

of (6.83), without having to employ any integral theorems, or resorting to

Poisson’s equation for the scalar potential; the results found will also be

of use in the following sections. Secondly, we shall show that the process

of employing the r̃-space for the monopolar field, and then computing the

gradient to obtain the dipolar field, is completely equivalent to performing

these two processes in the reverse order.

We first consider the spatial gradient of (6.83) in an arbitrary direction:

∂i
nr̃j

4πr̃2
=

1

4πr̃2
∂inr̃j +

nr̃j

4π
∂i

1

r̃2

=
δij − nr̃inr̃j

4πr̃3
− 2nr̃inr̃j

4πr̃3
;

thus,

∂i
nr̃j

4πr̃2
=

δij − 3nr̃inr̃j

4πr̃3
. (6.84)
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Our first use of (6.84) is to compute the divergence of the monopolar

inverse-square field; we already know, in advance, that this should be a delta-

function at the origin (i.e., a point monopole). Contracting (6.84) with δij,

we find

∇· nr̃

4πr̃2
≡ δij∂i

nr̃j

4πr̃2

= δij
δij − 3nr̃inr̃j

4πr̃3

=
3− 3n2

r̃

4πn3
r̃

;

using (6.72), we thus find

∇· nr̃

4πr̃2
=

3

4πr̃3

{
1− r2

r̃2

}
. (6.85)

To make sense of this result, we rewrite r̃2 in terms of r and w:

r̃2 ≡ r2 + w2;

we then find
3

4πr̃3

{
1− r2

r̃2

}
=

3w2

4π(r2 + w2)5/2
, (6.86)

Now, it will be noted that, for r > 0, the expression (6.86) vanishes in the

limit w → 0:

3w2

4π(r2 + w2)5/2

∣∣∣∣∣
r>0, w→0

−→ 3 · 02

4π(r2 + 02)5/2
= 0.

On the other hand, for r = 0 but w finite, we have

3w2

4π(r2 + w2)5/2

∣∣∣∣∣
r=0, w>0

=
3w2

4π(02 + w2)5/2
=

3

4πw3
;

thus, the value of the expression (6.86) diverges cubically at r = 0, in the

limit w → 0. These two properties of (6.86) lead us to conclude that it is,
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in fact, proportional to a three-dimensional Dirac delta-function in r-space.

To determine the precise coëfficient of the delta-function, we integrate the

expression (6.86), for arbitrary w, over all three-space:

∫
d 3r

3w2

4π(r2 + w2)5/2
=

∫ ∞

0
4πr2 dr

3w2

4π(r2 + w2)5/2
;

using the change of variable

u ≡ r

r̃
≡ r

(r2 + w2)1/2
, (6.87)

whence

dru =
w2

(r2 + w2)3/2
,

we find that ∫
d 3r

3w2

4π(r2 + w2)5/2
= 3

∫ 1

0
du u2 = 1;

hence,

lim
w→0

3

4πr̃3

{
1− r2

r̃2

}
≡ δ(r). (6.88)

Returning to (6.85), the identification (6.88) means that

∇· n

4πr2
= δ(r), (6.89)

the elementary result (where we have discarded the tilde notation in the final

expression).

We now return to the general expression (6.84), and consider contracting

it with an arbitrary three-vector a. We find

(a·∇)
nr̃

4πr̃2
≡ ai

δij − 3nr̃inr̃j

4πr̃3

=
aj − 3(nr̃ ·a)nr̃j

4πr̃3
;

hence,

−(a·∇)
nr̃

4πr̃2
=

3(nr̃ ·a)nr̃ − a

4πr̃3
. (6.90)
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The significance of this result is that it is precisely what we would obtain

by replacing n and r in the static field result of Chapter 5 by the appended

quantities nr̃ and r̃; the result is thus the same no matter which way we

choose to proceed, as we should demand on the basis of consistency.

6.6.7 The dipolar inverse-cube field

We now provide another brief illustration of utility and simplicity of r̃-space

by employing it in the computation of the divergence of the inverse-cube

static dipole field, namely,

∇· 3(nr̃ ·a)nr̃ − a

4πr̃3
.

We find

∇· 3(nr̃ ·a)nr̃ − a

4πr̃3
=

3

4πr̃3
(nr̃ ·∇)(nr̃ ·a) +

3

4π
(nr̃ ·a)(nr̃ ·∇)

1

r̃3

+
3(nr̃ ·a)

4πr̃3
(∇·nr̃)− 1

4π
(a·∇)

1

r̃3

=
3(nr̃ ·a)

4πr̃4

{
1− r2

r̃2

}
− 9(nr̃ ·a)

4πr̃4

r2

r̃2

+
3(nr̃ ·a)

4πr̃4

{
3− r2

r̃2

}
+

3(nr̃ ·a)

4πr̃4
;

hence,

∇· 3(nr̃ ·a)nr̃ − a

4πr̃3
=

15(nr̃ ·a)

4πr̃4

{
1− r2

r̃2

}
. (6.91)

To make sense of this result, we take the gradient in the direction of a of the

regularised representation (6.88) of the delta-function δ(r):

(a·∇)δ(r) ≡ (a·∇)
3

4πr̃3

{
1− r2

r̃2

}

=
3

4π

{
1− r2

r̃2

}
(a·∇)

1

r̃3
− 3

4πr̃3
(a·∇)

r2

r̃2
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= −9(nr̃ ·a)

4πr̃4

{
1− r2

r̃2

}
− 6(nr̃ ·a)

4πr̃4

{
1− r2

r̃2

}

= −15(nr̃ ·a)

4πr̃4

{
1− r2

r̃2

}
.

We thus conclude that

∇· 3(n·a)n− a

4πr3
= −(a·∇)δ(r), (6.92)

as we would expect for the dipolar static field from first principles. (The

minus sign here can be understood by recalling that the derivative of the

one-dimensional delta-function δ(t) is positive for t = 0− and negative for

t = 0+; an infinitesimal dipole has its charges reversed in sign from this.)

6.6.8 The dipolar inverse-square terms

In Section 6.6.6 above, we showed, with the help of r̃-space, how the diver-

gence of the monopolar inverse-square field yields the desired delta-function

source expression; in Section 6.6.7, the same considerations showed how the

dipolar inverse-cube field yields a source expression which is the gradient of

a delta-function in the direction of the dipole moment. We know that, at the

moment that the particle is at rest, these contributions exhaust the source

terms that should be present in Maxwell’s equations: the divergences of all

of the remaining terms in the point-particle field expressions should vanish.

Clearly, simple dimensional considerations reveal that, for field expres-

sions of order r−1 or higher, there will be an insufficient number of inverse

powers of w to yield any delta-function contributions to their divergence.

However, regular functions of r may, of course, appear. The computer alge-

bra program radreact, of Appendix G, computes these regular divergences

explicitly, and finds that, when added together, they vanish, as expected.

On the other hand, there are also four terms in 4πEd
point and one term in

4πBd
point that are inverse-square; we need to verify that these terms do not
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lead to delta-function contributions to the divergence. (The regular functions

that are part of their divergence are also checked explicitly with the computer

algebra program in Appendix G.)

We can treat the lead term of 4πBd
point most quickly:

∇· nr̃×a

4πr̃2
=

1

4π
nr̃×a·∇ 1

r̃2
+

1

4πr̃2
a·∇×nr̃

= − 2

4π
nr̃×a·nr̃

r̃3
+

1

4πr̃2
a· 0

= 0.

We now turn to the four inverse-square terms in 4πEd
point. The divergence

of the first two are of the form

∇· (nr̃ ·a)b− (nr̃ ·b)a

4πr̃2
. (6.93)

Computing the first term, we have

∇· (nr̃ ·a)b

4πr̃2
=

1

4πr̃2
(b·∇)(nr̃ ·a) +

1

4π
(nr̃ ·a)(b·∇)

1

r̃2

=
(a·b)− (nr̃ ·a)(nr̃ ·b)

4πr̃3
− 2(nr̃ ·a)(nr̃ ·b)

4πr̃3
;

hence,

∇· (nr̃ ·a)b

4πr̃2
=

(a·b)− 3(nr̃ ·a)(nr̃ ·b)

4πr̃3
. (6.94)

Since this is symmetrical in a and b, we thus conclude that the divergence

(6.93) vanishes:

∇· (n·a)b− (n·b)a

4πr2
= 0, (6.95)

where we drop the tildes in this final expression.

The divergence of the second pair of terms is of the form

∇· (a·b)nr̃ − 3(nr̃ ·a)(nr̃ ·b)nr̃

4πr̃2
. (6.96)
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The first term gives

∇· (a·b)nr̃

4πr̃2
≡ (a·b)∇· nr̃

4πr̃2
;

hence,

∇· (a·b)nr̃

4πr̃2
=

3(a·b)

4πr̃3

{
1− r2

r̃2

}
. (6.97)

The second term of (6.96) gives

∇· (nr̃ ·a)(nr̃ ·b)nr̃

4πr̃2
=

(nr̃ ·a)(nr̃ ·b)

4πr̃2
(∇·nr̃) +

(nr̃ ·a)(nr̃ ·b)

4π
(nr̃ ·∇)

1

r̃2

+
(nr̃ ·a)

4πr̃2
(nr̃ ·∇)(nr̃ ·b) +

(nr̃ ·b)

4πr̃2
(nr̃ ·∇)(nr̃ ·a)

=
(nr̃ ·a)(nr̃ ·b)

4πr̃3

{
3− r2

r̃2

}
− 2(nr̃ ·a)(nr̃ ·b)

4πr̃3

r2

r̃2

+
(nr̃ ·a)(nr̃ ·b)

4πr̃3

{
1− r2

r̃2

}
+

(nr̃ ·a)(nr̃ ·b)

4πr̃3

{
1− r2

r̃2

}
;

hence,

∇· (nr̃ ·a)(nr̃ ·b)nr̃

4πr̃2
=

5(nr̃ ·a)(nr̃ ·b)

4πr̃3

{
1− r2

r̃2

}
. (6.98)

Using (6.97) and (6.98) in (6.96), we thus find that

∇· (a·b)nr̃ − 3(nr̃ ·a)(nr̃ ·b)nr̃

4πr̃2
= 3

(a·b)− 5(nr̃ ·a)(nr̃ ·b)

4πr̃3

{
1− r2

r̃2

}
.

(6.99)

Clearly, this expression will, like (6.88), be equivalent to some multiple of

δ(r) in the limit w → 0. Näıvely, one might assume that the integration over

the angular coördinates of (nr̃·a)(nr̃·b) would yield (a·b)/3, and hence leave

us with the overall result −2δ(r)/3 for (6.99). However, this ignores the fact

that nr̃ itself involves a subtle mix of r and r̃. To obtain the correct result,

replace nr̃ in favour of n, before integrating over r:

nr̃ ≡ r

r̃
n;
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(6.99) then gives
{

(a·b)− 5(n·a)(n·b)
r2

r̃2

}
3

4πr̃3

{
1− r2

r̃2

}
.

We may now trivially integrate over the angular coördinates n of r—since

n involves r only, having no reference to the appended coördinate w—giving

(a·b)/3. We thus complete the integration over r:

(a·b)
∫ ∞

0
4πr2 dr

3

4πr̃3

{
1− r2

r̃2

}
− 5

3
(a·b)

∫ ∞

0
4πr2 dr

3r2

4πr̃5

{
1− r2

r̃2

}
;

again employing the change of variable (6.87), we find

3(a·b)
∫ 1

0
du u2 − 5(a·b)

∫ 1

0
du u4 = 0.

Thus, we find that the divergence (6.99) in fact vanishes :

∇· (a·b)n− 3(n·a)(n·b)n

4πr2
= 0, (6.100)

where again we drop the tildes in this final expression.

We have thus shown that there are no further delta-function contribu-

tions to the divergences of the point field expressions. The vanishing of the

divergences of the regular function terms is demonstrated by the computer

algebra program radreact of Section G.6.

6.7 Inverse-cube integrals

In the considerations of Section 6.4, we generally assumed that the angular

integration over nd, and radial integration over rd, may be computed sep-

arately. We noted there, however, that we must take special care when it

comes to inverse-cube integrals that we shall have need to perform, viz., those

of the form

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r−3
d f(nd), (6.101)
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where f(nd) is an even function of nd. The reason is that, by (6.27), the

radial integral η3 is infinite—despite our attempts to avoid infinities by ex-

panding the body into a finite sphere of radius ε. (We could have avoided this

problem from the outset by having a varying source density throughout the

body—in particular, one that vanished at least linearly at the centre,—but

that would introduce significant complications into many other computa-

tions of this chapter; it is far simpler to live with the relatively few yet subtle

considerations of the present section.)

Naturally, we would automatically be in dire straits if there were any

finite terms of order r−3
d remaining in our final equations of motion after

angular integration over nd, since then we would be faced with a hopelessly

infinite contribution to our equations of motion. In practice, however, this

is not the case: we shall find that the angular nd dependencies of the r−3
d

terms are always such that they cancel on integration.

The problem, of course, is that if the angular integration yields zero,

yet the radial integration yields infinity, the product of the two could equal

anything:

0 · ∞ = anything;

in particular, we would be in serious error if we were to assume that their

product vanishes.

To compute integrals such as (6.101) correctly, we must instead employ

again the r̃-space of Section 6.6—or, more precisely, r̃d-space, since we require

it only for the rd-space integrals; by keeping the appended coördinate w

finite, until the end of the radiation reaction computations altogether, we

will find that the infinities can be contained, and that they do, in fact, cancel

rigorously, leaving purely finite results.
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6.7.1 The bare inverse-cube integral

We first consider the inverse-cube integral with f(nd) = 1:

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r̃−3
d .

The rs-integral is trivial, as before; we are left with

η0

(
4

3
πε3

)−1∫ 2ε

0
4πr2

d drd

{
1− 3

2

(
rd
2ε

)
+

1

2

(
rd
2ε

)3
}

1

(r2
d + w2

d)
3/2

. (6.102)

Now, to avoid wasted effort, we shall, from the outset, keep in mind that,

ultimately, we shall be taking the limit wd → 0; we shall, for this reason,

retain the quantity wd only so far as required to regularise the expressions

involved. Thus, the integrals of the second and third terms of (6.102)—which

are perfectly well-behaved at both limits of integration—can be performed

with wd = 0 immediately:

η0

(
4

3
πε3

)−1∫ 2ε

0
4πr2

d drd

{
−3

2

(
rd
2ε

)
+

1

2

(
rd
2ε

)3
}

1

(r2
d + w2

d)
3/2

= −9η0

4ε4

∫ 2ε

0
drd +

3η0

16ε6

∫ 2ε

0
drd r2

d + O(wd)

= −9η0

2ε3
+

η0

2ε3
+ O(wd)

= −4η0

ε3
+ O(wd). (6.103)

The integral of the first term in (6.102), however, must be computed with

wd finite: to compute

η0

(
4

3
πε3

)−1∫ 2ε

0
4πr2

d drd
1

(r2
d + w2

d)
3/2

we must employ the change of variable (6.87) (with r and r̃ replaced by rd

and r̃d, of course); noting further that

r2
d =

w2
du

2

1− u2
,
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we find

η0

(
4

3
πε3

)−1∫ 2ε

0
4πr2

d drd
1

(r2
d + w2

d)
3/2

=
3η0

ε3

∫ 2ε/(4ε2+w2
d)1/2

0

du
u2

1− u2
. (6.104)

Finally, by noting that

∫
du

u2

1− u2
= ln

(
1 + u

1− u

)1/2

− u

(which may be verified by direct differentiation), we find

η0

(
4

3
πε3

)−1∫ 2ε

0
4πr2

d drd r̃−3
d =

3η0

ε3
ln

4ε

wd

− 3η0

ε3
+ O(wd). (6.105)

Coupling the result (6.105) with that of (6.103), we thus find that

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r̃−3
d =

3η0

ε3
ln

4ε

wd

− 7η0

ε3
+ O(wd). (6.106)

Clearly, the first term in (6.106) encapsulates the (logarithmic) divergence

of the integral in the limit wd → 0; the second term, on the other hand,

represents a finite contribution. To write this result in a somewhat more

shorthand notation, we define two new integral constants, η′3 and η′′3 (the

unit coëfficients here are arbitarily chosen):

η′3 ≡
η0

ε3
, (6.107)

η′′3 ≡ η′3 ln
4ε

wd

; (6.108)

we then have

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r̃−3
d = −7η′3 + 3η′′3 , (6.109)

where we take it as understood that there are terms of order wd present (that

will of course have no bearing on the final results). It is the presence of η′′3 ,

of course, that renders the unappended integral η3 infinite.
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6.7.2 Inverse-cube integral with two normals

We now turn to the integral

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r̃−3
d nr̃dinr̃dj. (6.110)

As we found earlier, we must be careful to replace nr̃d by its equivalent

expression in terms of nd:

nr̃d ≡
rd
r̃d

nd.

The integral over nd then proceeds as usual, leaving the result δij/3. The

integral over rd is now the same as it was for (6.102), except that the integrand

is multiplied by the factor r2
d /r̃2

d . This does not, of course, have any effect on

the integrals of the second and third terms (in the limit wd → 0): the result

is the same as before:

η0

(
4

3
πε3

)−1∫ 2ε

0
4πr2

d drd

{
−3

2

(
rd
2ε

)
+

1

2

(
rd
2ε

)3
}

r2
d

(r2
d + w2

d)
5/2

= −4η0

ε3
+ O(wd).

On the other hand, the integral of the first term is modified by the appearance

of the extra factor r2
d /r̃2

d : we have an extra factor of u2 over that present in

(6.104):

η0

(
4

3
πε3

)−1∫ 2ε

0
4πr2

d drd
r2
d

(r2
d + w2

d)
5/2

=
3η0

ε3

∫ 2ε/(4ε2+w2
d)1/2

0

du
u4

1− u2
.

We now note the convenient identity

u4

1− u2
≡ u2

1− u2
− u2; (6.111)

in other words, the multiplication by u2 is equivalent to simply an extra

added term −u2; we thus immediately find

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r2
d r̃−5

d = −8η′3 + 3η′′3 . (6.112)
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For the complete integral (6.110), we therefore have

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r̃−3
d nr̃dinr̃dj =

δij

3

{
−8η′3 + 3η′′3

}
. (6.113)

We can now see why the apparent vanishing of an nd integration cannot

be trusted, for the inverse-cube fields; for example, from (6.109) and (6.113),

we have, for the integral of the dipolar field expression over the interior of

the sphere,

(
4

3
πε3

)−1∫

r≤ε

d 3r
∫

r′≤ε

d 3r′
3(nd ·a)nd − a

4πr3
= −η′3a

(
4

3
πε3

)

= −1

3
a, (6.114)

the correct result (5.86) of Chapter 5, despite the fact that the nd integral

would appear to otherwise vanish. Note that, as advertised, the divergent

quantity η′′3 has disappeared from this final result (which will, incidentally,

be a contributor to our final equations of motion).

6.7.3 Inverse-cube integral with four normals

Finally, we consider the inverse-cube integral involving four factors of nr̃d :

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r̃−3
d nr̃dinr̃djnr̃dknr̃dl.

Clearly, our analysis above for the two-factor case carries through identically,

except that the nd-integration yields, of course,

1

15

{
δijδkl + δikδjl + δilδjk

}
,

and that there is now yet another extra factor of u2 in our integrand. By

noting, from (6.111), that

u6

1− u2
≡ u4

1− u2
− u4 ≡ u2

1− u2
− u2 − u4,
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we immediately find that the rd-integral’s contribution is the same as before,

with the addition this time of a term −u4 in the integrand; thus,

η0

(
4

3
πε3

)−2∫

r≤ε

d 3r
∫

r′≤ε

d 3r′ r̃−3
d nr̃dinr̃dj

=
1

15

{
δijδkl + δikδjl + δilδjk

}{
−43

5
η′3 + 3η′′3

}
. (6.115)

6.8 Computation of the self-interactions

We can now use the expressions of the previous sections, as well as the power,

force and torque equations of motion of Chapter 4, to obtain the radiation

reaction equations of motion themselves.

6.8.1 Non-radiative equations of motion

The equations of motion in Chapter 4, ignoring radiation reaction, were

obtained for an arbitrary velocity of the particle. Since we have, in this

chapter, placed the “receiving” body at rest , we need only consider these

equations for the simplified situation v = 0. For a point charge, electric

dipole and magnetic dipole, we then find

Pq = 0,

Pd = dσ̇ ·E,

Pµ = µσ̇ ·B,

Fq = qE,

Fd = d(σ ·∇)E + d(v̇ ·σ)E + dσ̇×B,

Fµ = µ(σ ·∇)B + µ(v̇ ·σ)B − µσ̇×E + µσ×J ,

Nq = 0,

Nd = dσ×E,

Nµ = µσ×B. (6.116)
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6.8.2 Gradient forces

To compute the gradient forces for the electric and magnetic dipole moments,

in (6.116), we use the chain rule: from (6.11), we have

∇r ≡ ∇rd +∇rs . (6.117)

This identity is used by the program radreact to calculate the gradients

of the retarded fields, listed in Section G.6.22.

6.8.3 Removal of redundant quantities

The self-interactions involving the electric or magnetic dipole moment as

both the sending and receiving constituent involve the spin vector σ, or

its derivatives, twice. We must therefore ensure that we remove redundant

or vanishing quantities that may arise through the dot-producting of these

quantities together. In particular, we start with the definition

σ2 = 1. (6.118)

Differentiating (6.118) successively with respect to lab-time, we have

(σ ·σ̇) = 0,

(σ ·σ̈) + σ̇2 = 0,

(σ · ...σ) + 3(σ̇ ·σ̈) = 0,

(σ ·....σ) + 3σ̈2 + 4(σ̇ · ...σ) = 0 (6.119)

There arises a choice here of which dot-product we should replace, for the

last three identities. We make the choice that the first term listed in each

of identities (6.119) is to be replaced using that identity. This choice is of

course arbitrary, but it will ensure that higher orders of differentiation are

always removed in favour of lower orders where possible.
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6.8.4 Duality symmetry considerations

By considering the duality of the fields generated by an electric and a mag-

netic dipole moment, and the force expressions for these moments,—excepting

the extra Maxwell magnetic field contribution, and the contact force, for

a magnetic dipole,—it is clear that, apart from these exceptions, the self-

interactions between d and µ will cancel. (This, of course, relies on the

assumption that the two moments are parallel, as is the case for spin-half

particles.)

The extra magnetic dipole moment contributions are considered in Sec-

tions 6.8.7 and 6.8.8.

6.8.5 Constituent spin derivative

Clearly, at t = 0, the time rate of change of the spin of the constituent r,

namely, σ̇r(0), will be related to that of the body as a whole by means of the

chain rule:

dtrσr|t=0≡(dtrτ)(dτσr)|t=0≡(dτrτ)(dτσ)|t=0≡dτrτ |t=0σ̇.

But dτrτ is just the reciprocal of the accelerative redshift factor λ(r) ≡ dττr;

thus,

σ̇r(0) =
1

λ(r)
σ̇. (6.120)

(This may also be obtained, as an expansion in t, from the expression (3.24);

but the result (6.120) is of course exact.)

In practical terms, the result (6.120) is implemented by simply replacing

the factor σ̇ that appears in each constituent force law of (6.116) by σ̇ of

the body as a whole; the factor of 1/λ(r) “cancels out” the factor of λ(r)

inserted to compute the correct power, force and torque on the body as a

whole.

(This latter phenomenon can be understood in simple terms, by recognis-

ing that the factors of λ appearing in the power, force and torque expressions
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were introduced because these quantities are themselves derivatives of me-

chanical quantities, namely, p 0, p and s respectively. Thus, the effects of the

“presence of an overdot” on either side of the equation cancel.)

6.8.6 Intrinsic and moment-arm torques

One may at first think that, to compute the total torque on the body as a

whole, one would simply need to sum the torques on all of its constituents,

weighted by the accelerative redshift factor λ(r).

However, this is, in fact, only part of the answer. We must also recall

that our spherical body has a finite extent; thus, we need to take into ac-

count the “moment-arm” torque on the body as a whole, viz., the torque due

to the force on each constituent, pre-crossed by the radius vector r to this

constituent. For disambiguation, we shall refer to this “moment-arm” con-

tribution to the torque by the general symbol NF , and the aforementioned

“intrinsic” contribution to the torque by the general symbol NN .

We may alternatively view the “intrinsic” and “moment-arm” parts of

the torque equation as the time rates of change of the spin and orbital me-

chanical angular momenta of the constituent respectively. Of course, from

the considerations of Chapter 3, we know that the body “reädjusts” itself

so that the orbital mechanical angular momentum remains zero (i.e., the

constituents do not actually begin to rotate); but all this means is that the

“internal rigidity mechanism” of the body shares the mechanical angular mo-

mentum that would have been imparted to the constituent in question among

the spins of all of the constituents of the body.

6.8.7 Magnetic Maxwell field contribution

We now consider the contributions to the radiation reaction equations of

motion arising from the extra magnetic field at the position of a magnetic

dipole, over and above that of the dual of the electric dipole field, necessary
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in order that Maxwell’s equations are satisfied; we dubbed this extra field

the extra magnetic Maxwell field in Chapter 5 (for want of a better name).

We found, in that chapter, that, for a point magnetic dipole, the extra

Maxwell field is given, at the instant the dipole is at rest, by

BM = µσ δ(r), (6.121)

regardless of whether the body is accelerated or not. (See equations (5.92)

and (5.106) of Chapter 5.)

For a spherical body of radius ε, one can either use (6.121) directly—

by noting that the delta-function appearing there is identical to the delta-

function dipole moment density of a point particle,—or simply examine the

expressions for such an extended body found in Section 5.5.3; either way, one

finds

BM =





3µ

4πε3
σ, r < ε,

0, r > ε.

(6.122)

Now, the Maxwell field (6.122) will not lead to any contribution to the

power equation of motion for the receiving magnetic dipole constituents, by

virtue of the identity

(σ ·σ̇) = 0.

It also, trivially, does not contribute to the receiving electric dipole con-

stituents’ power equation, since the latter depends on the electric field only.

The Maxwell field does, however, contribute to the force and torque equa-

tions of motion. The “intrinsic” contribution to the latter vanishes, trivially

in the electric dipole case, and by virtue of the identity σ×σ ≡ 0 for the

magnetic dipole case.

We thus concentrate on the force equations of motion. The Maxwell field

does not affect the receiving electric charges, as their force depends only on
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the electric field. There is, however, a force on the electric dipole moment :

we have

F
(M)

µd =
3d

4πε3

∫

r≤ε

d 3r
3µ

4πε3
σ̇×σ

= − 3dµ

4πε3
σ×σ̇

≡ −3dµη′3. (6.123)

For the corresponding “moment-arm” torque contribution, we note that the

above expressions are exact (there is no factor of λ since the electric dipole

force depends on σ̇), and they are even in r; hence, when we cross r into

this expression, the resulting odd integrand vanishes upon integration over

the three-sphere of r. There is therefore no torque on the electric dipole due

to the Maxwell field.

For force on the magnetic dipole moment itself , due to its extra Maxwell

field, we must be a little more careful. Since the Maxwell field is of a contant

value inside the sphere, and zero outside the sphere, we find the only non-

zero gradient of the field is of a Dirac delta-function form, around the surface

of the sphere. Now, the subtlety arises because the magnetic dipole moment

density itself has a sharp transition around this surface. However, this step

function in moment density is of course the same step function that leads to

the Dirac delta function in the gradient of the Maxwell field itself (as can be

seen by noting its source, equation (6.121)). We are therefore led to consider

integrals over (generalised) functions of the form
∫

dt δ(t)ϑ(t)f(t) ≡ 1

2
f(0), (6.124)

where the right-hand side of this identity may be trivially verified by inte-

grating by parts.

Now, the gradient of the Maxwell field (6.122) is given, from first princi-

ples, by

(σ ·∇)BM = − 3µ

4πε3
(σ ·n)σ δ(r − ε). (6.125)
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This asserted result of the author’s may be verified in four steps. Firstly, we

note that the magnitude of (6.125), 3µ/4πε3, is simply given by the magni-

tude of the Maxwell field, since the step is from this value to zero. Secondly,

the factor (σ·n) in (6.125) is unity when n is in the direction of σ, negative

unity when n is antiparallel to σ, and zero when n is perpendicular to σ;

this factor embodies the fact that the step occurs as we move radially out-

wards. Thirdly, the minus sign of (6.125) reflects the fact that the step is

from BM down to the value zero. Fourthly, the vector σ is the direction of

the Maxwell field itself.

To compute the self-force on the body as a whole, we multiply (6.125) by

the redshift factor λ(r), the step function ϑ(ε− r) that cuts off the receiving

moment density at the surface, and integrate over all space; since (6.125) is

odd, we must select the odd part r(n·v̇) of λ(r):

F (M)
µµ = −

(
µ

4πε3

)2∫
d 3r r(n·v̇)(σ ·n)σ δ(r − ε) ϑ(ε− r).

In performing this integral, we note that the angular integration will yield a

factor of 1/3, and the presence of the delta and step functions a factor of 1/2;

the remaining factors in the integrand contribute 4πε3(v̇ ·σ)σ, and hence

F (M)
µµ = −1

3
· 1

2
· 4πε3

(
µ

4πε3

)2

(v̇ ·σ)σ

= −3

2
µ2η′3(v̇ ·σ)σ.

For the “moment-arm” torque following from this same force, we must of

course now choose the even part (unity) of λ(r), and then cross the vector r

into the result. However, we shall then be integrating an expression involving

the factor (n ·σ)n×σ, which, after angular integration, yields σ×σ, and

hence vanishes.
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6.8.8 Magnetic contact force contribution

We now consider the contribution to the radiation reaction force equation

of motion of the contact force on the magnetic dipole moments of the con-

stituents.

Since this force depends on the current J , it may be wondered why we

are considering it at all: where would this current come from? The answer,

of course, is found in the considerations of Chapter 5: the magnetic dipole

moment itself has a current sheet surrounding it, which is actually responsible

for generating the moment. The current density J(r) is given by

J(r) =
3µ

4πε3
σ×n δ(r − ε). (6.126)

Again, we can verify (6.126) in four steps. Firstly, we note that the direction

of the cross-product is such that the sheet of current is circulating in the

correct sense to produce a magnetic field in the direction of σ. Secondly,

we note that the magnitude of the cross-product (namely, of the form sin θ,

where θ is the “latitude” on the sphere, if σ points to the “North Pole”)

is maximum perpendicular to σ, and vanishes in the directions parallel and

antiparallel to σ, in agreement with the analysis of Chapter 5. Thirdly, the

coëfficient of (6.126) is the correct stepping of the magnetic field from its

internal value to its external value; this may be verified quickly by noting

that, before we added the Maxwell field, the field matched smoothly around

the “Equator”; the step in the field around this circular boundary is therefore

just that of the Maxwell field. Fourthly, the delta function reflects the fact

that it is a sheet current.

Now, the contact force contribution of each constituent will be

λ(r) σ×J(r) =
3µ

4πε3
λ(r) σ×(σ×n) δ(r − ε). (6.127)

Because (6.126) is odd in r, we need to use the odd part r(n·v̇) of λ(r) to
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obtain a non-vanishing integral over all space. We then have

F (C)
µµ =

(
µ

4πε3

)2∫
d 3r r(n·v̇)

{
(σ ·n)σ − n

}
δ(r − ε) ϑ(ε− r).

where the superscript (C) denotes that it is the contact force contribution.

(We count this contribution together with those of superscript (M) in the

program radreact.) The integral of the first term is identical to that of

the previous section, except reversed in sign; the integral of the second term

has the same numerical factor (reversed back in sign again) because it also

contains two factors of n. Hence,

F (C)
µµ =

3

2
µ2η′3(v̇ ·σ)σ − 3

2
µ2η′3v̇.

The corresponding “moment arm” contribution to the torque vanishes,

in the case of the first term of the integral, by the same arguments as the

previous section; and, in the case of the second term, simply because it

involves the cross-product n×n.

6.8.9 Final radiation reaction equations of motion

Finally, we compute the self-interaction expressions themselves. These are,

from the above considerations, obtained by means of the relations

P
(n)

ab =
∫

Vd

d 3rd

∫

Vs

d 3rs P
(n)

ab (rd, rs),

F
(n)

ab =
∫

Vd

d 3rd

∫

Vs

d 3rs F
(n)

ab (rd, rs),

N
(n)
ab = N

N(n)
ab + N

F (n)
ab ,

N
N(n)
ab =

∫

Vd

d 3rd

∫

Vs

d 3rs N
N(n)
ab (rd, rs),

N
F (n)
ab =

∫

Vd

d 3rd

∫

Vs

d 3rs r(rd, rs)×F
(n)

ab (rd, rs),
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where

P (n)
aq (rd, rs) = 0,

P
(n)

ad (rd, rs) = σ̇ ·Ea
n(rd, rs),

P (n)
aµ (rd, rs) = σ̇ ·Ba

n(rd, rs),

F (n)
aq (rd, rs) = λEq

n(rd, rs),

F
(n)

ad (rd, rs) = λ(σ ·∇)Ea
n(rd, rs) + (σ ·v̇)Ea

n(rd, rs) + σ̇×Ba
n(rd, rs),

F (n)
aµ (rd, rs) = λ(σ ·∇)Ba

n(rd, rs) + (σ ·v̇)Ba
n(rd, rs)− σ̇×Ea

n(rd, rs)

+ λσ×Ja
n ,

NN(n)
aq (rd, rs) = 0,

N
N(n)
ad (rd, rs) = λσ×Ea

n(rd, rs),

NN(n)
aµ (rd, rs) = λσ×Ba

n(rd, rs),

where n is the inverse power of R of the retarded fields in question (or M for

the Maxwell field of the magnetic dipole), and a and b = q, d or µ.

Defining, for convenience, the quantity

µ̃2 ≡ d 2 + µ2

which appears for all dually-symmetric dipole self-interactions, the program

radreact of Section G.6 finds the following final equations of motion:

Pself = −2

3
qdη1(v̇ ·σ̇)− 2

3
µ̃2η1(σ̇ ·σ̈)− 1

30
µ̃2η1(v̇ ·σ)(v̇ ·σ̇)

+
2

3
qdη0(v̈ ·σ̇) +

2

3
µ̃2η0(σ̇ · ...σ) +

1

3
µ̃2η0(v̇ ·σ)(v̈ ·σ̇)

− 1

3
µ̃2η0(v̇ ·σ̇)(v̈ ·σ), (6.128)

Fself = −3

2
µ2η′3v̇ −

1

2
µ̃2η′3v̇ −

1

2
q2η1v̇ − 2

3
qdη1σ̈ +

4

15
µ̃2η1

...
v +

2

3
µ̃2η1v̇

2v̇

− 1

3
µ̃2η1σ̇

2v̇ +
1

3
µ̃2η1(v̇ ·σ)σ̈ +

1

15
µ̃2η1(v̇ ·σ)2v̇ − 1

6
µ̃2η1(v̇ ·σ̇)σ̇
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− 1

2
µ̃2η1(v̇ ·σ̈)σ +

1

5
µ̃2η1(v̈ ·σ)σ̇ − 19

30
µ̃2η1(v̈ ·σ̇)σ

− 2

15
µ̃2η1(

...
v ·σ)σ − 2

5
µ̃2η1v̇

2(v̇ ·σ)σ +
2

3
q2η0v̈ +

2

3
qdη0

...
σ

− 1

3
qdη0(v̇ ·σ)v̈ − qdη0(v̈ ·σ)v̇ − 4

15
µ̃2η0

....
v − 2µ̃2η0v̇

2v̈

+
2

3
µ̃2η0σ̇

2v̈ − 2µ̃2η0(v̇ ·v̈)v̇ − 2

3
µ̃2η0(v̇ ·σ)

...
σ − 1

3
µ̃2η0(v̇ ·σ)2v̈

+
2

3
µ̃2η0(v̇ · ...σ)σ − 2

3
µ̃2η0(v̈ ·σ)σ̈ +

2

3
µ̃2η0(v̈ ·σ̇)σ̇

+
2

3
µ̃2η0(v̈ ·σ̈)σ +

2

3
µ̃2η0(

...
v ·σ̇)σ +

2

15
µ̃2η0(

....
v ·σ)σ

+ 2µ̃2η0(σ̇ ·σ̈)v̇ + 2µ̃2η0v̇
2(v̇ ·σ̇)σ + µ̃2η0v̇

2(v̈ ·σ)σ

+
5

3
µ̃2η0(v̇ ·v̈)(v̇ ·σ)σ +

1

3
µ̃2η0(v̇ ·σ)(v̈ ·σ)v̇

− 3dµη′3σ×σ̇ − 2

3
qµη1v̇×σ̇ − 2

3
qµη1v̈×σ +

4

3
qµη0v̈×σ̇

+
2

3
qµη0

...
v×σ + 2qµη0v̇

2v̇×σ, (6.129)

Nself = −2

3
qµη1σ̇

+
1

2
qdη1v̇×σ − 1

2
µ̃2η1σ×σ̈ +

2

15
µ̃2η1(v̇ ·σ)v̇×σ − 2

3
qdη0v̈×σ

+
2

3
µ̃2η0σ× ...

σ − 1

3
µ̃2η0(v̇ ·σ)v̈×σ +

1

3
µ̃2η0(v̈ ·σ)v̇×σ. (6.130)

We shall defer, in this thesis, any reëxpression of these final equations of

motion in manifestly covariant terms, pending the issues raised in the follow-

ing discussion. However, the necessary quantities for such a reëxpression are

all provided in Section G.4.

6.9 Discussion of the final equations

The author, having opened an arguably large can of worms by attacking all

of the problems considered in this thesis, thought he had finally found a lid to

290



this can, by writing the computer algebra programs of Appendix G to com-

plete the radiation reaction computations for him before the termination of

his Ph.D. scholarship (indeed, looking now at the expressions in Appendix G,

before the end of the millenium). He has, however, discovered that this lid

is in fact the base of an even larger can of worms, arising from the final

equations of motion (6.128), (6.129) and (6.130) above. He is informed by

those of wiser years that this is actually a general phenomenon of Nature: as

far as anyone can tell, it’s all worms from here on up.

It would therefore probably be either overly ambitious, or else foolish

(or quite possibly both), for the author to attempt a comprehensive discus-

sion of all of the issues that arise from a consideration of equations (6.128),

(6.129) and (6.130). Instead, we shall only give here a brief indication of the

successes of these equations, their failures, their questionable aspects, their

complications, and their intriguing properties. We shall also, in the following

section, analyse a simple yet instructive application using just a small sub-

set of these equations, which will bring their successes and limitations into

starkest relief.

Let us begin with the unquestionable successes of the equations (6.128),

(6.129) and (6.130) (which we shall, for sanity, refer to as simply the “final

equations” for the remainder of this section). Firstly, it will be noted that,

as promised, the electric charge mass term

−1

2
q2η1v̇

has the correct coëfficient: in Section 5.5.8 of Chapter 5, we found that

−1

2
q2η1 ≡ mq

e.m..

This is in contrast to the incorrect factor of 4/3 in Lorentz’s [137] result,

equation (6.1). Now, it is instructive to note just which aspect of the the-

oretical framework used in this thesis repaired Lorentz’s erroneous result.
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If one examines the author’s calculations in fine detail, one finds that the

inclusion of the fully relativistic trajectories of the constituents does not pro-

vide any modification of the Lorentz result at all . (In fact, the author was

completely crestfallen when he originally found this result.) In retrospect,

this unsuccessful result was, in fact, already anticipated ; the reason is sub-

tle, yet instructive: Already, in Heitler’s textbook [104], it was noted that

“for high velocities we have to assume a Lorentz contraction”; but the fac-

tor 4/3 was still obtained. Now, when one considers the question of just

what place the “FitzGerald–Lorentz contraction” has in our current under-

standing of accelerated rigid bodies, one finds that it does, in fact, give the

appropriate relativistic correction to the trajectories of the constituents (at

least, the leading order non-trivial correction), but it equates proper-time

hypersurfaces with lab-time hypersurfaces ; i.e., it gives a correct trajectorial

description, but in terms of Newton’s “universal time”. Thus, when the au-

thor originally included only trajectorial corrections, he of course found a

result in accord with that given in Heitler.

The crucial ingredient in the correction of the Lorentz method of deriva-

tion is, in fact, the accelerative redshift factor λ(r). Indeed, one only needs

to simply multiply this factor into Lorentz’s original Galileanly-rigid compu-

tation—without even any FitzGerald–Lorentz contraction—and one finds his

4/3 factor corrected to unity immediately! This feature of the relativistically

correct rigid body formalism was, essentially, discussed with great clarity by

Pearle [168]: although the derivation therein is based on the Dirac [68] con-

servation method, the features of the rigid body formalism are the same as

those used here; of particular relevance is the informative discussion of the

“wedge-shaped hypervolume”, which of course represents the effects of the

“tilting” of the hypersurfaces, from whence λ derives.

The author has not explicitly seen it pointed out in the literature that

the essence of the Lorentz method of derivation is so easily repaired, through

simply a recognition of the need for λ; but then again the author has not

292



seen too many uses of the Lorentz method full stop: the Dirac method is

generally preferred.

The second major success of the final equations is the similarly correct

inertial term for the electric dipole moment ,

−1

2
d 2η′3v̇;

again, as shown in Section 5.5.9 of Chapter 5, the field contribution to the

mass of the electric dipole is indeed

md
e.m. =

1

2
d 2η′3.

That this result is not trivial is recognised by considering the various sub-

tleties involved with the inverse-cube integrals of the previous sections, from

whence this term derives.

The author will claim, as a third major success, the absence of any “nasty

coëfficients” in the final equations. Namely, the coëfficients are all simple

fractions; the worst of them is 19/30. (They are not quite identical to the

set of coëfficients found by Bhabha and Corben, but close enough that the

different methods of expression could easily transform one set into the other.)

That this property is non-trivial is seen just by considering some of the

terms in even the penultimate expressions of Section G.6: one has, among

the honourable entries there listed, terms with coëfficients such as 71/140,

191/210, 127/420 and 331/840. That these coëfficients should all add up to

give nice wholesome numbers like 1/3 and 4/15 is an agreeable finding; one

would not, arguably, be able to sleep quite as soundly if one were to be told

that some fundamental equation of physics were to have the number 331/840

appearing in it.

While we are on the topic of mathematical simplicity, we shall claim

a fourth success of the final equations, alluded to in earlier sections: they

are “mistake-invariant”. Let us explain. When the author first manually
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performed the electric charge radiation reaction calculations, fully relativis-

tically, and then again when he wrote the program radreact to compute

the dipole results, he did not correctly Thomas-precess the constituent’s po-

sition r as seen in the lab frame, as now described in Chapter 3; rather, the

vector u(τ) was effectively fixed . This subtle error of philosophy was not

detected until the program was fully completed and debugged. When the

calculations were suitably repaired, it was found that the changes carried

through to three orders of terms in the trajectories of the constituents. This

had consequential changes on about a third of all terms appearing in Sec-

tion G.6! These changes carried right through (literally) ninety-nine pages of

expressions. Then, in the final equations only , all of these changes cancelled

out completely! The author was not prepared for such an outcome.

The author believes this phenomenon may be explained as follows. By

essentially “rotating” the body as it began to move, the trajectory of any

particular constituent was modified. But, taken as a whole, the relevant

properties of the body still seemed to act the same as they would have with-

out rotation, perhaps because as one constituent rotated out of position,

another came to fill its place. This clearly is not correct physically, but it

was probably correct mathematically by virtue of the other underlying as-

sumptions of the author based on the assumption that the body did remain

non-rotating. Regardless, the results magically returned to their original

form on the hundredth page.

That this behaviour casts a favourable outlook on the computer algebra

computations follows from the fact that, regardless of the exact reason why

the results were mathematically invariant, the fact that the computer algebra

program did in fact return us to the same answers, after ninety-nine pages

of differences, shows that it must be computing at least something robustly;

and from the relative simplicity of the results, one would suspect that this

something might well be physical reality. Of course, this is not to say that

there are not other completely different contributions to the equations of mo-
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tion, overlooked by the author, that are totally independent of the quantities

computed in this thesis, that would not “mix” with the terms herein under

the “mistake transformation” anyway; but at least the relative independence

of such possibly overlooked contributions has been demonstrated.

We finally propose a fifth successful property of the computations leading

to the final equations, that the author, having lived with the problem for the

best part of a year, has a good intuitive understanding of, but which may

fail to excite any emotion in the reader: the expressions tend to “automat-

ically” weed out terms that would be difficult to integrate. Let us explain.

When one goes through the expressions of Section G.6 term-by-term (say,

for simplicity, the electric charge field expressions), one finds that there are

terms that, by the normal rules of combinatorics, should by all rights be

present, but in fact are not. Then one finds that, when one multiplies the

expression by λ, or performs some other operation that yields the final inter-

action equation that is to be integrated, one finds that the “missing” types

of term are of such a form that they would give one additional types of nasty

“mixed integrals” (involving both rd and rs) to perform. Now, in the pre-

vious sections, we did have need to consider a few cases where the inner rs

integral had to be performed explicitly; but, if one considered the problem

on purely dimensional grounds, one would expect many more such cases to

appear. (Indeed, until the final dipole equations of motion were considered

by computer, all required integrals were independent of rs altogether!) This

property of the computations is, as admitted above, somewhat nebulous, but

is nevertheless clearly discernible if one contemplates the expressions in the

Appendix for timescales on the order of years.

We now turn to two aspects of the final equations that may only be

termed “qualified successes”. These are the mass renormalisation term for

the magnetic dipole moment,

−2µ2η′3v̇,
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and the spin renormalisation term for the charged magnetic dipole moment,

−2

3
qµη1σ̇.

The good news is that they are both there. The bad news is that they are

both precisely twice as large as they are supposed to be, based on the results

found in Chapter 5: we found there that

mµ
e.m. = µ2η′3

and

sqµ
e.m. =

1

3
qµη1σ

respectively. Now, the author has checked his algebraic computations of these

quantities on numerous occasions, and cannot find any errors of mathematics.

Keeping this possibility, of course, always in the back of our minds, let us

consider how this result could possibly be explained physically, if it is in

fact mathematically sound. The author’s only hypothesis, at the present

time, is that perhaps we are feeling the ramifications of the subtle method

of derivation of the dipole equations of motion in Chapter 4. The author

does not know. The terms are twice as large as they should be. Suggestions

welcome.

We now turn to a property of the final equations that could not quite be

termed a success, but rather a lack of a possible failure: there are no terms

involving η2 at all. Again, mathematically speaking, this is non-trivial: some

of the expressions that are used to obtain the final results are as high as

the minus-fourth power in rd; numerous r−2
d terms appear in the penultimate

equations, but they all cancel. That this is a good thing can be seen on

two grounds: Firstly, Bhabha and Corben found numerous terms involving

ε−3 and ε−1, but only a few involving ε−2; perhaps these cancel for the

assumptions of this thesis. Secondly, and more importantly, there were in

fact no mechanical self-field quantities computed in Chapter 5 that depended
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on η2 (indeed, nothing physical in this thesis depends on η2); if such terms

were to appear, we would not have anything to blame them on!

Having raised the question of scapegoats, we now turn to those terms

in the final equations that are, at present, rather undesirable, but which

could of course be vital if we were expecting them: the other infinite terms.

On the basis of the Bhabha–Corben analysis, we should expect numerous

infinite terms to occur, in the point limit: many of their terms also involved

ε−3 and ε−1. Firstly, there is one infinite term, not dealt with above, that is

proportional to η′3, in the force equation:

−3dµη′3σ×σ̇;

this was the obtained explicitly in Section 6.8.7, and inserted by hand into

the program. The author has no good physical explanation of this term at

present.

Then there are the numerous terms involving qd. Some of these appear

in the power equation—which should vanish in the rest frame; others are

just proportional to η1, and do not look like they would vanish for the actual

motion of the particle. However, we already knew, from the considerations

of Chapter 5, that the charged electric dipole has a non-zero centre of energy

shift ; to counterbalance this, we would need to put a “mass dipole” at the

origin. If one considers the problem quantitatively, one finds that the inertial

forces imparted by such a “mass dipole” are of just the right form to cancel

the bothersome terms in the final equations. We shall, however, leave a

complete analysis of this problem to another place.

We finally turn to the remaining infinite terms in the final equations,

proportional to µ̃2η1, and the remaining finite terms in the self-power, pro-

portional to µ̃2η0. There are three possibilities that the author can see for

these terms. The first is that perhaps they arise through higher moments

of the (anisotropic) mechanical energy density of the dipole moments. This

is pure speculation. The second is that they may well vanish for the actual
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motion of the particle. This has, in fact, been proved by the author to low-

est order for the finite terms in the self-power expression; but an analysis

of the infinite terms in the force and torque equations of motion carries the

complication that higher derivatives of the kinematical quantities must be

calculated; even going to the rest frame does not render this trivial, since

the differentiations can carry factors of v down to lowest-order, that do not

appear in the rest frame before differentiation. In any case, if these infinite

terms were to be shown to vanish for the actual motion, then we would have

the additional problem of principle that, a priori , terms of the rigid body

equations of motion of order ε+1—that we have neglected—could well in-

teract with those of order ε−1 (before the point limit is taken, of course),

and yield finite contributions to the results. It would be expected that this

would not be likely: if terms vanish for the motion to one approximation, it

is probably for a good fundamental reason, and not just a fluke of that order

of analysis. But this, too, remains speculation.

Finally, there is the possibility that the assumptions underlying the au-

thor’s calculations are just plain wrong. If so, no amount of discussion could

save them. The author can only hope they are not.

6.10 Sokolov–Ternov and related effects

In this final section, we consider one simple yet testing application of the

results of the previous section: the radiation reaction torque on a charged

magnetic dipole.

This problem was fully treated, quantum mechanically, in the ultre-

relativistic limit, by Sokolov and Ternov [198] (first suggested in print by

Ternov, Loskutov and Korovina [210]), and has proved to be of immense

importance for polarised spin physics in electron storage rings (see, e.g.,

[155]). The case of a neutral particle, in the nonrelativistic limit, was like-

wise treated, quantum mechanically, by Ternov, Bagrov and Khapaev [212].

298



Subsequently, Lyuboshitz [141] showed that the Ternov–Bagrov–Khapaev

result could be simply and intuitively understood as a radiation reaction

spin-flip due to the spontaneous emission of magnetic dipole radiation; but

also noted that a generalisation of his heuristic argument to the case of

charged particles was not trivial. Jackson’s comprehensive review [114] ex-

amined the Lyuboshitz argument in detail, and explained most clearly why

it is essentially completely correct for neutral particles, and almost—but not

quite—correct for charged particles.

Clearly, a phenomenon that is so manifestly an effect of the reaction

of radiation is a suitable test for the author’s results. The fact that the

quantum analysis involves spontaneous radiation warns us that the clas-

sical analysis will not be complete; but nevertheless we would, following

Schwinger [185, 186], expect the dimensional quantities appearing in the re-

sults to be completely classical; the spontaneity of the radiation—essentially

arising through the use of discrete integers rather than continuous reals for

the electromagnetic field—yielding important but dimensionless corrections.

In Section 6.10.1, we briefly review the Sokolov–Ternov effect, followed by

the Ternov–Bagrov–Khapaev effect in Section 6.10.2. Lyuboshitz’s elemen-

tary explanation of the Ternov–Bagrov–Khapaev effect in terms of spin-flip

due to spontaneous radiation is presented in Section 6.10.3, and Jackson’s

comments on both this and the Sokolov–Ternov effect are reviewed in Sec-

tion 6.10.4. Then, in Section 6.10.5, we consider the question from the point

of view of the equations of the previous section, and compare the results with

those of Lyuboshitz and Jackson.

6.10.1 The Sokolov–Ternov effect

In a six-paragraph note to JETP in 1961 [210], Ternov, Loskutov and Ko-

rovina (with acknowledgments to Sokolov) noted that, due to the fact that a

Dirac electron moving perpendicular to a uniform magnetic field emits “syn-
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chrotron” radiation (i.e., the radiation computed from the Dirac equation—

not the Liénard–Wiechert radiation of a classical charge) in a highly asym-

metrical manner [197], the associated spin-flip transition rates, along the axis

of the magnetic field, are not equal . This was put on a more quantitative ba-

sis by Sokolov and Ternov [198], who considered all of the relevant spin-flip

terms, and showed that this “transverse” polarisation

Pt ≡ (σ ·B̂) (6.131)

(i.e., transverse to the velocity and acceleration; viz., in the direction of

the magnetic field) builds up, for zero initial polarisation, according to the

relation

Pt(t) = PST

(
1− e−t/τST

)
, (6.132)

where the asymptotic polarisation, PST, is given by

PST =
8

5
√

3
∼ 92.4%, (6.133)

and the characteristic time, τST, by

τST =

{
5
√

3

8

e2h̄γ5

4πm2R3

}−1

≡
{

5
√

3

8

λ̄Crc
R3

}−1

, (6.134)

where R is the radius of curvature of the trajectory, λ̄C ≡ h̄/m is the reduced

Compton wavelength, rc ≡ e2/4πm is the classical electron radius, and we

are still using the notational conventions and units of Appendix A. That the

Sokolov–Ternov effect (as it has become known) is, relatively speaking, an

extremely small effect is recognised by the presence of the ratios λ̄C/R and

rc/R: the Compton wavelength and classical radius of an electron are truly

tiny compared to the radii of typical terrestrial storage rings. The strong

energy dependence (γ5) of the polarisation rate ameliorates the situation

somewhat; the resulting characteristic polarisation times of real rings are,

roughly speaking, on the order of minutes to hours : extremely long compared
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to the precession and orbital periods, but nevertheless within the domain of

experimental practicality.

The analysis of the Sokolov–Ternov effect was further generalised to the

case of arbitrary magnetic field configurations by Baier and Katkov [17]; they

found that the spin-flip transition probability per unit time for relativistic

electrons or positrons is given, in the general case, by

w =
5
√

3

16

e2h̄

m2
γ5 |v̇|3

{
1− 2

9
(σ ·v̂)2 +

8
√

3

15
σ ·v̂× ˆ̇v

}
, (6.135)

where v̂ and ˆ̇v are unit vectors in the direction of v and v̇ respectively. For a

circular orbit in a uniform magnetic field, the Baier–Katkov equation (6.135)

reduces to the Sokolov–Ternov results (6.132), (6.133) and (6.134).

As an extension of this work, Baier, Katkov and Strakhovenko [18] derived

a general equation of motion for the polarisation vector, incorporating the

Thomas–Bargmann–Michel–Telegdi and Baier–Katkov equations:

σ̇ = σ×ΩTBMT − 1

τST

{
σ − 2

9
(σ ·v̂)v̂ +

8

5
√

3
v̂× ˆ̇v

}
, (6.136)

where ΩTBMT is the Thomas–Bargmann–Michel–Telegdi spin precession fre-

quency vector.

In making any connection with classical physics, we should of course use

the Baier–Katkov–Strakhovenko equation, (6.136), as the general expression

encompassing the Sokolov–Ternov effect, for electrons and positrons in arbi-

trary relativistic motion. However, for the purposes of this simplified analy-

sis, we shall consider only the simplified Sokolov–Ternov configuration.

We shall also refrain, here, from discussing the many exciting advances

being made in polarised beam physics in high energy storage rings, but will

instead refer the interested reader to some entry points in the literature:

[155, 21, 22, 23, 15, 123].
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6.10.2 The Ternov–Bagrov–Khapaev effect

Closely related to the Sokolov–Ternov effect is the question of the radiation

emitted by, and subsequent radiation reaction on, a neutron traversing a

magnetic field. Clearly, in a unified and general treatment, this physical

situation would be included as a subset of the Sokolov–Ternov phenomenon,

since one would then only need to set the value of the electric charge to zero

to have a magnetic dipole moment alone.

However, in practice, the neutron case needs to be treated differently.

The reasons for this are as twofold. Firstly, to analyse a neutron, one must

of course include the effects of an anomalous magnetic moment; this contri-

bution is relatively negligible for an electron, and hence an analysis of the

minimally-coupled Dirac equation is quite sufficient for the latter situation.

(The arbitrary-g case has, however, been treated by Derbenev and Kondra-

tenko [67], and in the review by Jackson [114] to be discussed shortly; but

the analysis is quite complicated.) Secondly, the electron results are gener-

ally applied to high energy storage rings; given the relatively small mass of

the electron, practically any modern energy is ultra-relativistic, and hence

this limit is generally employed theoretically, as being experimentally appli-

cable, to an extremely good approximation. But, for obvious reasons, we do

not have analogous high energy neutron storage rings; rather, we generally

find neutrons travelling in straight lines—at least, we don’t deflect them,

terrestrially, using electromagnetic fields. Thus, we are generally more inter-

ested in the nonrelativistic limit of neutron motion (which may, of course, be

Lorentz-boosted to any arbitrary energy if we so wish). Clearly, one cannot

apply ultra-relativistic electron results to nonrelativistic neutrons.

Thus, Ternov, Bagrov and Khapaev [212] considered from first principles

the case of a nonrelativistic neutron in a magnetic field. The obtained expres-

sions for the radiation fields, from which they calculated, à la Sokolov and

Ternov, the probability of spin-flip. In this case, the asymptotic polarisation,
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PTBK, is, in fact, given by

PTBK = 100% (6.137)

(antiparallel to the field in the case of a neutron), and the characteristic

polarisation time is given, for motion transverse to the field, by

τTBK =

{
64

3

|µ|5B3γ2

4πh̄4

}−1

, (6.138)

where µ is the magnitude of the magnetic dipole moment, which is positive

(negative) if µ is parallel (antiparallel) to σ.

6.10.3 Lyuboshitz’s simple derivation

Shortly after the work of Ternov, Bagrov and Khapaev was published, Lyu-

boshitz [141] noted that the results (6.137) and (6.138) did not require a long

a cumbersome derivation at all, but rather could be obtained on extremely

elementary grounds. His argument was as follows: In a magnetic field, the

neutron has an interaction energy, in its rest frame, of

−µ·B.

The probability per unit time of a spontaneous M1 transition from the upper

to the lower energy state is

w =
1

4π

4

3h̄
ω3
↑↓

∣∣∣〈↓|µ|↑〉
∣∣∣
2
, (6.139)

where the states |↑〉 and |↓〉 are parallel and antiparallel to the magnetic

field respectively (if µ < 0 is negative, as is usually the case; these states are

reversed if µ > 0), and where

h̄ω↑↓ ≡ ∆E↑↓ = |2µB| . (6.140)

Using (6.140) in (6.139), Lyuboshitz thus found

Pt(t) = −
(
1− e−t/τrest

)
, (6.141)
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where the characteristic polarisation time, in the rest frame of the neutron,

is

τrest =

{
64

3

|µ|5B3

4πh̄4

}−1

, (6.142)

To boost this result to the case of arbitrary velocity, one simply needs to recall

that time-derivatives (and hence probability rates) are reduced by a factor of

γ, and the transverse magnetic field is increased by a factor of γ; substituting

these results into (6.142) thus yields an overall factor of γ3/γ = γ2, and hence

the Ternov–Bagrov–Khapaev result (6.138) is reproduced exactly.

Lyuboshitz further noted that, if one wished to apply his argument to

the case of charged particles with magnetic dipole moments, then one faces

the difficulty that the appropriate “rest frame” is, in fact, accelerated , and is

hence not a Lorentz frame. Clearly, a more general method of attack would

be required.

However, if one ignored this complication, to see, as a rough guide, what

the Ternov–Bagrov–Khapaev results would look like if näıvely applied to an

electron, then one may simply replace µ and B by means of the relations

|µ| =
geh̄

4m
,

|B| = mγ

eR
; (6.143)

one then obtains

τ ∼
{

2

3

∣∣∣∣
g

2

∣∣∣∣
5 e2h̄γ5

4πm2R3

}−1

. (6.144)

For the pure Dirac electron, of g = 2, one finds

τelectron ∼
{

2

3

e2h̄γ5

4πm2R3

}−1

. (6.145)

The rough result (6.145) gives the same dependence on all physical quantities

as the Sokolov–Ternov result (6.134); the only difference is that the numerical
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coëfficient is 2/3, not 5
√

3/8. As to the asymptotic polarisation, the rough

analysis would probably hazard a guess of simply the neutron result (6.137),

namely, 100%; this is close to, but not quite the Sokolov–Ternov result of

∼ 92.4%.

Considering the approximations made, this rather heuristic explanation

stacks up quite well.

6.10.4 Jackson’s comments

In his review article, Jackson [114] describes the Lyuboshitz elementary de-

scription of the Ternov–Bagrov–Khapaev effect, and examines in detail why

it cannot be pushed too far for charged particles.

Firstly, it is noted by Jackson that, for g = 2, the Thomas–Bargmann–

Michel–Telegdi precession frequency and the orbital revolution frequency are

equal ; but if g is widely different from 2, then in ultra-relativistic motion

the precession frequency is much higher than the orbital frequency. Making

the quantum-mechanical connection between frequencies and energies, one

can then already see that the characteristic energy of the orbital motion is

negligible compared to that of the magnetic field interaction energy for large

g, but is of the same magnitude when g ∼ 2. Since a näıve application of the

Lyuboshitz result essentially considers the magnetic energy levels as isolated ,

we should expect it to fail when g ∼ 2.

Secondly, it is noted by Jackson that the Derbenev–Kondratenko [67]

results for the Sokolov–Ternov effect for arbitrary g show a very sensitive

dependence on the value of g—indeed, the direction of polarisation is reversed

for 0 < g < 1.2. A näıve application of the Lyuboshitz result (6.144), on

the other hand, yields simply a |g|5 dependence. But Jackson notes that,

for large |g|, the Derbenev–Kondratenko results do indeed approach the |g|5
dependence of (6.144).

The remainder of Jackson’s paper considers the Sokolov–Ternov effect in
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detail, for arbitrary values of g, by starting with a review of the elementary

second-quantisation of the electromagnetic field. The spin-flip synchrotron

radiation expressions are obtained, as are the spin-flip rates themselves; the

results are in accord with those of Derbenev and Kondratenko. We shall not

go into the details here, but merely refer the interested reader to the review

article [114].

6.10.5 Classical analysis

Clearly, if one wishes to change the direction of the spin of a particle—

classically—then one must do so through the torque equation of motion. An

examination of the result (6.130) of Section 6.8.9 reveals that there are not,

in fact, any terms in Nself dependent on both q and µ, apart from the spin

renormalisation term; but there are terms involving µ2. The finite terms are,

in the instantaneous rest frame, given by

Nself =
1

3

µ2

4π
σ×

{
2
...
σ − σ×(v̇×v̈)

}
. (6.146)

Let us first concentrate on the Ternov–Bagrov–Khapaev effect. In the rest

frame of the neutron, its acceleration and jerk are completely negligible (they

would be exactly zero, but for the forces of Chapter 4, and those of radiation

reaction itself), and hence we may ignore the second term in (6.146). We are

therefore left with

NRR =
2

3

µ2

4π
σ× ...

σ. (6.147)

Now, from the Thomas–Bargmann–Michel–Telegdi spin precession equation,

we have, in the rest frame

NTBMT = µ×B;

hence, we successively find

σ̇ =
µB

s
σ×B̂, (6.148)
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σ̈ ≡ dtσ̇

=
µB

s
σ̇×B̂

=
(

µB

s

)2

(σ×B̂)×B̂,

= −
(

µB

s

)2{
σ − (σ ·B̂)B̂

}
, (6.149)

...
σ ≡ dtσ̈

= −
(

µB

s

)2{
σ̇ − (σ̇ ·B̂)B̂

}

= −
(

µB

s

)3

σ×B̂, (6.150)

where s is the spin of the particle. Using (6.150), the classical radiation

reaction torque (6.147) may then be written

NRR ≡ 2

3

µ2

4π
σ× ...

σ

= −2

3

µ5B3

4πs3

{
B̂ − (σ ·B̂)σ

}
. (6.151)

The directional term in braces shows that the torque is in the direction of

the magnetic field (the second term simply ensuring that the torque remains

perpendicular to σ). To evaluate its effect, we employ again the transverse

polarisation Pt of (6.131):

Pt ≡ (σ ·B̂);

differentiating this relation, we find

dtPt(t) ≡ dt(σ ·B̂)

= (σ̇ ·B̂)

=
1

s
(NRR ·B̂) (6.152)
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Substituting (6.151) into (6.152), we thus find the evolution equation of mo-

tion for Pt(t):

Ṗt(t) = −2

3

µ5B3

4πs4

{
1− P 2

t (t)
}

. (6.153)

This differential equation is nonlinear, but fortunately its general solution is

simple:

Pt(t) = − tanh
t− t0
τcl.

, (6.154)

where

τcl. ≡
{

2

3

µ5B3

4πs4

}−1

, (6.155)

and where the arbitrary constant t0 in (6.154) specifies the initial polarisa-

tion:

Pt(0) ≡ tanh
t0
τcl.

. (6.156)

Before we compare these classical results with the spontaneous radiation

slip-flip results of the previous sections, we shall first briefly indicate how the

classical calculations generalise for the Sokolov–Ternov effect. Because of the

acceleration of the electron, an evaluation of the effect in the rest frame is not

feasible (see the detailed discussion of this problem in Jackson’s review [114]);

to analyse it in the lab frame, we first write the torque equation of motion

(6.146) in covariant terms, using the expressions listed in Section G.2.2:

(Ṡ) =
2

3
µ2η0 U×Σ×

{
(
...
Σ ) + U̇2(Σ̇ )

}
. (6.157)

After some algebra, one can then show that

σ̇ = σ×
{

1

γ
C − 1

γ + 1
C0v

}
+ σ̇T

≡ σ×ΩRR + σ̇T , (6.158)

where σ̇T is the Thomas precession contribution to σ̇, and

C ≡ 2

3

µ2

s
η0

{
(
...
Σ ) + U̇2(Σ̇ )

}
.
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Now, in this first attack on the problem, we shall simply ignore the contri-

bution of Thomas precession terms, due to the radiation reaction force equa-

tion; from Jackson’s discussion [114], we expect that this decoupling of the

orbital degrees of freedom will lead to approximate, not exact, results. The

calculation of ΩRR from (6.158), using the electron’s Thomas–Bargmann–

Michel–Telegdi motion as the zeroth approximation, is rather lengthy, and

has been relegated to the computer program kinemats, in Section G.4.12;

after some manipulation of the results, one finds that the evolution of the

transverse polarisation Pt(t) is functionally identical to (6.154), with the

classical characteristic polarisation time now given by

τcl. =





2

3

∣∣∣∣
g

2

∣∣∣∣
3
(∣∣∣∣

g

2

∣∣∣∣
2

+v2

)
e2h̄γ5v3

4πm2R3





−1

. (6.159)

If we take the limit of large |g|, use expressions (6.143) to convert the circular

orbit back into a linear one, and trivially boost back to the rest frame, we are

returned to the result (6.155) for the classical stationary neutron, as would

be expected [114].

We now compare these completely classical results to those of the previous

sections. Firstly, we note that for spin-half particles,

s =
1

2
h̄,

the characteristic time, τcl., of (6.155) becomes

τcl.|s= 1
2
h̄ =

{
32

3

µ5B3

4πh̄4

}−1

.

This is exactly half of the Ternov–Bagrov–Khapaev result (6.142). It may

be thought that the missing factor of 2 could simply be due to an algebraic

oversight on the part of the author; it will shortly be clear that this is not

the case. Moreover, this factor of 2 is, in fact, the least of our concerns: more
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importantly, the hyperbolic tangent in the rate of polarisation, (6.154), is not

equivalent to the exponential rate of (6.141).

The difference between the classical and quantum field theoretical calcu-

lations is most dramatic for a neutron initially polarised in the direction of

the field : the quantum result gives simply 1/τTBK as the probability per unit

time of it flipping its spin; but the classical result (6.153) vanishes as the

polarisation approaches ±100%.

This behaviour can, in fact, be understood by recalling the assumptions

made as to the nature of the radiation being considered in each analysis.

A stationary neutron with its spin parallel to the magnetic field does not

precess; it merely sits there. Classically, if the neutron does not precess, and

its does not move, then it cannot possibly radiate, since it is simply a static

system. If it does not radiate, then clearly there cannot be any effects of

radiation reaction. The neutron therefore remains in this static state (albeit

perturbatively unstable).

Quantum field theoretically, however, the electromagnetic field is consid-

ered to be quantised into photons . One therefore has the phenomenon of

spontaneous radiation coming into play. Classically speaking, with sponta-

neous radiation the neutron effectively “anticipates” the radiation that it

will emit in making the quantum jump from spin-up to spin-down; the reac-

tion from this “anticipated” radiation is what, roughly speaking, causes the

neutron to flip its spin—and hence emit the anticipated radiation.

This manifestation of the photon’s discreteness would, of course, become

proportionally less important if the spin of the particle, s, were large com-

pared to the spin of the photon, h̄, since then each radiated photon would

only “step” the spin vector of the particle by the then relatively small amount

of h̄. Of course, for a spin of s = 1
2
h̄, such a step represents a transition from

full polarisation to full antipolarisation!—and hence the discreteness of the

photon is maximally manifested. Thus, while we have, in the previous chap-

ters of this thesis, successfully dispelled some of the myths of the “large
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quantum number” rule, as far as spin is concerned, we now finally find its

correct point of insertion into our conceptual frameworks.

An heuristic argument may be given that explicitly shows this transi-

tion from the classical theory, to the first-quantised theory, and then to the

second-quantised theory, for the current example, which we shall now out-

line. Let us return to the classical radiation reaction equation of motion for

the spin of the stationary neutron, from equation (6.146):

σ̇ = σ×ΩRR, (6.160)

where

ΩRR =
2

3

µ2

4πs

...
σ. (6.161)

To first make the transition to the first-quantised theory, for a spin-half

particle, we need to introduce the rest-frame two-spinor

|ψ〉 ≡
(

a
b

)
(6.162)

into (6.160), in some way. From Ehrenfest’s theorem, we know that expecta-

tion values of operators should be describable classically. Now, for the left-

hand side of this equation, we know, from our experience with the Thomas–

Bargmann–Michel–Telegdi equation, that this generalisation is simply

dt〈ψ|σ|ψ〉 ,

namely, the time-derivative of the expectation value of the spin is the quantity

described by the classical equations. For the right-hand side of (6.160),

however, we must be more careful. Since this equation describes radiation

reaction, we in fact require the coöperation of the spin-half particle twice:

once to emit the radiation, and then once again to receive the effects of this

radiation—as with the classical derivation of this chapter; this is why there

are two factors of µ present. Now, if we are to involve the spin-half particle
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twice, then it clearly will not do to form a single expectation value using the

spinor |ψ〉; rather, we should expect two expectation values to appear. Since

the two cross-producted factors in (6.160) each involve µ once, it may be

reasonable to guess that the expectations should be placed around each of

these factors separately:

dt〈ψ|σ|ψ〉 ?
= 〈ψ|σ|ψ〉×〈ψ|ΩRR|ψ〉 . (6.163)

Using the expression (6.161) for ΩRR, and (6.150) for σ̇, in (6.163), we then

have

dt〈ψ|σ|ψ〉 ?
= −2

3

µ2

4πs

(
µB

s

)3

〈ψ|σ|ψ〉×
(
〈ψ|σ|ψ〉×B̂

)
. (6.164)

The guessed equation of motion (6.164) is, of course, equivalent to the clas-

sical result (6.151), with the standard connection

σclassical ←→ 〈ψ|σ|ψ〉 ,

and will hence lead to the hyperbolic tangent dependence of the polarisation

equation (6.154).

So far, we have not changed the net results at all: by going to the

first-quantised theory, we still have the same classical radiation reaction be-

haviour. We now take due note of the second quantisation of the photon

field. The most important feature that this introduces is that the interac-

tion leading to (6.164) must satisfy conservation of energy, momentum and

angular momentum. Since the photon has spin h̄, the interaction must, to

satisfy conservation of angular momentum, flip the spin of the particle. As

it stands, however, the expression (6.164) assumes the radiation reaction to

be brought about by the continuous emission of radiation: it calculates the

matrix element from any given state to the same state (or one infinitesimally

close to it). Thus, to include the effects of the quantisation of the photon, we

need to insert spin-flipped states into (6.164); the resulting transition prob-

ability is then given by the correct formula (6.139). The additional factor of
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2, over and above that of the classical quantity (6.155), comes about from

the squared three-vector matrix element

∣∣∣〈↓|σ|↑〉
∣∣∣
2
= 2.

We thus see that, to obtain the correct physics, we need to use the ap-

propriate classical operator, sandwiched between the spinor states of the

first-quantised theory, which are themselves restricted by the conservation

requirements of the second-quantised photon theory. It is perhaps fitting

that our deliberations should conclude with the three generations of Theo-

retical Physics congregated together, hand in hand, posing for a final family

snapshot.
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Appendix A

Notation and Conventions

I sat at Bohr’s side during a colloquium at Princeton. The subject was
nuclear isomers. As the speaker went on, Bohr got more and more
restless and kept whispering to me that it was all wrong. Finally, he
could contain himself no longer and wanted to raise an objection. But
after having half-raised himself, he sat down again, looked at me with
unhappy bewilderment, and asked, ‘What is an isomer?’

—— A. Pais, on Niels Bohr [163]

A.1 Introduction

In this appendix, we specify the notations used and conventions followed

throughout this thesis.

Some specifications agree with standard physics practice; some simply

reflect the eccentricities of the author. It may be taken as granted that the

author believes the choices listed below to be most appropriate for investi-

gations in this field. Regardless of their merits, it is hoped that the author

has followed each specification consistently and unambiguously.

Readers of Bohr’s stature need not take note of this appendix.
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A.2 Physical format of this thesis

This thesis is available in both paper and digital formats.

A.2.1 Paper copies

A paper copy of this thesis may be obtained by requesting the author.

The requester may choose the spelling and punctuation conventions to be

used in the printing of the thesis; see Section A.3.2 for further details.

Paper copies of this thesis supplied by the author are printed on acid-free

paper, and professionally bound.

The first page of this thesis after the title page is numbered page 1;

each subsequent page is numbered consecutively, without interpolations or

omissions. The final page of this thesis is page number 574.

A.2.2 Digital copies

This thesis is also available, complete, in digital form. It consists of fifty-nine

plain ASCII text files, categorised as follows:

The twenty files listed in Table A.1 are LaTEX source files which are self-

contained: they may be processed individually (see Sections A.2.3, A.2.4 and

G.3).

The thirteen files listed in Table A.2 are also LaTEX source files, but they

may not be processed individually (see Section A.2.3).

The two files listed in Table A.3 are plain ASCII text files, that are the

output of the programs checkrs and test3int (see Section G.3).

The twenty-four files listed in Table A.4 are specially constructed files

that are able to serve as both standard ANSI C source files (see Chapter G),

as well as being able to be included in LaTEX documents via the use of special

macros designed by the author. (However, because of their excessive length—

over 700 pages, even in a tiny font—the ANSI C source files are not included
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Filename Description
bibliog.tex Bibliography.
claspcle.tex Chapter 2: Classical Particle Mechanics.
compalg.tex Appendix G: Computer Algebra.
crs.tex Output of program checkrs.
dipole.tex Chapter 4: Dipole Equations of Motion.
interlag.tex Appendix E: The Interaction Lagrangian.
km.tex Output of program kinemats.
notation.tex Appendix A: Notation and Conventions.
overview.tex Chapter 1: Overview of this Thesis.
pubpaper.tex Appendix F: Published Paper.
radreact.tex Chapter 6: Radiation Reaction.
retfield.tex Chapter 5: The Retarded Fields.
rigbody.tex Chapter 3: Relativistically Rigid Bodies.
rf.tex Output of program retfield.
rr.tex Output of program radreact.
suppid.tex Appendix B: Supplementary Identities.
suppprf.tex Appendix C: Supplementary Proofs.
thesis.tex Complete thesis.
t3.tex Output of program test3int.
verifyrf.tex Appendix D: Retarded Fields Verification.

Table A.1: The twenty LaTEX source files, included in digital copies of this
thesis, that may be processed individually.
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Filename Description
abstract.tex Abstract page.
ack.tex Acknowledgments section.
american.tex American spelling and punctuation choices.
british.tex British spelling and punctuation choices.
costella.tex The author’s spelling and punctuation choices.
cpyright.tex Copyright notice.
debugspl.tex Spelling and punctuation debug mode file.
kmoutth.tex Output of program kinemats.
macros.tex Thesis macro set used in all LaTEX source files.
quote.tex Dirac quotation.
rfoutth.tex Output of program retfield.
rroutth.tex Output of program radreact.
title.tex Title page.

Table A.2: The other thirteen LaTEX source files, included in digital copies
of this thesis, that may not be LaTEXed on their own.

Filename Description
crsoutth.txt Output of program checkrs.
t3outth.txt Output of program test3int.

Table A.3: The two plain ASCII text files included in digital copies of this
thesis.

317



Filename Description
algebra.h Header file for computer algebra library.
algebra1.c Computer algebra library functions.
algebra2.c Computer algebra library functions.
algebra3.c Computer algebra library functions.
algebra4.c Computer algebra library functions.
algebra5.c Computer algebra library functions.
algebra6.c Computer algebra library functions.
checkrs.c Source file for program checkrs.
fraction.c Fraction library functions.
fraction.h Header file for fraction library.
kinemats.c Source file for program kinemats.
kinemats.h Header file for program kinemats.
latexout.c LaTEX output library functions.
latexout.h Header file for LaTEX output library.
miscutil.h Header file with miscellaneous utilities.
radreac1.c Source file for program radreact.
radreac2.c Source file for program radreact.
radreac3.c Source file for program radreact.
radreac4.c Source file for program radreact.
radreac5.c Source file for program radreact.
radreact.h Header file for program radreact.
retfield.c Source file for program retfield.
retfield.h Header file for program retfield.
test3int.c Source file for program test3int.

Table A.4: The twenty-four ANSI C source code files included in digital
copies of this thesis.
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in paper copies of this thesis).

It should be noted that, to process the complete text of this thesis, one

requires all of the ASCII files listed in Tables A.1, A.2 and A.3 (see Sec-

tion A.2.3), but not those listed in Table A.4, which are only required if

one wishes to run the computer algebra programs oneself (see Appendix G).

Individual chapters and appendices may also, if desired, be processed indi-

vidually (see Section A.2.4).

All of the fifty-nine ASCII files consist of printable ASCII characters only

(ASCII codes 32 through 126), plus end-of-line characters (the precise num-

ber and values of which are machine-dependent). LaTEX source files have

lines with lengths not exceeding 70 characters (excluding end-of-line charac-

ters); ANSI C source files have lines with lengths not exceeding 77 characters

(excluding end-of-line characters); no file has the word From appearing at the

start of any line (which is corrupted in the Internet e-mail system to >From).

A.2.3 Processing the complete thesis

To process the complete text of this thesis, one requires a digital copy of

the thesis, and a computer system installed with a “big” implementation of

the TEX and LaTEX document preparation systems. Note that “standard”

implementations of TEX and LaTEX (typically having of the order of 65,000

words of main memory) are not sufficiently powerful to process this complete

thesis—nor, indeed, a number of its constituent chapters.

The ASCII source files listed in Tables A.1, A.2 and A.3 must be in a

single directory on the computer system.

One must then simply LaTEX the file thesis.tex to create the DVI file

for the complete thesis. (It is necessary to do this several times, to ensure

the cross-references are correctly linked, and that the Table of Contents is

included in its final form.)

LaTEX will ask the user to input the spelling convention desired: either
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costella, british or american must be entered by the user at the prompt

(see Section A.3.2).

Upon completion of processing by LaTEX, one may then either view the

output electronically with a DVI viewer, or print any or all pages of the

thesis using the DVI software available on one’s local system. Note that the

resolution of the fonts used for viewing or printing must be 300 dots per inch

for the output to be as designed by the author; resolutions other than this

may produce spurious artifacts, and do not represent authorised copies of

this thesis.

It should be noted that some digital copies of this thesis include a com-

plimentary copy of the binary file thesis.dvi, which includes the processed

output of the complete thesis, using the author’s spelling and punctuation

conventions. If one is in possession of such a copy, one need not carry out

the LaTEXing instructions listed above; the file thesis.dvi may be viewed or

printed immediately.

A.2.4 Processing a single chapter or appendix

To process only a single chapter or appendix of this thesis, the TEX and

LaTEX document processing systems must be installed on a computer system.

Some chapters and appendices only require a “standard” implementation of

these systems, but others require a “big” implementation; the dividing line

is implementation-dependent, so one can only find out by trying the desired

chapter or appendix on one’s own system.

The files listed in Table A.1 may be processed individually. Note that

the other .tex files, listed in Table A.2, may not be processed individually:

they only appear in the complete thesis.

To process the chapter or appendix in question, one usually only requires

the .tex file for that particular chapter or appendix, plus the thesis macro

package file macros.tex, and one of the three spelling files costella.tex,
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american.tex or british.tex. (The exception is the appendix compalg.-

tex, which also requires the presence of the files kmoutth.tex, rfoutth.-

tex, rroutth.tex, t3outth.txt and crsoutth.txt.) These files must

reside in a single directory of the computer system.

One then simply needs to LaTEX the file corresponding to the chapter or

appendix in question (several times, to link the cross-references correctly).

The files have been constructed so that no errors or warnings are gener-

ated on the final pass of LaTEX. Cross-references to sections, subsections or

equations in other chapters or appendices, or to entries in the Bibliography,

are replaced with harmless ‘x’ characters, rather than generating an error.

Cross-references to sections, subsections and equations within the chapter or

appendix in question are processed normally.

Page numbering is initialised at the beginning of the chapter or appendix;

however, the Chapter and Section numbers take the values that they do in

the complete thesis.

For convenience, a Table of Contents, covering only the chapter or ap-

pendix in question, is added to the output. (In the complete thesis, only a

single complete Table of Contents is included, before the first chapter.)

A.3 Language and typography

A.3.1 Document preparation system

This thesis has been prepared using the LaTEX document preparation sys-

tem [129].

The default text type is 12-point Computer Modern, 1.5 spaced. All

fonts, styles, commands and macro constructions used in this thesis follow

the guidelines given in the LaTEX manual [129].

This thesis has been designed to be viewed or printed using standard

LaTEX fonts of a resolution of precisely 300 dots per inch; reproductions using
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fonts of other resolutions, or fonts that are not those standard to LaTEX, do

not represent authorised copies of this thesis.

A.3.2 Dialect-independent English

This thesis is written in dialect-independent English: it may be printed with

either British English, American English or the author’s English conventions;

the printing you are reading uses the author’s conventions. (All official copies

submitted for examination use the author’s conventions.)

Diæreses are used to separate nondiphthonged adjacent vowels. Nouns

collected together into the one entity are separated by en dashes. Some words

of foreign origin have their original accenting retained. Hyphens whose omis-

sion would not lead to ambiguity, ugliness or a violation of an accepted cus-

tom are omitted. Foreign phrases not naturalised into the English language

are generally italicised. Latin abbreviations are italicised and punctuated.

Terms are generally italicised when they are introduced or defined. Italicisa-

tion is also used for emphasis in the text. Foreign names are reproduced as

faithfully as possible, following the printed spelling in the source literature.

Some of the above specifications do not apply to the published paper

included verbatim in Appendix F.

Words and phrases used by the author of arguably questionable spelling,

grammar or semantics have been checked by the author with the full Oxford

English Dictionary [161]. Typographical and other errors may of course still

be present in the text of this thesis.

A.3.3 Political incorrection

The author does not belong to the Political Incorrection movement.

Readers of that persuasion are warned that phrases of an offensive nature

may be found within this thesis. For example, quantities are referred to as
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dimensionless , rather than dimensionally challenged ; erroneous results are

referred to as incorrect , rather than fictionally gifted ; and so on.

Readers for whom such terminology would be psychologically challenging

may request a digital copy of this thesis, and digitally censor the offending

phrases themselves.

A.3.4 Units

The base system of units for this thesis is the SI system.

Theoretical investigations are carried out in the system of units derived

from the SI system when they are “naturalised” according to

c = ε0 = µ0 = 1. (A.1)

A.3.5 Decimal separator

The decimal separator is the full stop, as in the value 137.036.

A.3.6 Standard symbol set

The standard symbol set is the set of typographical symbols that are used in

this thesis to represent general mathematical quantities. Any symbol from

the standard symbol set is referred to as a standard symbol .

Some classes of mathematical quantities are, as described in the follow-

ing sections, denoted in a unique, identifiable way. This may be done by

typographically modifying a standard symbol’s typeface, or attaching an ex-

tra mark to it (collectively referred to as adorning the symbol); or it may

be performed by using symbols not in the standard symbol set. All of the

above specialised forms of notation are referred to as special symbols . Special

symbols are not a part of the standard symbol set.

All mathematical quantities not denoted by special symbols are denoted

by symbols from the standard symbol set. There is no way to distinguish,
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typographically, the mathematical nature of such quantities. The nature of

the quantity will either be explicitly spelt out in the text, or it will be implied

by context.

The standard symbol set consists of the following symbols: a, b, c, d, e,

f , g, h, i, j, k, l, m, n, p, q, r, s, t, u, v, w, x, y, z, A, B, C, D, E, F , G,

H, I, J , K, L, M , N , P , Q, R, S, T , U , V , W , X, Y , Z, α, β, γ, δ, ε, ζ, η,

θ, ϑ, κ, λ, µ, ν, ξ, π, ρ, σ, τ , φ, ϕ, χ, ψ, ω, Γ , ∆, Θ , Λ, Ξ , Π , Σ , Υ , Φ , Ψ

and Ω .

It will be noted that all standard symbols are italicised. All typograph-

ical modifications to the standard symbol set used in this thesis retain the

italicisation of the standard symbol part of the modified symbol.

A symbol is referred to as a collection symbol if it represents a collection

of quantities rather than a single quantity; these quantities are referred to as

being housed in the collection symbol. The act of typographically modifying

a collection symbol to denote the extraction of a quantity housed within it

is referred to as dereferencing the collection symbol.

A.3.7 Decommissioning and recommissioning

If a symbol, word or phrase is explicitly specified as decommissioned by the

author, then it is thenceforth deemed to be an invalid symbol, word or phrase

for the purposes of the remainder of this thesis, even if it would otherwise be

a valid construct according to the rules laid down in this appendix.

Decommissioned symbols, words or phrases may only be used for the pur-

pose of recommissioning . If a symbol, word or phrase is recommissioned by

the author, after having been previously decommissioned, then it is thence-

forth deemed to again be a valid construct.

If a phrase is recommissioned as nonmodifiable, then no typographical

symbols may appear in the interior of the phrase, apart from line-breaking

hyphenation marks. In particular, additional words may not be added be-
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tween the individual words of a nonmodifiable phrase.

For the purposes of decommissioning and recommissioning, the pages of

this appendix are taken to precede all other pages in this thesis. All possible

symbols, words and phrases constructable are deemed to be commissioned

at the start of this appendix.

The provisions of this section do not apply to the published paper included

verbatim in Appendix F.

A.3.8 Precedence of operations

The following is a list of the typographical symbols used in this document

to denote operations, in order of decreasing precedence. Operators listed

consecutively are of the same precedence; steps down the precedence hier-

archy are noted explicitly. Operators of the same precedence are evaluated

left-to-right, except where noted. The other sections in this appendix should

be consulted for details about the operations listed, the language used to

describe them, and their notation.

Binding symbols: ( ), [ ] and { }. These three sets of symbols, referred to as

binding parentheses , binding brackets and binding braces respectively, “bind”

symbols together to force precedence. Except where otherwise noted, they are

in all mathematical respects equivalent, and hence usable interchangeably;

however, certain conventions have emerged, æsthetically pleasing and visually

simplifying, such as the use of binding parentheses around three-vector dot

products. Binding parentheses, brackets and braces are usually used to force

the intended precedence when the non-explicitly-bound expression does not

suffice, but they may also be used redundantly for the purposes of emphasis

or visual clarity.

Symmetrisors: {{ }}. These have the same precedence as binding symbols.

See Section A.6.3.

Primed quantities: ′, ′′. Quantities that are of like form to an original
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quantity which has been designated a standard symbol, but which must be

distinguished from it, may be given the original standard symbol with one,

two or more primes. The prime or primes form part of the new symbol, and

bind more tightly than any operator listed below.

The square root symbol: √ . The quantities appearing underneath the

overbar of this symbol are treated as if they lie within an overall binding

symbol, and then the positive square root of the result is taken.

Matrix indexing: superscripts and subscripts. Matrix indices are deemed

to have higher precedence than power-raising superscripts; thus, if xi is a

component of a four-vector, then xi 2 is equivalent to (xi)2, without need for

the explicit binding.

Raising of powers: superscripts. If a superscript does not fall into one of

the above categories, and if it is a valid value, then it denotes the raising of

the base to the power of the superscript. Powers are evaluated right-to-left

(i.e., typographically highest subscript first). If the superscript is rational

(but not integral), and the base is real and non-negative, the result is defined

to be the positive root; if the base is not real and non-negative, the result is

defined by an explanatory note. If the superscript is irrational, and the base

is not a non-negative real, the expression is in error. If A is a three-vector,

then A2m ≡ (A ·A)m. If B is a four-vector, then B2m ≡ (B ·B)m.

Time-derivatives: overdots. Overdots are used to denote the proper-time

or lab-time derivative of a quantity; see Section A.8.20 for details of how the

choice of time is decided. Overdots have lower precedence than the symbols

above. Thus, σ̇′ is defined to be dtσ
′; i.e., the prime on σ′ binds more tightly

than the overdot.

The scientific-notation symbol: × 10 . The notation x× 10n, where x is

real and n is integral, denotes a real number in scientific notation.

Generic multiplication: adjacent symbols. If two symbols are placed next

to each other, then they are multiplied together according to the rules ap-

propriate to their particular types.
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The wedge-product symbol: ∧ . See Section A.8.11.

The cross-product symbol: ×. The cross-product symbol × has higher

precedence than the dot-product symbol · , so that triple-products of the form

A ·B×C are syntactically correct without need to force binding. See Sec-

tions A.8.10 and A.9.13.

The numeral multiplication symbol: · . This symbol is sometimes used

to denote multiplication of numerical quantities where the use of adjacent

symbols would be ambiguous, such as in 2 · 3.

The operator-delimiter multiplication symbol: · . Usually, multiplication

of scalar quantities is signified by simply placing the symbols for the quan-

tities next to each other. However, it is often necessary to delimit the scope

of operators, such as derivative operators. While this is least ambiguously

performed by the use of binding symbols, one may also delimit the scope of

simple operators by the use of the central dot, if this usage is unambiguous.

Thus, dxA · dyB denotes (dxA)(dyB). However, this notation cannot be used

where it would interfere with other interpretations of the central dot.

The dot-product symbol: · . See Sections A.8.7 and A.9.11.

The product-continuation symbol: ×. This symbol is used to denote the

continuation of a typographically long product of factors onto subsequent

lines of a multiline equation, in all cases except when the multiplication

operation in question is the dot-product (see below). In this rôle as a contin-

uation symbol, the symbol × has no other connotation than that of generic

multiplication, of whatever flavour, and has the same precedence as the mul-

tiplication operation it represents.

The dot-product continuation symbol: · . This symbol is used to continue

a typographically long product of factors onto subsequent lines of a multiline

equation, if the multiplication operation in question is the dot-product.

The inline fraction bar: /. This symbol is used as the inline equivalent

of the fraction bar used in displayed expressions. It may also be used in

displayed expressions where typography is improved by its use. It should be
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noted that the inline fraction symbol / has lower precedence than all mul-

tiplication operations, so that abc/xyz is identical to (abc)/(xyz). However,

if more than one / appears in any product, without binding indicated, then

the expression is in error: the intended binding must be forced.

The addition and subtraction symbols: + and −. These symbols have

lower precedence than those listed above.

The summation and product symbols:
∑

and
∏

. These symbols have

lower precedence than those listed above.

The Einstein summation convention: The presence of two indices with the

same standard symbol in a product of matrix factors implies a summation of

that factor with the index in question taking on all values of its enumeration

set. For three-vectors, the arbitrary position of either index is irrelevant; for

four-vectors, however, the convention only applies if one copy of the index is

covariant and the other is contravariant. If more than one copy of a standard

symbol appears as an index in an expression, and these copies do not satisfy

these rules, then no summation convention applies; no explicit note need

be made. The summation convention may also be suppressed by use of the

parenthesised words “(no sum)” at the end of any expression.

The evaluation symbol: |a=b. This symbol has lower precedence than all

those listed above. See equation (A.10) of Section A.3.10 .

The comparison operators: =, 6=, >, <, ≥, ≤, 6>, 6<, 6≥, 6≤. These symbols

have lower precedence than all those listed above.

A symbol used to denote a function is overloaded if it is defined a number

of times, with a typographically different parameter list for each definition.

The nature of the parameter list for any usage of that function symbol then

determines which particular function definition applies to that usage of the

symbol.
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A.3.9 Electric charge

A general electric charge is always denoted by the symbol

q (A.2)

throughout this thesis.

The symbol q is also used in its common usage as a general Hamiltonian or

Lagrangian coördinate degree of freedom; there is no ambiguity in practice.

The charge on the positron is denoted by the symbol e. The charge on the

electron is consequently −e. The symbol e is also used for other purposes;

no confusion arises in practice.

A.3.10 Derivatives

Throughout this thesis, the n-th order total derivative operator with respect

to a quantity q,
dn

dqn
, (A.3)

is replaced by the notation

dn
q . (A.4)

The notation (A.3) is decommissioned. Likewise, the n-th order partial

derivative operator,
∂n

∂qn
, (A.5)

is replaced by the notation

∂n
q . (A.6)

The notation (A.5) is decommissioned.

If the quantity being differentiated with respect to is the spacetime posi-

tion xµ or xµ, then it is deemed that the subscript µ or superscript µ may be

used instead of xµ or xµ for the partial derivative:

∂xµ ←→ ∂µ,

∂xµ ←→ ∂µ. (A.7)
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The d’Alembertian operator is denoted ∂2, and is defined as

∂2 ≡ ∂α∂α ≡ ∂2
t −∇2. (A.8)

When there are several four-position variables (such as xµ, x′µ, x′′µ, etc.) in

an equation, the d’Alembertian operator is adorned with a subscript indicat-

ing the intended variable, such as

∂2
x, ∂2

x′ , ∂2
x′′ . (A.9)

The standard symbol d is decommissioned. The symbol d is recommis-

sioned as a standard symbol, if and only if the quantity it is to represent does

not need to be, or may not be interpreted as, a quantity for which any sub-

scripting operation is valid. Textual labels or identifiers, normally denoted by

subscripts, may be placed in parenthesised subscripts for the recommissioned

symbol d.

For any function f(q) of q, the notation

dn
q f(q)

∣∣∣
q′

(A.10)

indicates that the n-th order total derivative of f(q) with respect to q is to

be taken, and then the result evaluated at the point q = q′. The notation

is likewise extended to partial derivatives and functions of more than one

variable, and is also deemed to apply if overdots are used to denote the

taking of the derivative (see Section A.8.20).

A.3.11 Energies, momenta, angular momenta

There are two different concepts generally referred to by the term “momen-

tum”. The first is that of a mass-weighted velocity quantity ; it is used almost

universally in Newtonian mechanics and General Relativity. In this thesis,

this type of quantity is always referred to as mechanical momentum, and it

is always denoted by the standard symbol

p, (A.11)
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adorned as appropriate.

The second concept of “momentum” is that of a conjugate Hamiltonian

degree of freedom; it is used almost universally in Hamiltonian mechanics. In

this thesis, this type of quantity is always referred to as canonical momentum,

and is always denoted by the standard symbol

b, (A.12)

adorned as appropriate.

The concept of “energy”, being the relativistic timelike component of the

four-momentum, must likewise be categorised as either mechanical energy

or canonical energy . Mechanical energy, if not denoted p 0 or p 0, must be

denoted by the standard symbol

W. (A.13)

Canonical energy, if not denoted by b 0 or b 0, must be denoted by one of the

standard symbols

E,H. (A.14)

The symbol H may only be used if the canonical energy is in fact the Hamil-

tonian.

The concept of “angular momentum”, as the product of the momentum

of an object with its position relative to some coördinate origin, must also

be categorised as either mechanical angular momentum or canonical angular

momentum. Mechanical angular momentum must be denoted by one of the

standard symbols

s, S, l, L, j, J. (A.15)

Canonical angular momentum must be denoted by one of the adorned stan-

dard symbols

ŝ, Ŝ, l̂, L̂, ̂, Ĵ . (A.16)
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It should be noted that quantum mechanics is phrased in terms of Hamil-

tonian mechanics; thus,

bµ ≡ i∂µ (A.17)

is the appropriate notation for the quantum mechanical canonical momentum

operator, in terms of the guidelines above.

Due to the almost universal confusion on this point, the restrictions above

on the acceptability of symbols for momenta, energies and angular momenta

are deemed to override all other rules in this appendix. In particular, they

override the otherwise general rule of Section A.3.6 relating to the typograph-

ical equivalence of standard symbols.

For the same reason, the words and phrases momentum, energy and an-

gular momentum, and their plurals, are hereby decommissioned.

The nonmodifiable phrases mechanical momentum, mechanical self-mo-

mentum, mechanical three-momentum, mechanical four-momentum, mecha-

nical energy , kinetic energy , mechanical self-energy , mechanical centre of

energy , mechanical angular momentum, mechanical angular self-momentum,

canonical momentum, canonical three-momentum, canonical four-momen-

tum, canonical energy and canonical angular momentum, and their plurals,

are explicitly recommissioned.

The nonmodifiable adjectives positive-energy and negative-energy are also

explicitly recommissioned, but only for purposes for which the canonical

energy and mechanical energy are equal in value.

A.3.12 Classical, quantum, relativistic

The adjective quantum is used to denote the presence of, or required presence

of, single-particle or multiparticle quantum-mechanical considerations. Its

antonym is defined to be the adjective classical .

The adjective relativistic denotes the presence of, or required presence

of, the mechanics of Einstein’s special theory of relativity. The adjective
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nonrelativistic denotes the use of Galilean mechanics. Some subtle problems

involved in making the transition between the fundamentally incompatible

structures of relativistic and nonrelativistic mechanics are discussed in Sec-

tions 2.6.12 and A.8.25.

It should be noted that the adjectives “classical” and “relativistic” are

linearly independent: relativistic classical physics, nonrelativistic classical

physics, relativistic quantum physics, and nonrelativistic quantum physics,

are separate quadrants of physics.

A.3.13 Quantities

A physical quantity is defined to be any aspect of a physical phenomenon that

may be described in mathematical terms. A mathematical quantity is defined

to be a mathematical construct that obeys some well-defined mathematical

laws. Mathematical quantities may be used to represent physical quantities.

In this thesis, the term quantity is used for either of these concepts, not

always unambiguously.

A.3.14 Explicit quantities

When the author refers to a quantity as being explicit , then it generally

means that some elegant yet highly abstract expression has been “expanded

out” in terms of components that are generally less æsthetically elegant, but

usually more in contact with one’s intuitive understanding of the physical

world.

This often, but not always, means that a covariant expression has been

written in terms of non-covariant components (see Section A.3.18 for a pre-

cise definition of these words, according to the author’s terminology).
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A.3.15 Pointlike objects

If an object has zero or infinitesimal spatial extent, then it is referred to as

being pointlike.

The term point is used as an adjective, identical in meaning to pointlike,

but it may only be used directly in front of the noun of the object it is

describing. For example, a particle of zero extent may equivalently be referred

to as a point particle, or as a pointlike particle; but if the order of the words is

reversed, one may only say that the particle is pointlike, since in this context

the use of the adjective “point” would sound absurd.

The choice of using either point or pointlike, in cases where both would

be permitted, is arbitrarily made.

A.3.16 Densities

If an object carries some physical characteristic Q distributed over a finite

volume in r-space, the “Q density” of that characteristic may either be de-

noted

ρQ(r) (A.18)

or

Qρ(r) (A.19)

without need for explicit comment.

The former choice is, historically, more common; but the latter choice is

both more visually explicit (with the characteristic Q dominating the symbol,

rather than being relegated to a subscript), as well as being often necessary

when using the standard LaTEX typesetting system—since adornments such

as boldfacing may not be used in subscripts.
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A.3.17 Orders

For the purposes of this thesis, the terminology surrounding the term order

is defined as follows:

A term T is said to be “of order f(A)”, where f(A) is some function f of

some quantity A, if, were T to have its (implicit or explicit) dependencies on

A written out explicitly, the resulting explicitly-written term would, when

simplified, contain a factor of f(A), and no other dependency on A.

If the function f(A) is a power An of A, then T may be simply said to be

“of order n in A”. The power n may, in general, be of arbitrary type, but in

practice it is usually integral.

If unambiguous, the term T may be simply said to be “of order n”,

without explicitly mentioning A, if the preceding context makes it clear that

it is the order of A that is being discussed.

An expression E is said to be “of order n” in some quantity A if the

lowest (highest) order in A of any of its terms is n; the choice of whether it

is the lowest or highest order depends on the application.

An expression E is said to be “expanded to order n in A” if all of the

terms in E with order in A less than (greater than) or equal to n are written

out explicitly, and the remaining terms—if any—replaced with the symbol

+ O(Am), (A.20)

where m is the lowest (highest) order in A of the omitted terms. If E contains

no terms of higher (lower) order in A than n, then the symbol +O(Am) shall

not be used.

A.3.18 Covariance

Consider the “G” group, where “G” stands for the name of the person or

other object that the group is named after. Any arbitrary mathematical

quantity that transforms as a representation of the G group is referred to
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as a mathematically G-covariant quantity . Any mathematical quantity that

does not transform as a representation of the G group, and which, even if

considered together with an arbitrary number of other quantities that do not

transform as a representation of the G group, can still never be made to trans-

form as a representation of the G group, is referred to as a mathematically

non-G-covariant quantity .

Any symbolic representation of a mathematically covariant quantity is

referred to as a manifestly G-covariant quantity , or, simply, a G-covariant

quantity , where the adjective “manifest” is used for emphasis or disambigua-

tion. Any symbolic representation of a subpart of a G-covariant quantity, that

is not itself mathematically G-covariant, is referred to as a non-G-covariant

quantity .

Note that, according to these definitions, for any given non-G-covariant

quantity there always exist other non-G-covariant quantities such that, when

considered together, the resultant structure is, as a whole, a G-covariant

quantity. Thus, non-G-covariant quantities are never mathematically non-G-

covariant; conversely, mathematically non-G-covariant quantities are never

non-G-covariant quantities. All quantities are either G-covariant, non-G-

covariant, or mathematically non-G-covariant quantities.

These definitions appear to be counterintuitive, but their application will

reveal their usefulness. In particular, the “mathematically” forms of the

above definitions are rarely used in this thesis.

When unambiguous, the “G-” prefix in the above may be omitted from

a discussion where the group under consideration is understood. In such

circumstances, the “G-” may be rëınserted at any point for emphasis or

disambiguation.

The adjective “covariant” is also used in its traditional form as a conju-

gate to “contravariant”, when applied to indices. This meaning of the word

“covariant” has nothing to do with the definitions above.
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A.4 Enumeration sets

An enumeration set is defined as a set of consecutive integral values

{
ω, ω + 1, ω + 2, . . . , ω + d− 2, ω + d− 1

}
. (A.21)

The term enumeration is used to describe an element of an enumeration set.

The first integral value in an enumeration set—ω in (A.21)—is referred

to as the offset of the enumeration set. An enumeration set with an offset of

zero is referred to as having or being zero-offset . An enumeration set with

an offset of unity is referred to as having or being unit-offset .

The number of integral values in the enumeration set is referred to as the

dimension of the enumeration set.

Any integral value that is listed in the enumeration set is said to lie within

the bounds of the enumeration set.

Any operation defined for integers may be used for enumerations, if the

operation results in a legal expression. In particular, if the result of an op-

eration on one or more enumerations is itself to be used as an enumeration,

then the result must be an enumeration lying within the bounds of the enu-

meration set.

The ordered enumeration set of an enumeration set is the ordered set of

the enumerations listed in increasing numerical order.

Any of the enumerations in an enumeration set may, for convenience, be

given an alternative non-numerical notation. Such optional pieces of notation

are referred to as enumeration names . An enumeration name may be the

same as other symbols used for other purposes, provided that those other

symbols do not themselves take values from the original enumeration set.

A given enumeration in an enumeration set may, in general, be given more

than one enumeration name. However, within any given enumeration set,

any given enumeration name may refer to only one enumeration.
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The adjective enumerated will be used rather than the adjective integral

where appropriate.

A.5 Special functions

A.5.1 Kronecker delta function

The Kronecker delta function δ i
j , taking enumerated arguments i and j, is

defined as

δ i
j =

{
1 if i = j
0 if i 6= j.

(A.22)

A.5.2 Dirac delta function

The Dirac delta function δ(t), of real argument t, is defined as

δ(t) ≡ lim
ε→0

g(t, ε), (A.23)

where g(t, ε) is any function in the ensemble of indefinitely differentiable

functions of real arguments t and ε > 0 such that g(t, ε) → 0 for all t 6= 0 as

ε → 0, and ∫ ∞

−∞
dt′ g(t′, ε) = 1. (A.24)

This ensemble is referred to as the Dirac delta ensemble.

There is only one Dirac delta function in this thesis. This function may,

however, be instantiated for an arbitrary number of purposes. The limiting

procedure above accompanying its function definition is deemed to be exe-

cuted on the first blank page following the end of this thesis. If, at that point,

the evaluation of any given mathematical expression appearing in this thesis

is not invariant under a change of g(t, ε) through the Dirac delta ensemble,

then the expression in question cannot describe a physical quantity.

The three-dimensional Dirac delta function, of three-vector argument r,

is denoted δ(3)(r), or simply δ(r) where unambiguous, and is defined as

δ(3)(r) ≡ δ(x)δ(y)δ(z), (A.25)
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where r has components (x, y, z).

The four-dimensional Dirac delta function, of four-vector argument X, is

denoted δ(4)(X), or simply δ(X) where unambiguous, and is defined as

δ(4)(X) ≡ δ(t)δ(x)δ(y)δ(z), (A.26)

where X has components (t, x, y, z).

A.5.3 Heaviside step function

The Heaviside step function ϑ(t) is defined as the integral of the Dirac delta

function (A.23):

ϑ(t) ≡
∫ t

−∞
dt′ δ(t′). (A.27)

The same considerations for evaluation and physicality apply to the Heaviside

step function as apply to the Dirac delta function (see Section A.5.2).

A.5.4 Alternating function

The d-dimensional alternating function of offset ω is denoted

ε
(ω,d)
{i} . (A.28)

Its argument is a special collection symbol {i} of enumerations (see Sec-

tion A.4), which may be dereferenced by removing the braces and subscript-

ing with a unit-offset enumeration of dimension d. The collection symbol {i}
may be also be denoted either by writing its elements adjacently, in order of

the enumeration index:

{i} ≡ i1i2i3 · · · id−2id−1id, (A.29)

or by writing them in set notation:

{i} ≡ {i1, i2, i3, . . . , id−2, id−1, id}. (A.30)
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Each of the im take values from the enumeration set of dimension d and offset

ω. The function ε
(ω,d)
{i} is equal to zero if any im = in for m and n in this

enumeration set and m 6= n. Otherwise, the function is equal to +1 (−1) if

the set (A.30) is an even (odd) permutation of the ordered enumeration set

of dimension d and offset ω.

The argument d may be omitted from the notation ε
(ω,d)
{i} if the collection

symbol {i} is explicitly expanded into the notation (A.29) or (A.30), or

equivalent enumeration names. These elements im are often themselves given

enumeration names. The superscript ω is often omitted as being implicitly

understood by context.

Of particular use are the three-dimensional unit-offset alternating func-

tion, ε
(1)
i1i2i3 , and the four-dimensional zero-offset alternating function, ε

(0)
i1i2i3i4 .

The former is generally referred to as simply the three-dimensional alternat-

ing function, and denoted εi1i2i3 , where each im takes on values from the

unit-offset enumeration of dimension three, viz., {1, 2, 3}; the latter as the

four-dimensional alternating function, and denoted εi1i2i3i4 , where each im

takes on values from the zero-offset enumeration of dimension four, viz.,

{0, 1, 2, 3}. From the above definition of ε
(ω,d)
{i} , it is clear that

ε123 ≡ ε0123 ≡ +1. (A.31)

The four-dimensional alternating function’s indices may, for the purposes

of Lorentz-covariant analyses, be raised by using the fully contravariant met-

ric tensor gαβ, as described in Section A.8.4. The definition (A.31) still

remains in effect; thus, ε0123 ≡ −1.

A.6 Associativity and commutativity

In this thesis, all addition and multiplication operations for arbitrary objects

are assumed to be associative, without need for this to be explicitly noted.
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All addition operations for arbitrary objects are assumed to be commuta-

tive, without need for this to be explicitly noted. No assumptions about

commutativity of multiplication operations are made in the general case.

A.6.1 C-numbers and q-numbers

Quantities that commute with all other quantities are referred to as c-num-

bers .

Any quantity that is not a c-number is a q-number .

A.6.2 Commutators and anticommutators

The commutator of two quantities A and B is defined to be AB − BA, and

is denoted by brackets, thus:

[A,B] ≡ AB −BA. (A.32)

The anticommutator of two quantities A and B is defined to be AB + BA,

and is denoted by braces, thus:

{A,B} ≡ AB + BA. (A.33)

Commutators and anticommutators may be collectively referred to as

permutators . Quantities that are commutated or anticommutated are collec-

tively referred to as being permutated .

Indices may also be permutated:

A[αBβ] ≡ AαBβ − AβBα (A.34)

and

A{αBβ} ≡ AαBβ + AβBα. (A.35)

The permutated indices may be separated by an arbitrary number of in-

tervening factors, and may be repeated for identical indices within the one
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distributed factor; for example,

A[αXµYνZτ

(
Bβ] + Cβ]

)
. (A.36)

A.6.3 Symmetrisors

The symmetrisor of a product of n factors A, B, C, . . . , Z is defined to be

1/n! times the sum of the terms of all of the n! permutations of the factors,

and is denoted

{{ABC · · ·Z}} . (A.37)

For example,

{{AB}} ≡ 1

2

(
AB + BA

)
,

{{ABC}} ≡ 1

6

(
ABC + ACB + BAC + BCA + CAB + CBA

)
.

The use of the double-braces ensures complete disambiguation from the use

of braces as a binding symbol, since two identical sets of braces, without

intervening symbols, would in the latter case be completely redundant. Fur-

thermore, the double-braces used in (A.37) are typographically spaced closer

together than is the case when braces are used as binding symbols.

The inclusion of the factor of 1/n! in the above definition of the sym-

metrisor means that it is not necessary to identify or count the number of

“truly non-commutative” factors in the product: commuting factors may be

(trivially) symmetrised over without affecting the numerical result.

Note also that the symmetrisation is a mathematical one, not a typo-

graphical one. This is of importance for the three-vector cross-product of

Section A.9.13, namely,

A×B ≡ εijkAjBk; (A.38)

the symmetrisor of (A.38) is defined to be the symmetrisor of the right-hand

side of this definition:

{{A×B}}i ≡
1

2
εijk

(
AjBk + BkAj

)
. (A.39)
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To write the result (A.39) in component-free notation, we must relabel the

indices in the second term via j ↔ k, and make use of the identity εikj ≡
−εijk; thus,

{{A×B}} ≡ 1

2

(
A×B −B×A

)
. (A.40)

Conceptually, the minus sign in (A.40) may be understood by considering

the case when the factors in the symmetrisor are c-numbers , in which case

the various permuted terms must of course be identical: for c-number three

vectors A and B, we note the permutation identity A×B ≡ −B ×A, and

hence (A.40) is the correct identity.

A.7 Matrices

A matrix is, for the purposes of this thesis, a collection object which is

conveniently arranged as a regular rectangular array of quantities.

Any mathematical quantity that is, for the purposes of the investigation

in question, considered to be represented in matrix form is referred to as a

matricised quantity. Matricised quantities are denoted by symbols from the

standard symbol set.

A.7.1 Rows and columns

Matrices are considered to be constructed of rows and columns; there is a

matrix element for the conceptual intersection of each row and column.

The number of rows and number of columns possessed by any given matrix

are together referred to as the dimensions of the matrix; the dimensions are

denoted Nrows ×Ncolumns, where Nrows is the number of rows and Ncolumns is

the number of columns.
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A.7.2 Square matrices

Matrices with an equal number of rows and columns are referred to as square

matrices.

The dimensions of a square matrix are thus the same value; this is referred

to as its dimension.

A.7.3 Vectors

A matrix with one only row or only one column is referred to as a vector ,

either a row vector , or a column vector , respectively. One of the dimensions

of a matrix that is a vector is thus equal to unity; the other is referred to as

the dimension of the vector.

Three-vectors and four-vectors are special types of vector, which are dis-

cussed in Sections A.8 and A.9. Except for three-vectors, there are no special

symbols to denote vectors.

From the above definitions, it follows that the adjective d-dimensional

may refer to a vector or a square matrix, but no other matrices.

A.7.4 Indices

The position of a matrix element in a matrix is measured by two enumerated

quantities, termed indices .

A matrix symbol is dereferenced by placing the row and column indices

as subscripts on the matrix symbol, with the row index to the left of the

column index; the resulting notation may optionally be placed in parentheses

for emphasis.

The enumeration set used to represent a matrix index’s possible values

must have the same dimension as the corresponding dimension of the matrix,

but it may, in general, have arbitrary offset; in practice, however, the cor-

responding enumeration sets are usually either zero-offset or unit-offset, and

344



are usually of equal offset for both indices of a given matrix. If no definite

specification is made in the text, the default action is to assume a matrix’s

indices to be unit-offset.

The row index for a column vector, and the column index for a row vector,

may be omitted, and the default action is to do so.

A.7.5 Explicit listing of matrix elements

The entries in a matrix may be written out explicitly by arranging them

into a rectangular array surrounded by large parentheses, whereby rows and

columns take on their typographical meaning.

For an example of the listing of matrix elements, see equation (A.54).

A.8 Relativistic mechanics

A.8.1 Lab frames

This thesis does not consider gravitational questions; thus, the spacetime

manifold employed is always flat. The specially relativistic notion of a global

inertial frame is therefore applicable; such a frame is referred to equivalently

as a lab frame or a Lorentz frame.

(The term frame itself connotes the dual concept of a coördinate system

that is globally valid : a frame “moves mechanically” as a rigid whole.)

The definite article is sometimes used to single out a frame that has some

importance for a particular pratical application. In such cases, the phrase

“the lab frame” is used to distinguish this particular Lorentz frame from the

MCLF of the particle in question (see Section A.8.16). However, both frames

are “lab frames”.

On the other hand, the CACS of a particle is not a Lorentz frame (see Sec-

tion A.8.17).

Quantities evaluated in a lab frame are described by the adjective lab.
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A.8.2 Lorentz tensors

Rank-zero, rank-one and rank-two Lorentz-covariant quantities are referred

to as Lorentz scalars , Lorentz vectors and Lorentz tensors respectively. Lor-

entz-covariant tensors of rank r > 2 are disambiguated from the rank-two

term by referring to them explicitly as rank-r Lorentz tensors .

Lorentz vectors are also referred to as four-vectors , and Lorentz tensors

as four-tensors ; these terms may optionally be prefixed by the adjective

“Lorentz” for disambiguation or emphasis. Physical quantities described by

four-vectors may generally be described using the prefix four-. Antisymmet-

ric Lorentz tensors are sometimes referred to as six-vectors , or bi-vectors ;

the three-vector constructed from the time–space components is referred to

as the electric part , and the three-vector constructed from the space–space

components as the magnetic part , whether or not the bi-vector describes the

electromagnetic field.

A.8.3 Notation for Lorentz quantities

Lorentz-covariant quantities are denoted by symbols from the standard sym-

bol set. In the case where a four-vector and a four-tensor, or a four-tensor

and another four-tensor, are closely related to each other (usually, but not

always, via a duality transformation), then, in the case of a four-vector and

a four-tensor, the latter may be denoted by the same symbol as the for-

mer, adorned with a tilde; and in the case of two four-tensors, one may be

arbitrarily chosen, and adorned with a tilde.

The symbol is dereferenced by superscripting with the appropriate space-

time indices, which take values from the zero-offset four-dimensional enu-

meration set, i.e., the values 0, 1, 2 and 3. The value 0, also given the

enumeration name t, denotes the time component of spacetime. The values

1, 2 and 3, also given the enumeration names x, y and z respectively, denote

the spatial components. Contravariant indices are superscripted; covariant
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indices are subscripted.

An index denoted by a Latin symbol takes on the values of the unit-offset

three-dimensional enumeration set only, i.e., they run from 1 to 3; indices

denoted by Greek symbols take on all values of the enumeration set, i.e., run

from 0 to 3.

A.8.4 Raising and lowering indices

The indices of a Lorentz quantities are raised and lowered using the metric

tensor g (see Section A.8.12).

A.8.5 Explicit listing of components

Components of a four-vector are sometimes required to be shown explicitly.

In such a case the components of the four-vector are listed in parentheses,

separated by commas; for example,

(γ, γvx, γvy, γvz). (A.41)

The spatial part, being a three-vector (see Section A.9), may be replaced by

any valid three-vector notation; for the example above,

(γ, γv).

In each case the components listed are always the contravariant components

of the four-vector.

The components of a four-tensor sometimes need to be listed explicitly.

Matrix notation is used for such purposes (see Section A.7.5).

A.8.6 Outer-products

Lorentz-covariant quantities placed adjacent to each other are considered to

represent the outer-product , i.e., the simple product of the components; thus,
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AB denotes the four-tensor that is the outer-product of the four-vectors A

and B:

(AB)αβ ≡ AαBβ. (A.42)

A.8.7 Inner-products, dot-products

A nondereferenced four-vector with a central dot either preceding or following

it denotes the operation variously known as the contraction, inner-product

or dot-product of that four-vector with the quantity lying to the other side

of the central dot; for example, given two four-vectors A and B, then

A·B ≡ AαBα. (A.43)

A nondereferenced four-tensor with a central dot preceding (following) it

denotes the dot-product of that four-tensor with the quantity lying to the

left (right) of the central dot, over the first (second) index of the four-tensor.

For example, if A and B are four-vectors and F a four-tensor, then A·F has

components

(A·F )α ≡ AβFβ
α, (A.44)

and F ·B has components

(F ·B)α ≡ F α
βBβ. (A.45)

Four-tensors may be dot-producted on both sides at once; for example,

A·F ·B ≡ AαFα
βBβ, (A.46)

and may be “chained” together into longer dot-products:

A·F ·F ·B ≡ AαFα
βFβ

µBµ. (A.47)

In any of the above dot-products using the central dot, in which all indices

are fully contracted (i.e., the result is a Lorentz scalar), parentheses are often

used to visually delineate the product; e.g.,

D(A·F ·B) ≡ DA·F ·B, (A.48)
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where the first product is of course an outer-product (simple multiplication).

Parentheses or brackets must be used around proper-time derivatives of

kinematical quantities where there is a difference between the partial and

covariant derivatives (see Section A.8.22).

A.8.8 Chained dot-product rings

If a central dot both precedes and follows a product of one or more nonderef-

erenced four-tensors, an inner-product over the first index of the leftmost

tensor and the second index of the rightmost tensor is deemed to take place;

for example, if F , G and H are four-tensors, then

·F · ≡ Fα
α, (A.49)

·F ·G· ≡ Fα
βGβ

α, (A.50)

·F ·G·H· ≡ Fα
βGβ

γH
γ

α. (A.51)

The notation is meant to imply that the factors are conceptually wrapped

into a ring, whereby the leading and trailing central dots would be merged

into one.

A.8.9 Epsilon products

If A, B, C and D are four-vectors, then the epsilon product of them is defined

as

ε(A,B,C,D) ≡ εαβµνA
αBβCµDν . (A.52)

If one entry in the ε( ) symbol is a four-tensor, and there are only two commas

in the symbol, then the four-tensor is deemed to carry the two adjacent

indices in the inner-product. Likewise, if there are two four-tensor entries in

the ε( ) symbol, and only one comma, then the two four-tensors are deemed

to carry the four indices. For example, if A and B are four-vectors, and F
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and G are four-tensors, then

ε(A,B, F ) ≡ εαβµνA
αBβF µν ,

ε(A,F,B) ≡ εαβµνA
αF βµBν ,

ε(F, A,B) ≡ εαβµνF
αβAµBν ,

ε(F,G) ≡ εαβµνF
αβGµν .

If one of the entries in the ε( ) symbol is vacant, then the overall symbol rep-

resents a four-vector with the vacant entry as the vector index; for example,

ε(, B, C,D) has components

(
ε(, B, C,D)

)α ≡ εα
βµνB

βCµDν .

If two entries in the ε( ) symbol are vacant, then the overall symbol represents

a four-tensor, where the first vacant entry represents the first index, and the

second vacant entry the second index; for example, ε(, B, , D) has components

(
ε(, B, , D)

)αµ ≡ εα
β

µ
νB

βDν .

A.8.10 Cross-products

An alternative notation for the epsilon product is that of the four-cross-

product . It is defined, for four-vectors B, C and D, as

B×C×D ≡ ε(, B, C, D). (A.53)

(This is analogous to the three-vector case; see Section A.9.13.)

Either pair of adjacent four-vectors may be replaced by a four-tensor;

e.g., if F is a four-tensor, then

F×D ≡ ε(, F,D),

B×F ≡ ε(, B, F ).
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The fully-contracted quantity ε(A,B, C, D) may, as with the three-dimen-

sional case, be written by using a combination of the dot and cross products:

ε(A,B, C,D) ≡ A·B×C×D.

Additionally, the cross-product symbol is defined to be valid for only two

four-vector factors, namely,

C×D ≡ ε(, , C, D).

If the four-vectors C and D are to be replaced by a four-tensor F , the cross

symbol that would otherwise appear between C and D may be placed above

the symbol F :
×
F ≡ ε(, , F ).

Finally, one may also place a cross above a single three-vector D; this is

defined as
×
D ≡ ε(, , , D).

A.8.11 Wedge-products

The wedge product of two four-vectors A and B is defined as

A ∧B ≡ A[αBβ].

A.8.12 Metric tensor

The fully covariant and fully contravariant metric tensors are denoted gµν

and gµν respectively. They both have the explicit components

(gµν) ≡ (gµν) ≡




+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (A.54)

in a lab frame.
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The use of this signature of metric means that raising or lowering a time

component index of a quantity does not change the value of the quantity; on

the other hand, it does mean that the position of placement of Latin indices

on the symbols of Lorentz-covariant quantities is important. However, the

position of placement of indices on non-Lorentz-covariant three-vectors is

defined to be in all cases irrelevant, just as it is for mathematically non-

Lorentz-covariant three-vectors (see Section A.9). For example, with xα the

symbol for the four-position, xi and xi are different (indeed, xi ≡ −xi); on

the other hand vi ≡ dtx
i requires no distinction, as it is a non-covariant

quantity; it may, if convenient, be denoted vi, but in all cases vi ≡ vi. This

implicit convention is of use, conceptually, when one side of an equation or

definition involves (implicitly or explicitly) a non-covariant three-vector, and

the other the spatial part of a covariant quantity (see, e.g., the definition of v

below). In practice, however, subscripts are generally used on non-covariant

quantities in explicit expressions.

A.8.13 Timelike, spacelike, lightlike

If A is a four-vector, then it is timelike if A2 > 0; it is spacelike if A2 < 0; it

is lightlike if A2 = 0.

If, in some particular Lorentz frame, A = 0, then A is purely timelike in

that frame; if A0 = 0, then A is purely spacelike in that frame.

A.8.14 Four-position of a particle

The Lorentz-covariant four-position of a classical particle is denoted zα.
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A.8.15 Three-velocity of a particle

The non-covariant three-velocity of a classical particle, as seen in some given

lab frame, is denoted v, and is defined as

v ≡ dtz, (A.55)

where t is the time-coördinate in that frame.

A.8.16 MCLF of a particle

The momentarily comoving Lorentz frame, or MCLF , of a classical particle

at any given instant of time is defined to be the lab frame in which the

particle’s instantaneous three-velocity v vanishes, and its mechanical energy

is greater than zero.

The MCLF is often referred to by the alternative term instantaneous rest

frame.

Note that the MCLF is a Lorentz frame, and remains so for all time. If

the particle is being accelerated, then the MCLF at one moment will not be

the MCLF at the next instant; the latter is a new Lorentz frame.

A.8.17 CACS of a particle

The co-accelerated coördinate system of a classical particle, or CACS, is a

system of coördinates that is co-accelerated with the particle.

Unless the particle is unaccelerated for all time, the CACS does not con-

stitute a Lorentz frame.

A.8.18 MCLF and CACS components

Components of quantities evaluated in the MCLF (or, in general, any other

Lorentz frame) may be denoted by surrounding the dereferenced quantity by
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brackets; e.g.,

Cα|MCLF≡ [Cα]. (A.56)

Components of quantities evaluated in the CACS, on the other hand, are

denoted by surrounding the quantity by parentheses, and then dereferencing

the resulting symbol; e.g.,

Cα|CACS≡ (C)α. (A.57)

These notational distinctions are of vital importance when considering pro-

per-time derivatives; see Section A.8.22.

The use of brackets and parentheses to denote the difference between

MCLF and CACS components overrides the otherwise general equivalence of

these binding symbols specified in Section A.3.8.

We extend the notation to products of Lorentz quantities also: if C and

D are kinematical four-vectors, then

(C ·D) ≡ (C)·(D),

[C ·D] ≡ [C]·[D],

(C2m) ≡ (C)2m,

[D2m] ≡ [D]2m,

(C∧D) ≡ (C)∧(D),

[C∧D] ≡ [C]∧[D].

If the MCLF and CACS components of some particular Lorentz quantity

are numerically identical, when referred to an arbitrary lab frame, then either

brackets or parentheses, or neither, may be used around the Lorentz quan-

tity’s symbol, as convenient. If the referred components are not identical,

however, either brackets or parentheses must be used, or else the expression

is in error.

354



A.8.19 Proper time of a particle

The proper time for a classical particle is denoted τ , and is defined as the

cumulative time measured in the particle’s CACS.

Referred to an arbitrary lab frame with coördinates (t, x), the differential

of τ is given by

dτ ≡ ±dt
√

1− v2, (A.58)

where the sign is + (−) if the particle’s mechanical energy in the lab frame

is positive (negative).

A.8.20 Overdots

An overdot on a Lorentz-covariant quantity always denotes dτ . Refer to

Sections A.8.21 and A.8.22 for a description of the various ways the proper-

time derivative may be computed.

An overdot on a non-covariant quantity always denotes dt.

A.8.21 Convective derivative

The proper-time derivative of a quantity that is “external” to the particle in

question (i.e., is not an intrinsic quality of the particle itself, but is due to

an outside agent; e.g., an externally applied field) is given by the relativistic

convective derivative,

dτE ≡ (U ·∂)E, (A.59)

where E is the external quantity in question. Overdots are not to be used

to denote such a derivative.

A.8.22 Kinematical proper-time derivatives

The proper-time derivative of an intrinsic kinematical property of a particle

can be computed in two different ways.
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The first way is to simply measure the time-derivatives of the components

of covariant quantities, in the MCLF of the particle: we [65] refer to this as

the partial proper-time derivative of the quantity. Using the notation (A.56),

we have

dτ

{
[Cα]

}
≡ [Ċα]. (A.60)

The second way to define the proper-time derivative of a kinematical

quantity is to compute it as seen in the CACS . In other words, we need to

compute the proper-time derivative of the covariant quantity, in an abstract

way, along the particle’s motion, and then evaluate its components (if re-

quired) in some Lorentz frame: we refer to this as the covariant proper-time

derivative. Using the notation (A.57), we have
{
dτC

}α ≡ (Ċ)α. (A.61)

It is shown in Chapter 2 that the connection between the partial and

covariant proper-time derivatives, for an arbitrary kinematical four-vector

C, is given by

(Ċ)α = [Ċα] + Uα(U̇ ·C). (A.62)

A.8.23 Four-velocity of a particle

The four-velocity of a classical particle is denoted Uα, and is defined as

Uα ≡ żα. (A.63)

A.8.24 Mechanical four-momentum

The mechanical four-momentum of a classical particle of mass m is denoted

pα, and is defined as

pα ≡ mUα.

A massless particle is a particle for which m = 0. It is assumed that

massless particles have finite mechanical momentum components. Thus, τ

and Uα are undefined for massless particles.
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A.8.25 Nonrelativistic and pre-relativistic limits

There are two distinct low-velocity limits of special relativity that are recog-

nised throughout this thesis, and they are not equivalent.

We call the prerelativistic limit of the motion of a classical particle that

limit obtained by only retaining terms up to first order in the three-velocity

of the particle or any of its lab-time derivatives, i.e., any of v, v̇, v̈, . . . ,

but discarding any terms jointly proportional to more than one of these

quantities. Note carefully that the acceleration, jerk, etc. (i.e., v̇, v̈, etc.)

may not be replaced in any way (such as by using equations of motion) before

taking the prerelativistic limit.

The prerelativistic limit only achieves its full power in the CACS of the

particle. Under these conditions, the prerelativistic equations of motion, if

obtainable by first principles, may be used to uniquely and rigorously obtain

the fully covariant equations of motion for the particle.

We call the nonrelativistic limit that limit obtained by replacing the ac-

celeration, jerk, etc. (i.e., v̇, v̈, etc.) by expressions possibly involving v

(but no time-derivatives of v) wherever they appear in the fully relativistic

equations, by using the equations of motion, together with any constitutive

equations available, and then retaining only terms up to first order in v. It

should be noted that this is not equivalent to the prerelativistic limit defined

above. (Most famously, the Thomas precession of the prerelativistic limit is

converted to a numerical “Thomas factor” in the nonrelativistic limit.) The

nonrelativistic limit is less powerful than the prerelativistic limit.

See Section 2.6.12 for a more detailed discussion of these issues.

A.8.26 C, P, T

In any Lorentz frame with coördinates (t,x), the operation

x → −x (A.64)
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is referred to as the parity operation, and is denoted P . The operation

t → −t (A.65)

is referred to as the time reversal operation, and is denoted T .

The operation of exchanging particles with antiparticles, and vice versa, is

referred to as the particle–antiparticle conjugation operation, and is denoted

C.

In classical physics, particle–antiparticle conjugation is carried out via

the operation

τ → −τ (A.66)

for all particles. Thus, in classical physics, the CPT theorem is axiomatic.

A.9 Euclidean three-space

We deem the prefixes “three-” and “three-space-” to be appropriate choices

for the prefix G- of Section A.3.18 when discussing manifestly covariant

treatments of three-dimensional Euclidean space. The choice of prefix in

any particular situation is arbitrary, and is generally made on the basis of

nomenclatorial clarity.

A.9.1 Three-tensors

Rank-zero, rank-one and rank-two three-space tensors are referred to as three-

scalars , three-vectors and three-tensors respectively. Three-covariant tensors

of rank r > 2 are disambiguated from the rank-two term by referring to

them explicitly as rank-r three-tensors . Three-tensors are also referred to as

three-dyads .
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A.9.2 Notation for three-space quantities

Three-scalars are denoted by symbols from the standard symbol set. Three-

vectors and three-dyads are denoted by boldfacing a symbol from the stan-

dard symbol set.

A three-vector or three-dyad symbol is dereferenced by removing the bold-

ness of the face and subscripting or superscripting the resulting symbol with

the appropriate index or indices, which take values from the unit-offset three-

dimensional enumeration set, i.e., the values 1, 2 and 3. These enumerations

are also given the enumeration names x, y and z respectively.

If a dereferenced three-vector is a non-Lorentz-covariant quantity, then

the choice of whether a subscript or superscript index is used is arbitrary ;

the result is deemed to be in all cases the same. If the three-vector is, on the

other hand, the three-vector part of a Lorentz four-vector, then the choice

of subscript or superscript will select the covariant or contravariant version

respectively of the three-vector part of the given four-vector.

Indices for three-vectors are always Latin elements of the standard symbol

set, never Greek, and are preferentially taken from the symbols i, j, k, l, m

and n before any others.

A.9.3 The null three-vector

The null three-vector , (0, 0, 0), is always denoted 0.

A.9.4 The three-gradient operator

The symbol ∇ denotes the three-vector derivative operator, and is defined

to have the explicit components

∇ ≡ (∂1, ∂2, ∂3) ≡ (∂x, ∂y, ∂z) . (A.67)

The symbol ∂, being a special symbol, does not have a standard boldface
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three-vector conversion. In any case, the boldfaced typographical symbol ∂

is hereby explicitly decommissioned.

A.9.5 Explicit listing of components

Components of a three-vector are sometimes required to be shown explicitly.

In such a case the components of the three-vector are listed in parentheses,

separated by commas; for example,

(vx, vy, vz). (A.68)

The components of a three-dyad sometimes need to be listed explicitly.

Matrix notation is used for such purposes.

A.9.6 Mixed notation

Different choices of three-vector notation may be used for different parts of

an expression or equation, if convenient and unambiguous. In particular, a

different choice of notation may be used for either side of an equation, but

only if the equation is a scalar or vector one. Thus,

A·B = CiDi (A.69)

is a valid (scalar) equation, as are

U = (γvx, γvy, γvz) (A.70)

and

A×B = εijkAjBk (A.71)

(vector equations—the unpaired index i in (A.71) automatically taken to be

the implicit index of the left hand side), but equations such as

Aij = BiCj (A.72)

(three-dyad equations) may not be rewritten in mixed notation.
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A.9.7 Uniqueness of symbols

No boldfaced symbol in this thesis is used in the same section for both a

three-vector and a three-dyad.

No boldfaced symbol in this thesis is used in the same section for two

different three-vectors unless the three-vectors are identical. This implies

that if some given three-vector is the three-vector part of a Lorentz four-

vector, and another three-vector is not, then they may not be assigned the

same symbol. This further implies that a four-vector may not be denoted by

the same symbol as an existing three-vector unless the three-vector part of

the four-vector is identical to the existing three-vector, and vice versa. For

example, since the non-covariant three-velocity is denoted by the symbol v,

the four-velocity (γ, γv) could not be denoted vα, since the three-vector part

of this, equal to γv, would implicitly be denoted by v, which is an absurdity.

When a three-vector denoted by boldface is actually the three-vector part

of a Lorentz four-vector, it is always the contravariant three-vector that is

denoted. Conversely, the use of the boldface of a symbol that was previously

defined as a four-vector denotes, without need for explicit comment, the

contravariant three-vector part of that four-vector. Thus, if Cα is some

arbitrary four-vector, then

C ≡ (C1, C2, C3)

implicitly, so that once Cα is defined, the quantity C may be used without

explicit comment.

A.9.8 Parentheses and brackets

The placing of brackets or parentheses around the boldface of a four-vector

symbol disambiguates the MCLF and CACS evaluations of the three-vector

part of that four-vector (see Section A.8.18).
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A.9.9 Magnitude of a three-vector

The magnitude of a three-vector A is defined as

√
A2. (A.73)

If, and only if, a three-vector is not the three-vector part of any Lorentz

four-vector, then the magnitude of the three-vector may be denoted by the

symbol of the three-vector with the boldface removed, without explicit com-

ment. For example, if A is a three-vector, but not part of any four-vector

Aµ, then its magnitude (A.73) may be referred to as simply A, without need

for explicit comment.

A.9.10 Outer-products

Three-vectors placed adjacent to each other are considered to represent the

outer-product , i.e., the simple product of the components; thus, AB denotes

the three-dyad that is the outer-product of the three-vectors A and B:

(AB)ij ≡ AiBj. (A.74)

A.9.11 Dot-products

The dot-product of two three-vectors A and B is defined as

A·B ≡ AiBi.

A nondereferenced three-dyad with a central dot preceding (following) it

denotes the dot-product of that three-dyad with the quantity lying to the

left (right) of the central dot, over the first (second) index of the three-dyad.

For example, if A and B are three-vectors and F a three-dyad, then (A·F )

has components

(A·F )i ≡ AjFji, (A.75)
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and (F ·B) has components

(F ·B)i ≡ FijBj. (A.76)

Three-dyads may be dot-producted on both sides at once; for example,

(A·F ·B) ≡ AiFijBj, (A.77)

and may be “chained” together into longer inner-products:

(A·F ·F ·B) ≡ AiFijFjkBk. (A.78)

A.9.12 Epsilon products

For any three-vectors A, B and C, the epsilon product is defined as

ε(A, B,C) ≡ εijkAiBjCk. (A.79)

As with the case with four-vectors, three-dyads may be used in the ε(, , )

notation: they cover two adjacent positions; e.g., if F is a three-dyad, then

ε(A,F ) ≡ εijkAiFjk,

ε(F ,C) ≡ εijkFijCk,(
ε(,F )

)
i
≡ εijkFjk,

(
ε(F , )

)
k
≡ εijkFij.

One or two of the entries in the ε(, , ) symbol may be vacant; the symbol

then represents a three-vector, or a three-dyad, respectively:

(
ε(,B, C)

)
i
≡ εijkBjCk,

(
ε(, , C)

)
ij
≡ εijkCk.
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A.9.13 Cross-products

An alternative notation for the epsilon product is that of the three-cross-

product . It is defined, for three-vectors A and B, as

A×B ≡ ε(,A, B).
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Appendix B

Supplementary Identities

B.1 Introduction

In this appendix, we collect together various identities used throughout this

thesis, for convenient reference. The notation and conventions used are ex-

plained in Appendix A.

B.2 The electromagnetic field

B.2.1 The four-potential

The fundamental physical object characterising the electromagnetic field is

the massless four-vector field A(x), which is, for the purposes of this the-

sis, treated as a classical field, and referred to as the electromagnetic four-

potential .

A(x) is not physically observable in its own right.
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B.2.2 The field strength tensor

The six-vector F (x) is referred to as the electromagnetic field strength tensor ,

and is obtained from A(x) by means of the definition

F ≡ ∂∧A. (B.1)

B.2.3 The homogeneous Maxwell equations

From the definition (B.1), one immediately finds the homogeneous Maxwell

equations ,

∂αFβγ + ∂βFγα + ∂γFαβ ≡ 0. (B.2)

Note that magnetic charges (“monopoles”) cannot exist if the four-potential

A(x) is assumed to be fundamental.

B.2.4 The dual field strength tensor

The dual electromagnetic field strength tensor , F̃ (x), is obtained from F (x)

according to

F̃ ≡ −1

2

×
F, (B.3)

where in (B.3) we employ the four-cross-product notation defined in Sec-

tion A.8.10. From (B.3), one can show that the reverse transformation is

F ≡ 1

2

×
F̃ . (B.4)

B.2.5 The electromagnetic duality transformation

The minus sign in (B.3) might seem misplaced to some readers. It can be

traced back to the sign convention chosen for the alternating function in

Section A.5.4. The sign of (B.3) has, in fact, been chosen so that the explicit
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electric and magnetic parts of F̃ are always related to those of F by means

of the electromagnetic duality transformation:

E −→ B,

B −→ −E. (B.5)

B.2.6 The dual homogeneous Maxwell equation

In terms of F̃ , the homogeneous Maxwell equations (B.6) can be rewritten

∂ ·F̃ = 0. (B.6)

B.2.7 The inhomogeneous Maxwell equation

The electromagnetic source current four-vector, J(x), is defined by

J ≡ ∂ ·F. (B.7)

Equation (B.7) is referred to as the inhomogeneous Maxwell equation.

The antisymmetry of F , from (B.1), then shows that J(x) is a conserved

current, i.e.,

∂ · J = 0. (B.8)

Physical objects are often ascribed an electromagnetic source current a priori .

B.2.8 The dual inhomogeneous Maxwell equations

In terms of the dual electromagnetic field strength tensor, F̃ , equation (B.7)

can be written

∂αF̃βγ + ∂βF̃γα + ∂γF̃αβ = −εαβγµJ
µ. (B.9)
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B.2.9 Explicit electromagnetic components

For non-manifestly-covariant analyses, the explicit four-vector components

Aµ ≡ (φ, A), (B.10)

Jµ ≡ (ρ, J), (B.11)

and the explicit four-tensor components

Fαβ ≡




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


 , (B.12)

F̃αβ ≡




0 Bx By Bz

−Bx 0 Ez −Ey

−By −Ez 0 Ex

−Bz Ey −Ex 0


 , (B.13)

are employed; in other words, E and B are defined as

E ≡ −∇φ− ∂tA,

B ≡ ∇×A. (B.14)

B.2.10 Explicit Maxwell equations

In terms of the explicit quantities ρ, J , E and B, the Maxwell equations

(B.6) and (B.7) become

∇·B ≡ 0, (B.15)

∇×E + ∂tB ≡ 0, (B.16)

∇·E ≡ ρ, (B.17)

∇×B − ∂tE ≡ J , (B.18)

while the source current conservation equation (B.8) becomes

∂tρ +∇·J ≡ 0. (B.19)
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B.2.11 Quadratic field identities

By multiplying out the matrices (B.12) and (B.13), after raising one index

of both using the metric, one may verify that

·F ·F · ≡ 2(E2 −B2), (B.20)

·F̃ ·F̃ · ≡ 2(B2 −E2), (B.21)

·F ·F̃ · ≡ 4(E ·B), (B.22)

·F̃ ·F · ≡ 4(E ·B), (B.23)

F ·F̃ ≡ 1

4
(·F ·F̃ ·)g, (B.24)

F̃ ·F ≡ 1

4
(·F ·F̃ ·)g, (B.25)

F ·F − F̃ ·F̃ ≡ 1

2
(·F ·F ·)g. (B.26)

B.2.12 Other field identities

The following three identities are proved in Appendix C:

∂(U ·A)− (U · ∂)A = F · U, (B.27)

(U · ∂)F ·Σ + ∂(Σ ·F · U) = (Σ · ∂)F · U, (B.28)

(U · ∂)F̃ ·Σ + ∂(Σ ·F̃ · U) = (Σ · ∂)F̃ · U + Σ×J×U. (B.29)

B.3 Three-vectors

If ψ is a three-scalar, and a, b, c and d are three-vectors, all of which are

c-number quantities, then [113]

a·b×c ≡ b·c×a ≡ c·a×b, (B.30)

a×(b×c) ≡ (a·c)b− (a·b)c, (B.31)
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(a×b)·(c×d) ≡ (a·c)(b·d)− (a·d)(b·c), (B.32)

∇×∇ψ ≡ 0, (B.33)

∇·(∇×a) ≡ 0, (B.34)

∇×(∇×a) ≡ ∇(∇·a)−∇2a, (B.35)

∇·(ψa) ≡ a·∇ψ + ψ∇·a, (B.36)

∇×(ψa) ≡ (∇ψ)×a + ψ∇×a, (B.37)

∇(a·b) ≡ (a·∇)b + (b·∇)a + a×(∇×b) + b×(∇×a), (B.38)

∇·(a×b) ≡ b·∇×a− a·∇×b, (B.39)

∇×(a×b) ≡ a(∇·b)− b(∇·a) + (b·∇)a− (a·∇)b. (B.40)

Also,

(a·∇)x ≡ a. (B.41)

B.4 Alternating functions

The three- and four-dimensional alternating functions are connected by

εijk ≡ ε0ijk ≡ εk0ji ≡ εjk0i ≡ εkji0, (B.42)

where

ε123 ≡ ε0123 ≡ +1. (B.43)

Products of two four-dimensional alternating functions, contracted over one,

two, three and four indices, are respectively given by

εαβγδεατµν ≡ −δβ
τ δγ

µδδ
ν + δβ

µδγ
τ δδ

ν − δβ
µδγ

ν δδ
τ + δβ

ν δγ
µδδ

τ − δβ
ν δγ

τ δδ
µ + δβ

τ δγ
ν δδ

µ,

εαβγδεαβµν ≡ −2δγ
µδδ

ν + 2δγ
ν δδ

µ,

εαβγδεαβγν ≡ −6δδ
ν ,

εαβγδεαβγδ ≡ −24. (B.44)
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B.5 Four-vector cross-product

The four-cross-product A×B×C has explicit components

A×B×C ≡
(
A·B×C, A0B×C + B0C×A + C0A×B

)
. (B.45)

Relation (B.45) illustrates explicitly the invariance of the four-cross-product

under a cyclic permutation of its three four-vector entries:

A×B×C ≡ B×C×A ≡ C×A×B. (B.46)

B.6 Radiation reaction gradients

The following identities are of use when computing the gradient terms in

the radiation reaction calculations of Chapter 6. (The three-vectors A and

B are “external” quantities—such as v̇—that are independent of r.) Note

that, since the resulting quantities are often to be integrated over all of rd–rs

space, symmetry may be used to eliminate many terms from the calculations.

(σ ·∇)rm
d = mrm−1

d (nd ·σ),

(σ ·∇)rm
d nd = rm−1

d

{
σ + (m− 1)(nd ·σ)nd

}
,

(σ ·∇)rm
d (nd ·A)p = rm−1

d

{
p(A·σ)(nd ·A)p−1

+ (m− p)(nd ·A)p(nd ·σ)
}

,

(σ ·∇)rm
d (nd ·A)pnd = rm−1

d

{
p(A·σ)(nd ·A)p−1nd + (nd ·A)pσ

+ (m− p− 1)(nd ·A)p(nd ·σ)nd

}
,

(σ ·∇)rm
d (nd ·A)(nd ·B)nd = rm−1

d

{
(nd ·A)(nd ·B)σ

+ (A·σ)(nd ·B)nd

+ (B ·σ)(nd ·A)nd

+ (m− 3)(nd ·A)(nd ·B)(nd ·σ)nd

}
,

(σ ·∇)rm
d rs(ns ·A) = rm

d (A·σ) + mrm−1
d rs(nd ·σ)(ns ·A),
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(σ ·∇)rm
d rs(ns ·A)nd = rm−1

d rs
{
(ns ·A)σ

+ (m− 1)(nd ·σ)(ns ·A)nd

}

+ rm
d (A·σ)nd,

(σ ·∇)rs(nd ·A)(ns ·B) = r−1
d rs

{
(A·σ)(ns ·B)

− (nd ·A)(nd ·σ)(ns ·B)
}

+ (B ·σ)(nd ·A),

(σ ·∇)rm
d rs(nd ·A)(ns ·B)nd = rm−1

d rs
{
(A·σ)(ns ·B)nd

+ (nd ·A)(ns ·B)σ

+ (m− 2)(nd ·A)(nd ·σ)(ns ·B)nd

}

+ rm
d (B ·σ)(nd ·A)nd,

(σ ·∇)r2
s (ns ·A)2 = 2rs(A·σ)(ns ·A),

(σ ·∇)r−1
d r2

s (ns ·A)2 = 2r−1
d rs(A·σ)(ns ·A)

− r−2
d r2

s (nd ·σ)(ns ·A)2,

(σ ·∇)r−1
d r2

s (ns ·A)2nd = r−2
d rs

{
(ns ·A)2σ − 2(nd ·σ)(ns ·A)2nd

}

+ 2r−1
d rs(A·σ)(ns ·A)nd,

(σ ·∇)rs(nd ·A)2(ns ·B)nd = r−1
d rs

{
(nd ·A)2(ns ·B)σ

+ 2(A·σ)(nd ·A)(ns ·B)nd

− 3(nd ·A)2(nd ·σ)(ns ·B)nd

}

+ (B ·σ)(nd ·A)2nd,

(σ ·∇)r−1
d r2

s (nd ·A)(ns ·B)2nd = r−2
d r2

s

{
(nd ·A)(ns ·B)2σ

+ (A·σ)(ns ·B)2nd

− 3(nd ·A)(ns ·B)2(nd ·σ)nd

}

+ 2r−1
d rs(B ·σ)(nd ·A)(ns ·B)nd. (B.47)
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Appendix C

Supplementary Proofs

C.1 Introduction

In this appendix, we collect together various proofs whose explicit inclusion

in the body of this thesis was considered unwarranted, but whose inclusion

as reference material may be useful to some readers.

C.2 Mechanical field excesses

In this section, we derive the Coulomb-gauge expressions for the excess in the

field mechanical momentum and energy caused by an electric charge being

brought into the vicinity of the other electric sources in the Universe, in the

nonrelativistic limit.

C.2.1 Electric charge mechanical energy excess

(This proof is taken directly from Section 1.11 of Jackson’s textbook [113].)

The electromagnetic field mechanical energy is given by the following

integral over all space:

Wfield =
1

2

∫
d 3r E2(r). (C.1)
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For two electric charges q1 and q2, at positions z1 and z2, their Coulomb

fields yield

E(r) =
q1(r − z1)

4π |r − z1|3
+

q2(r − z2)

4π |r − z2|3
,

so the resulting field energy (C.1) is

Wfield =
1

2

q2
1

(4π)2

∫
d 3r

1

|r − z1|4
+

1

2

q2
2

(4π)2

∫
d 3r

1

|r − z2|4

+
q1q2

(4π)2

∫
d 3r

(r − z1)·(r − z2)

|r − z1|3 |r − z2|3
.

The first two terms are the field mechanical energy expressions for the charges

alone, and are independent of the relative separation of the charges. The

excess field mechanical energy is therefore given by the last term. A change

to the integration variable

ρ ≡ r − z1

|z1 − z2|
yields

Wexcess =
q1q2

(4π)2 |z1 − z2|
∫

d 3ρ
ρ ·(ρ + n)

ρ 3 |ρ + n|3 ,

where

n ≡ z1 − z2

|z1 − z2| .

Using the identity
ρ + n

|ρ + n|3 ≡ −∇ρ
1

|ρ + n| , (C.2)

one finds ∫
d 3ρ

ρ·(ρ + n)

ρ 3 |ρ + n|3 = 4π, (C.3)

and hence

Wexcess =
q1q2

4π |z1 − z2| . (C.4)
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Now, since the Coulomb-gauge potential ϕ generated by charge 1 or 2 at the

position of charge 2 or 1 is given by (see, e.g., [113, Ch. 1])

ϕ1(z2) =
q1

4π |z1 − z2| ,

ϕ2(z1) =
q2

4π |z1 − z2| ,

we find that the excess field mechanical energy (C.4) can be written

Wexcess = q2ϕ1(z2) = q1ϕ2(z1). (C.5)

The linearity of Maxwell’s equations, and the quadraticity of the mechanical

field energy expression (C.1), then shows that, for any given electric charge q,

the excess mechanical field energy caused by the bringing of this charge into

any arbitrary distribution of electromagnetic scalar potential ϕ(r) is given

by

Wexcess = qϕ(z),

where z is the position of the charge q.

C.2.2 Electric charge mechanical momentum excess

The electromagnetic field mechanical momentum is given by the following

integral over all space:

pfield =
∫

d 3r E(r)×B(r). (C.6)

Let us consider placing an electric charge, at rest, amidst some arbitrary

magnetic field distribution B(r). The Coulomb electric field of the charge,

together with the magnetic field distribution B(r), will then yield a contri-

bution to (C.6). The Coulomb field of the charge is given by

E(r) =
q(r − z)

4π |r − z|3 ,
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where z is the position of the charge. The magnetic field B(r) is itself given

by [113, Sec. 5.3]

B(r) =
∫

d 3r′
J(r′)×(r − r′)

4π |r − r′|3 ,

where J(r′) is the electric current distribution generating the magnetic field

B(r). Thus

pfield =
q

(4π)2

∫
d 3r

∫
d 3r′

(r − z)×[J(r′)×(r − r′)]

|r − z|3 |r − r′|3

Now noting that, in the Coulomb gauge [113, Sec. 5.4],

A(r) =
∫

d 3r′
J(r′)

4π |r − r′| ,

and again using the results (C.2) and (C.3), one finds, upon integration,

pexcess = qA(z). (C.7)

C.3 Electromagnetic field identities

The proofs of equations (B.27), (B.28) and (B.29) proceed as follows:

∂(U ·A)− (U · ∂)A = ∂ α(UβAβ)− (Uβ∂β)Aα

= Uβ
{
∂ αAβ − ∂βAα

}

= UβFα
β

= Fα
βUβ

= F · U ;

hence,

∂(U ·A)− (U · ∂)A = F · U ;

this is equation (B.27).

(U · ∂)F ·Σ + ∂(Σ ·F · U) = Uγ∂γF
α
βΣ

β + ∂ αΣ βFβγU
γ

376



= UγΣ β
{
∂γF

α
β + ∂ αFβγ

}

= UγΣ β
{
−∂βFγ

α
}

= −Uγ(Σ · ∂)F γα

= +Uγ(Σ · ∂)Fαγ

= (Σ · ∂)F · U ;

hence,

(U · ∂)F ·Σ + ∂(Σ ·F · U) = (Σ · ∂)F · U ;

this is equation (B.28).

(U · ∂)F̃ ·Σ + ∂(Σ ·F̃ · U) = Uγ∂γF̃
α
βΣ

β + ∂ αΣ βF̃βγU
γ

= UγΣ β
{
∂γF̃

α
β + ∂ αF̃βγ

}

= UγΣ β
{
−∂βF̃γ

α − εα
βγµJ

µ
}

= −Uγ(Σ · ∂)F γα − εα
βγµΣ

βUγJµ

= +Uγ(Σ · ∂)Fαγ + εα
βγµΣ

βJγUµ

= (Σ · ∂)F · U + Σ×J×U ;

hence,

(U · ∂)F̃ ·Σ + ∂(Σ ·F̃ · U) = (Σ · ∂)F̃ · U + Σ×J×U ;

this is equation (B.29).
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Appendix D

Retarded Fields Verification

D.1 Introduction

In this appendix, we demonstrate the veracity of the manifestly covariant

retarded dipole fields (5.69) derived in Section 5.4.5, by showing that they

agree completely with the explicit expressions obtained in 1976 by Cohn and

Wiebe [54], based on the general expression for the four-potential found in

1967 by Kolsrud and Leer [124]. This task is non-trivial, as the conventions

and notation used by Cohn and Wiebe are significantly different from those

used throughout this thesis.

D.2 The Cohn–Wiebe field expressions

In this section we list the expressions given for the retarded fields exactly

as given by Cohn and Wiebe [54]. The conversion to our conventions and

notation will be performed in later sections.

Cohn and Wiebe start with the standard electric charge (or “non-spin”)

retarded potential in the Lorentz gauge,

Aµ
n.s. = − eV µ

RαVα

, (D.1)
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and the Kolsrud–Leer [124] retarded potential for a particle carrying electric

and magnetic dipole moments (or “spin” potential),

Aµ
s =

e

2mRαVα

d

dτ

(
MµνRν

RβVβ

)
. (D.2)

(Kolsrud and Leer [124] did not include the factor e/2m in their expression;

also, Cohn and Wiebe have switched the order of the product of Rν and

Mµν , effectively introducing an extra minus sign.) It should be noted that

this expression, (D.2), differs considerably from that obtained in 1969 by

Cohn [53]; the latter result is wrong , as pointed out by Kolsrud [125], and

admitted by Cohn and Wiebe in the paper we are currently considering [54].

Cohn and Wiebe explicitly note that they are using a (+, +, +,−) metric,

world length dτ 2 = −gαβ dXαdXβ, where Xα denotes a field event (i.e., an

arbitrary four-position in space). Zα is used for the particle event (at the

retarded time), V µ = dZµ/dτ (this is misprinted as dXµ/dτ in the paper),

and Rα = Xα − Zα. The tensor Mµν is simply listed as “the moment

tensor characterising the particle”; we shall return to the question of its

normalisation value shortly.

For the remaining expressions, the particle is assumed to have no elec-

tric dipole moment (in its rest frame), so that MαβVβ = 0. After some

manipulations, they find that

F µν = F µν
(−1) + F µν

(−2) + F µν
(−3),

where

F µν
(−1) ≡ − e

mρ2

{
3

2
a2

UM [ναUαRµ] +
1

2
aUṀ [ναUαRµ] +

aU

ρ
Ṁ [ναRαRµ]

+
1

2
ȧUM [ναUαRµ] − 1

2
a2M [ναUαRµ] − 1

2
aUM [ναaαRµ]

+
1

2ρ
M̈ [ναRαRµ] + ma[νRµ] + maUV [νRµ]

}
,
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F µν
(−2) ≡ − e

mρ2

{
3

2

aU

ρ
M [ναUαRµ] +

1

2ρ
Ṁ [ναUαRµ] +

3

2
aUM [ναUαUµ]

− 1

2
M [ναUαaµ] + aUMµν +

1

ρ
Ṁ [ναRαUµ] + Ṁµν + mV [νUµ]

}
,

F µν
(−3) ≡ − e

mρ3

{
3

2
M [ναUαUµ] + Mµν

}
, (D.3)

where they have defined the convenient quantities

aµ ≡ dV µ

dτ
,

ρ ≡ −RαVα,

Uµ ≡ Rµ

ρ
− V µ,

aU ≡ aσU
σ,

ȧU ≡ ȧσU
σ, (D.4)

where the overdot denotes dτ of the components of the vectors in question

(i.e., the partial derivative, in our notation), and where the sign convention

of F µν in terms of Aµ is given by the usual (but not universal) definition

F µν ≡ ∂µAν − ∂νAµ.

D.3 Conversion of conventions

We now perform the first stage of the conversion of the Cohn and Wiebe fields

(D.3), and the corresponding convenient quantities (D.4), by translating the

basic conventions used.

Clearly, the electric charge expression (D.1) shows that Cohn and Wiebe

use an irrationalised system of units. To convert this to the rationalised

(naturalised SI) system of units used in this thesis, we need only divide the

potentials and fields by 4π.
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More important is the fact that they have used a (+, +, +,−) metric,

whereas we use a (+,−,−,−) metric. The fact that they call the temporal

component X4, rather than X0, is irrelevant: they (in contradistinction to

Kolsrud and Leer [124]) have not used “ict” at all, and so their metric is

equally well considered to be (−, +, +, +). Thus, we only need to worry

about converting from signature +2 to signature −2. To do this, one need

only note that the only time that the metric enters into the derivation is

whenever one forms a contraction over two indices:

(A·B) ≡ gαβAαBβ.

Thus, we can convert all of the Cohn and Wiebe expressions by performing

the transformation

(A·B) −→ −(A·B) (D.5)

for any Lorentz dot-product that appears. (It will be noted that their defi-

nition of the proper-time τ with a minus sign, with their metric, means that

τ needs no conversion.) It is convenient to first convert the quantities (D.4):

aµ −→ aµ,

ρ −→ −ρ,

Uµ ≡ −Rµ

ρ
− V µ,

aU −→ −aU ,

ȧU −→ −ȧU , (D.6)

where it will be noted that the change in ρ has necessitated a change in the

definition of Uµ, rather than a transformation of it. Written in terms of

these converted quantities (D.6), and performing the conversion (D.5) where

necessary, the fields (D.3) become

F µν
(−1) = − e

4πmρ2

{
−3

2
a2

UM [ναUαRµ] +
1

2
aUṀ [ναUαRµ] − aU

ρ
Ṁ [ναRαRµ]
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+
1

2
ȧUM [ναUαRµ] − 1

2
a2M [ναUαRµ] − 1

2
aUM [ναaαRµ]

+
1

2ρ
M̈ [ναRαRµ] + ma[νRµ] −maUV [νRµ]

}
,

F µν
(−2) = − e

4πmρ2

{
−3

2

aU

ρ
M [ναUαRµ] +

1

2ρ
Ṁ [ναUαRµ] +

3

2
aUM [ναUαUµ]

+
1

2
M [ναUαaµ] − aUMµν +

1

ρ
Ṁ [ναRαUµ] + Ṁµν + mV [νUµ]

}
,

F µν
(−3) = +

e

4πmρ3

{
−3

2
M [ναUαUµ] + Mµν

}
. (D.7)

We also rewrite the potentials (D.1) and (D.2) in terms of the converted

quantities:

Aµ
n.s. = +

eV µ

4πRαVα

, (D.8)

Aµ
s = − e

8πmRαVα

d

dτ

(
MµνRν

RβVβ

)
. (D.9)

D.4 Conversion of notation

We now turn to the task of converting the notation of Cohn and Wiebe into

the corresponding notation used in this thesis.

The easiest conversions involve a simple change in symbol. Clearly,

V α −→ Uα,

Rα −→ ζα,

aµ −→ U̇µ,

ȧµ −→ [Üµ]. (D.10)

The quantity ρ is also easily recognised: from (D.4), we have

ρ ≡ −(R·V ) −→ −(ζ ·U) ≡ −ϕ−1.
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(Note that the change in metric has already been absorbed into (D.7).) The

Cohn and Wiebe Uα, however, must simply be replaced by its corresponding

parts: from (D.6) we have

Uµ ≡ −Rµ

ρ
− V µ −→ ϕζµ − Uµ.

We can now compute aU and ȧU : from (D.4), we have

aU ≡ (a·U) −→ ϕ(U̇ ·ζ)− (U̇ ·U) ≡ ϕ(ζ ·U̇) ≡ ϕχ̇,

ȧU ≡ (ȧ·U) −→ ϕ[Ü ·ζ]− [Ü ·U ] ≡ ϕχ̈ + U̇2,

where in the last expression we have made use of the identity

(U ·U̇) = 0.

D.5 Verification of the retarded potentials

We now verify that the conversions of the expressions used by Cohn and

Wiebe for the four-potential Aµ generated by the particle, equations (D.8)

and (D.9), agree with the analysis of Chapter 5. (In Chapter 5, the po-

tentials were actually bypassed in favour of the physically observable field

strengths Fαβ.) A by-product of this verification will be the identification of

the remaining symbols used in [54].

Firstly, Cohn and Wiebe’s electric charge potential (D.8) is notationally

converted using the translations of Section D.4:

Aµ
CW =

eϕUµ

4π
. (D.11)

Using (5.15), (5.22) and (5.19) and integrating, we obtain the equivalent Lor-

entz-gauge expression for the retarded potential in the notations of Chapter 5,

Aµ
JPC =

qϕUµ

4π
. (D.12)
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Comparing (D.11) and (D.12), we see that they agree in functional form.

This comparison also requires

e −→ q.

This is, indeed, a common use of the symbol e: as that of a general electric

charge (cf., e.g., Jackson [113, eq. (14.6)]). However, we shall shortly find

that Cohn and Wiebe have switched conventions in their later expressions:

the charge of the particle will be found, from the field expressions, to be −e,

i.e., they are thinking of an electron, with the convention that the positron

charge is +e. In anticipation of their change of convention, we shall at this

point claim that the identification

e −→ −q (D.13)

is correct for the remainder of the Cohn and Wiebe paper.

Turning now to the Kolsrud–Leer potential (D.9), and using the transla-

tions of Section D.4, as well as (D.13), we have

Aµ
KL = +

qϕ

8πm
dτ (ϕMµνζν). (D.14)

The “polarisation tensor” Mµν appearing here is related to what was termed

the “dipole current tensor”, Jµν , defined in equation (5.48). Clearly, for a

magnetic dipole moment only (and no electric dipole moment), Mµν will be

proportional to the normalised spin tensor Σ̃ αβ, which is in turn related to

the spin vector Σ µ via

Σ̃ αβ ≡ εαβµνUµΣν . (D.15)

Let us therefore write

Mµν ≡ κΣ̃ µν , (D.16)

where we shall shortly determine the exact value of κ. The potential (D.14)

can then be written

Aµ
KL =

κqϕ

8πm
εµναβdτ (ϕUαΣβζν) (D.17)
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for a magnetic dipole.

We can obtain the equivalent expression from the analysis of Chapter 5

by using the expression (5.57) and the Lorentz-gauge relation (5.54):

Aµ
JPC ≡ ∂νA

νµ =
µ

4π
ενµαβ∂ν

∫
dτ U[αΣβ] ϑ(ζ0) δ(ζ2).

Permuting the indices ν and µ in the alternating function by a sign change,

absorbing the commutator on the indices of U and Σ by multiplying by a

factor of two, using the relation (5.21), integrating by parts, and again using

(5.22), we thus find that, in a Lorentz gauge,

Aµ
JPC =

µϕ

4π
εµναβdτ (ϕUαΣβζν). (D.18)

Comparing (D.18) with (D.17), we see that the functional form is again

verified, and furthermore that

κq

8πm
=

µ

4π
,

or, in other words,

κ =
2mµ

q
. (D.19)

The reason for Kolsrud and Leer for making such a choice can be understood

when it is recalled that, for a particle possessing both charge and magnetic

dipole moment, the magnetic moment is often reëxpressed in terms of the

Landé g-factor:

µ ≡ gq

2m
s =

gq

2m
· 1

2
h̄ ≡ gq

4m

(for spin-half particles), and so

κ =
2m

q
· gq

4m
=

g

2
.

Thus, Mµν is normalised in the same sense as Σ̃ µν for a particle for which

g ≡ 2 exactly. However, as already noted, the Landé g-factor was invented
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before neutral particles were discovered, and its use for such particles is messy

and contrived; thus, we shall use the results of (D.15), (D.16) and (D.19),

namely,

Mµν ≡ 2mµ

q
Σ̃ µν ≡ 2mµ

q
εµναβUαΣβ, (D.20)

to replace Kolsrud and Leer’s Mαβ wherever it appears in favour of µ, Uα

and Σ α.

D.6 Verification of the retarded fields

We can now complete the translation of the Cohn–Wiebe field expressions,

(D.7), into the conventions and notation of this thesis.

Concentrating first on the fields generated by the electric charge, we have,

from (D.7) and the relations of Section D.4,

F ′ = qϕ2(1− χ̇)ζ∧U + qϕζ∧U̇ .

This agrees with the result (5.28) of Chapter 5, and justifies the identification

(D.13).

Turning now to the dipole fields, we need to convert the magnetic dipole

expressions of Cohn and Wiebe into the equivalent expressions for an electric

dipole, since we primarily focussed on the electric case in Chapter 5. To do so,

we need only note that the electric field per electric dipole unit E/d generated

by an electric dipole dα is equal to the magnetic field per magnetic dipole

unit B/µ generated by a magnetic dipole µα (excluding the extra Maxwell

term for the magnetic dipole—but Cohn and Wiebe do not consider the

worldline fields). Since a duality transformation Fαβ → F̃αβ induces the

transformations E → B, B → −E, we need to take the negative of the dual

of the magnetic dipole part of the Cohn–Wiebe fields (D.7) in order to get

the equivalent electric dipole fields. In other words, we need to compute

F d
n ≡ −1

2

×
F (−n), (D.21)

386



where F(−n) are the expressions (D.7), by using the relations of Section D.4

to convert the remaining notation. Simplifying the algebra generated by the

product of the two alternating functions from (D.21) and (D.20) requires the

use of identities (B.44). When this is done, and the various terms collected

together, one obtains

F d
3 = ϕ3U∧Σ − 3ϕ5ψζ∧U, (D.22)

F d
2 = ϕ2U̇∧Σ + ϕ3[ζ∧Σ̇ ] + ϕ3ψU∧U̇ − ϕ3χ̇U∧Σ

+ 6ϕ5χ̇ψζ∧U − 3ϕ4ψ̇ζ∧U − 3ϕ4ψζ∧U̇ + ϕ3ϑ̇ζ∧U, (D.23)

F d
1 = ϕ2[ζ∧Σ̈ ]− ϕ3ψ[ζ∧Ü ] + ϕ4ψχ̈ζ∧U − 2ϕ3ψ̇ζ∧U̇ + 3ϕ4χ̇ψ̇ζ∧U

− ϕ3χ̇[ζ∧Σ̇ ]− ϕ3η̈ζ∧U − 3ϕ5χ̇2ψζ∧U + 3ϕ4ψχ̇ζ∧U̇ . (D.24)

It may be verified that equations (D.22), (D.23) and (D.24) agree precisely

with their counterparts (5.70), (5.71) and (5.72) of Section 5.4.5. Thus, the

analysis of Chapter 5 agrees completely with that of Cohn and Wiebe [54];

the two quite separate paths taken to obtain the end results mean that one

can have confidence in their veracity.
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Appendix E

The Interaction Lagrangian

E.1 Introduction

This thesis is concerned with the motion of a single particle, in the classical

limit, under the influence of a classical electromagnetic field. In Nature, the

only particles for which we expect this to be a very good approximation are

the massive leptons: the bare electron, muon and tauon. We also expect

that the stable fermionic hadrons, such as the proton and neutron, will also

be conveniently described by a single-particle description, as long as the

electromagnetic fields involved are sufficiently well-behaved so as not to excite

the internal states of these particles. Likewise, the anomalous contributions

to the magnetic moments of the massive leptons should be describable quite

well by an equivalent Pauli interaction in the single-particle equation, while

again keeping in mind that the QED and other processes leading to these

contributions are in reality multi-particle effects.

Thus, in the real world, we will generally apply the results of this thesis

to spin-half particles. It is therefore of interest to note that, in full generality,

there are only four possible electromagnetic properties that a spin-half par-

ticle may possess: electric charge, electric dipole moment, magnetic dipole

moment and anapole moment; each may in general have a structure func-
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tion. Furthermore, if the spin-half particle does not actually come in contact

with any other physical electromagnetic sources, then there are two further

simplifications: the anapole moment has no effect whatsoever; and, in the

classical limit, the only parts of the structure functions that have any effect

are the static values of the moments: q, d and µ.

In the remaining sections of this appendix, we provide brief review of the

proofs of these properties, for convenience; there are no new results herein.

E.2 Quantum field theory

Viewed from the perspective of quantum field theory, the electromagnetic

interaction of a spin-half particle with an external field is fundamentally

a vertex of the fermion with an external photon. Seeing as the photon is

fundamentally described by the four-potential, A(x), any coupling to it in

the Lagrangian must be of the general form (J ·A), where J might include

operators, such as ∂, when we are viewing the process in position space.

Let the fermion’s initial canonical four-momentum (four-wavevector) be

b1, and its final canonical four-momentum b2. It is convenient to replace

these two quantities by the photon’s canonical four-momentum, k (which by

canonical momentum conservation is equal to b2 − b1), and the sum of the

fermion canonical momenta, B ≡ b1 + b2. Together with the various matrix

quantities characterising the Dirac algebra—namely, 1, γ5, γµ, γ5γ
µ, σµν and

γ5σ
µν—we can proceed to construct the most general coupling to the photon

that is possible. Writing out all possible terms blindly, apart from those that

are obviously dependent, we have

〈2|Jµ(k)|1〉 = δ(b2 − b1 − k) u2 (Fµ + Gµ + Hµ + Kµ) u1, (E.1)

where

Fµ ≡ F1γµ + F2kµ + F3Bµ + F4σµνk
ν + F5σµνB

ν ,
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Gµ ≡ G1k/kµ + G2k/Bµ + G3B/kµ + G4B/Bµ,

Hµ ≡ (H1γµ + H2kµ + H3Bµ + H4σµνk
ν + H5σµνB

ν) γ5,

Kµ ≡ (K1k/kµ + K2k/Bµ + K3B/kµ + K4B/Bµ) γ5,

and where Lorentz covariance means that the coefficients Fi, Gi, Hi and Ki

can only be functions of k2 ≡ (k ·k). We are here using the definitions

{γµ, γν} ≡ gµν ,

σµν ≡ i

2
[γµ, γν ] ,

γ5 ≡ γ5 ≡ i

4!
ελµνπγλγµγνγπ,

x/ ≡ γµxµ,

where [x, y] denotes the commutator of x and y and {x, y} their anticom-

mutator, and in this section we are using units in which h̄ = 1. With the

particle on mass shell in the initial and final states, we have

(B ·k) ≡ b2
2 − b2

1 = m2 −m2 = 0; (E.2)

using also the Gordon identities,

u2γµu1 =
1

2m
u2 (Bµ + iσµνk

ν) u1,

u2γµγ5u1 =
1

2m
u2 (kµ + iσµνB

ν) γ5u1,

u2iσµνB
νu1 = u2kµu1,

u2Bµγ5u1 = u2iσµνk
νγ5u1,

we can reduce the number of independent terms in (E.1). In particular, we

may remove (say) the terms F3, F5, H3 and H5 as redundant; all of the terms

Gi and Ki lead to terms that are either excluded by Lorentz covariance, are

included in other terms, or vanish by (E.2), or by virtue of the fact that
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σµν is antisymmetric. The six remaining terms, Fi and Hi (i = 1, 2, 4), are

further constrained by the requirement of conservation of the fermion current,

(k ·J) = 0. Since

u2k/u1 ≡ u2b/2u1 − u2b/1u1 = 0

by the Dirac equation, as does (k ·σ ·k) by symmetry, this requirement has

no effect on the terms F1, F4 and H4. However, since k2 6= 0 in general, the

remaining terms must satisfy

u2

(
F2k

2 + H1k/γ5 + H2k
2γ5

)
u1 = 0. (E.3)

Now, we can transform the H1 term by use of the Dirac equation for the

incoming and outgoing fermion states, from which one can verify the identity

u2k/γ5u1 ≡ 2m u2γ5u1. For the requirement (E.3) to hold in general, we

therefore require F2 = 0 and 2mH1 + k2H2 = 0. Replacing H1 using this

result, defining a(k2) ≡ H2(k
2)/2m, and replacing the u2γ5u1 in the H2 term

by u2k/γ5u1/2m, the general interaction vertex can then be written

(J ·A) = u2

{
F1(k

2)γµ + F4(k
2)σµνkν + H4(k

2)σµνkνγ5

+ a(k2)
(
k/kµ − k2γµ

)
γ5

}
u1Aµ. (E.4)

E.3 The classical limit

We now investigate what interaction Lagrangian will be obtained from the

vertex (E.4) in the classical limit. As we are, in this limit, treating the

fermion as a particle, but the photon as a field, it is appropriate to return

to position space and replace the photon canonical momentum, k, by the

partial derivative of the external potentials and fields, ∂. At the same time,

we must replace the various matrix elements in (E.4) by some sort of classical

counterparts. It is found that the following transformations produce the

desired results:

u2γ
µu1 −→ Uµ +

1

2m
Σ̃ µν∂ν ,
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u2σ
µνu1 −→ Σ̃ µν ,

u2σ
µνγ5u1 ≡ u2ε

µναβσαβu1 −→ εµναβΣ̃αβ,

u2γ
µγ5u1 −→ Σ µ,

where Σ̃ is the classical unit spin tensor, and Σ the corresponding spin vector.

(The last term in the first expression takes into account the generation of

the “Dirac” magnetic moment in the Foldy–Wouthuysen representation, for

a particle that has purely an electric charge in the Dirac representation [88].)

Since k → ∂, the structure functions F1(k
2), F4(k

2), H4(k
2) and a(k2) can

be interpreted as functions of the d’Alembertian operator, ∂2 ≡ (∂ ·∂). We

assume that these structure functions are analytic everywhere, so that they

can be expanded as a power series in ∂2; for example

a(∂2) ≡ a0 + a1∂
2 + a2∂

4 + . . . .

We thus find that the most general interaction Lagrangian, in the classical

limit, for spin-half particles is given by

Lint = F1(∂
2)(U ·A) +

1

2

{
F1(∂

2)

2m
+ F4(∂

2)

}
(·Σ̃ ·F ·)

−H4(∂
2)(·Σ̃ ·F̃ ·)− a(∂2)(Σ ·Jext), (E.5)

where we have used the inhomogeneous Maxwell equation,

∂2A− ∂(∂ ·A) = Jext

to express the a(∂2) term in terms of the “external” current Jext(x) generating

the potential A(x), and where F̃ is the dual electromagnetic field tensor.

Already, one can see in (E.5) the familiar interactions of the classical

limit: electric charge; magnetic dipole moment—with its “pure Dirac” and

anomalous terms; and electric dipole moment. The final interaction term,
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a(∂2)(Σ ·Jext) is recognised as the parity-violating anapole moment , first dis-

cussed by Zel’dovich [245, 246] in the 1950s. While it is not clear whether

the effective anapole moment of the real electron (acquired from radiative

processes) has any gauge-invariant meaning [103], this interaction neverthe-

less remains one of the four fundamentally possible couplings that a spin-half

particle can have.

E.4 Source-free regions

We now consider the above interaction Lagrangian in situations in which the

particle under study does not collide with any of the electromagnetic sources

generating the “external” fields. Most obviously, the anapole interaction

term in (E.5) will have no effect, and can be deleted from our considerations.

But we also note that the effects of the structure functions F1(∂
2), F4(∂

2) and

H4(∂
2) are greatly simplified. To see this, one need only note that all of the

interactions apart from that of the electric charge are gauge-invariant, i.e.

dependent only on the field strengths F and F̃ ; furthermore, we know that

the classical equations of motion derived from the electric charge interaction

are also gauge-invariant. Thus, the d’Alembertian operators that occur in

the structure functions will only act on the field strengths F and F̃ in the

equations of motion. Let us examine, therefore, the quantities ∂2F and ∂2F̃ .

The former can be simplified using the homogeneous Maxwell equation:

∂2Fµν ≡ ∂α(∂αFµν) = ∂α(∂µFαν − ∂νFαµ) .

But we now note that both of the terms in this last expression involve the

quantity (∂ ·F ) ≡ Jext, by the inhomogeneous Maxwell equation. Thus, in

the classical limit, and in source-free regions, ∂2F vanishes identically . We

can similarly apply this analysis to ∂2F̃ , but here we need not even require

source-free regions, as magnetic charges are incompatible with the vector po-

tential A(x), and do not appear to exist in our universe. Clearly, all higher
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powers of ∂2 acting on the fields will also vanish. We are thus left with the

drastic simplification that, in source-free regions, the classical electromag-

netic interactions of a particle depend only on the structure functions’ values

at k2 = 0.

With this simplification, the surviving terms in (E.5) can be written

Lint = q(U ·A) +
1

2
µ(·Σ̃ ·F ·)− 1

2
d(·Σ̃ ·F̃ ·), (E.6)

where (rëınstating h̄ explicitly) q ≡ F1(0), µ ≡ qh̄/2m + F4(0) and d ≡
2H4(0); in this thesis, these are referred to simply as the (classical) charge,

magnetic dipole moment and electric dipole moment respectively.

Finally, we manipulate (E.6) slightly, into a form that is more immediately

amenable to analysis for a classical particle. Employing the spin vector Σ α

dual to Σ̃ αβ, i.e.,

Σ ≡ 1

2
U×Σ̃ ,

one can verify that (E.6) becomes

Lint = q(U ·A) + (µ·F̃ ·U) + (d·F ·U), (E.7)

where we have further defined the four-vectors µα ≡ µΣ α and dα ≡ dΣ α.

It is this most general classical interaction Lagrangian, either in the form

(E.6) or (E.7), that forms the basis of the equations of motion derived in this

thesis.
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Appendix F

Published Paper

F.1 Introduction

To date, only one paper arising from the work described in this thesis has

been submitted and accepted for publication [65]. For completeness, we

include here the contents of that paper.

To maintain the integrity of digital copies of this thesis, the paper is

included here via the LaTEX source files used to generate the preprint of the

paper [64], properly adjusted so that the text herein agrees exactly with

the printed form of the paper [65]. For example, the Americanisation of

the spelling and punctuation, undertaken by the editors of the journal, is

included here verbatim. Corrections made by the author in the proof stage

are also included.

For the actual printed form of the paper, please see Volume 9 of the

International Journal of Modern Physics A. The author will also send paper

reprints on request.
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We show that it is possible to obtain self-consistent and physically acceptable relativistic
classical equations of motion for a pointlike spin-half particle possessing an electric charge
and a magnetic dipole moment, directly from a manifestly covariant Lagrangian, if the
classical degrees of freedom are appropriately chosen. It is shown that the equations
obtained encompass the well-tested Lorentz force and Thomas–Bargmann–Michel–Telegdi
spin equations, as well as providing a definite specification of the classical magnetic dipole
force, whose exact form has been the subject of recent debate. Radiation reaction — the
force and torque on an accelerated particle due to its self-interaction — is neglected at
this stage.

1. Introduction

The “classical limit” of mechanics has always played an important role in practical
physics. While it may be regarded as preferable to describe the behavior of a
physical system by solving the problem exactly within quantum mechanics, in
practice one need not always do so. If one is only interested in expectation values of
operators, then one can make good use of Ehrenfest’s theorem — which holds good
under quite general circumstances (see e.g. Ref. 1, Sec. 31) — and instead solve the
equations of classical Hamiltonian or Lagrangian dynamics. Thus, for example,
the Lorentz force law for charged particles, and the Thomas–Bargmann–Michel–
Telegdi spin precession equation2,3 for particles with spin, are used to advantage
every day — implicitly or explicitly — in a wide variety of practical situations.

These two examples, however, owe their widespread acceptance largely to an
important quality they possess: they can be derived simply from a knowledge of
the external electromagnetic multipolar fields of their pointlike sources, regardless
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of the detailed structure of these sources.4 On the other hand, the force on a
pointlike particle with spin is not uniquely defined by the external properties of its
dipolar electromagnetic fields; this fact, well noted by Thomas in 1927,2 and more
recently by Hraskó,4 is not yet universally appreciated. To obtain the “correct”
force on (and, hence, complete equations of motion for) a particle with a magnetic
moment, one must therefore make some assumptions, explicit or otherwise, about
the nature of the object creating the dipolar field; it is this freedom that has
contributed to the ongoing controversy on the subject.5−9

It would be impossible to review here all of the various assumptions underlying
previous attempts at a complete classical description of particles with spin; instead,
we shall simply state the premises and results of a theoretical analysis that we
have carried out. In Sec. 2, we outline our considerations in choosing a suitable
relativistic classical Lagrangian for a particle with spin. We then, in Sec. 3, outline
our derivation of the equations of motion from this Lagrangian, and present the
results in what we believe are the most transparent forms. As will be seen, the
technique we shall use leads to the omission of all aspects of radiation reaction
— which is an omission that should be repaired — but nevertheless the results
obtained do allow extensive contact with existing knowledge about the classical
behavior of particles with spin.

2. An Appropriate Lagrangian

As already mentioned, some nontrivial assumptions must be made for one to obtain
the force equation of motion for even a pointlike particle endowed with a magnetic
dipole moment. Our approach is to use a Lagrangian approach from the outset,
and hence benefit from the abovementioned guarantee that Ehrenfest’s theorem
provides. This route is, however, still a potential minefield; as recently emphasized
by Barut and Unal,10 the “spinning top” (or “current loop”) phase space degrees
of freedom are not appropriate to quantum spin-half particles. We shall return to
this question shortly.

Our first consideration is to outline precisely what type of system we wish to
address. In this specification we shall be exacting: we shall only be considering the
intrinsic magnetic dipole moment of a spin-half, pointlike, structureless particle —
together with any electric charge interaction it possesses of course — in externally
applied (but, in general, time- and space-varying) electromagnetic fields. It is only
with such a tight restriction of our focus that we can proceed confidently in the
classical realm at all, as will become apparent. For definiteness, we consider the
electron a good approximation to the type of particle we are considering; however,
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we shall not claim any predictive control over contributions from the anomalous
magnetic moment of the real electron, arising as it does from QED and other
processes that are, in reality, additional degrees of freedom over those properly
described by the single-particle Dirac equation. We shall not enter the debate
as to whether a particle might “intrinsically” have a g-factor differing from 2 in
the single-particle Dirac equation; if so, then such “anomalous” moments would
be included in our considerations. In any case, since the pure Dirac moment of
the electron dominates its anomalous moment numerically, our considerations will,
at least, provide useful practical results for real electrons to leading order in the
fine-structure constant.

Our main task in this section is to explain the particular Lagrangian that we
have chosen to represent the magnetic interaction of such a particle. There are two
distinct parts to this decision: firstly, the choice of the value that the Lagrangian
should take; and secondly, a determination of the appropriate classical degrees of
freedom that are to be used in the Euler–Lagrange equations — and hence, the
functional form of the Lagrangian. The former choice is laid out for us: the Dirac
equation gives us

Lint = −gqh̄

8m
σαβFαβ, (1)

where q is the charge of the particle (= −e for an electron) and g is its gyromagnetic
ratio (= 2 for the simple minimally-coupled Dirac equation), and our units follow
SI conventions with the exception that we set ε0 = µ0 = c = 1. However, to
entertain the possibility of the single-particle Dirac equation fully describing a
neutral particle with an anomalous moment, we shall replace the g factor by the
corresponding magnetic moment µ = gqh̄/4m, thereby separating the interaction
of electric charge from that of magnetic moment, at least formally.

Our second task is infinitely more perilous: choosing an appropriate set of
generalized coördinates to represent a spin-half particle. Firstly, we observe that
the position of a particle is usually assumed to be an appropriate quantity in the
classical limit; we shall also make this assumption. Thus, we take the (expectation
value of the) four-position zα(τ) to be four of the independent degrees of freedom.
(One can show that, in a general dynamical framework allowing particles with
time-dependent masses, all four of these coördinates are indeed independent.) If
we take the proper time for the particle, τ , to be the generalized time of the
classical Lagrangian framework, then the generalized velocities corresponding to
the zα are given by

Uα ≡ dzα

dτ
≡ żα. (2)
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Having defined the four-velocity thus, we can then simply define the center of
energy frame for the particle as that instantaneous Lorentz frame in which Uα =
(1, 0, 0, 0).

We now turn to the magnetic moment of the particle. For a spin-half particle,
the magnetic moment is parallel to the spin. In the center of energy frame, we
expect the particle’s spin to be describable by a two-component spinor, of fixed
magnitude s = 1

2 h̄. The expectation value of this spinor is equivalent to a fixed-
length three-vector , in this frame, whose direction describes simultaneously the
expectation value of polarization along any arbitrary axis, as well as the phase
difference between the “up” and “down” components along such an axis, but which
throws away the overall phase of the wavefunction (as does any reduction to the
classical limit). It is this fixed-length three vector that we shall assume to represent
the magnetic moment of the particle.

Consider now the dynamical nature of spin angular momentum in the classical
limit. It would seem, from the previous paragraph, that the spin should also
be considered as a fixed-length three-vector in the center of energy frame of the
particle. However, this would preclude writing down the usual classical kinetic
Lagrangian of rotational motion in terms of generalized velocities (i.e. the time
derivatives of the Euler angles), namely, in the nonrelativistic limit,11

L =
1
2

ω · I · ω, (3)

and thereby preclude obtaining the torque on the particle by means of the Euler–
Lagrange equations for the rotational degrees of freedom. Our approach, therefore,
shall be the following: we shall consider the spin of the particle to be given, in the
nonrelativistic limit, by its usual form

s = I · ω,

with the “kinetic” term (3) retained in the Lagrangian in this same limit. This
allows the magnitude of the spin, |s| = s to be an a priori dynamical variable.
[We know of course that s should, ultimately, be a constant of the motion (i.e. 1

2 h̄)
if we are to accept the equations of motion as applicable to spin-half particles; we
shall discuss this necessity in greater detail shortly.] We shall, on the other hand,
still consider the magnetic moment of the particle to be formally a function of the
generalized coördinates themselves (i.e. the Euler angles) and not the velocities.
This distinction between the spin and magnetic moment of an electron is an unfa-
miliar concept within quantum mechanics; indeed, in that situation, no distinction
need be made. However, this distinction is vital in the classical framework — at
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least, if one wants to derive the equations of motion from a Lagrangian — as the
spin angular momentum and magnetic dipole moment of an arbitrary classical ob-
ject are not, in general, related in any special way. Our ansatz that the magnetic
moment is dependent on the Euler angles alone cannot be justified a priori ; the
only justification will be that it produces equations of motion that satisify the
strict requirements of consistency for spin-half particles — that have not, to our
knowledge, been satisfied by previous classical Lagrangian approaches. We further
note, at this stage, that the ultimate parallelism of spin and magnetic moment does
not bar us from considering them to have different functional dependencies: the
fact that they are parallel may be introduced, in this classical context, as simply a
“constitutive” relation, which can only be fully justified upon investigation of the
quantum mechanical analysis.

We now turn to synthesizing the information that we have laid out above in a
self-consistent, relativistic, Lagrangian framework. Firstly, it is necessary to gener-
alize the nonrelativistic concept of the spin angular momentum s to the relativistic
domain. This procedure is carried out in many textbooks on electrodynamics (see
e.g. Ref. 12, pp. 556–560); we shall not add anything new. One simply defines a
four-vector Sα such that, in the rest frame of the particle, it has vanishing zero-
component S0, and its three-vector part S is equal to the nonrelativistic spin s.
Since, by definition, the three-vector part of the four-velocity, U , vanishes in this
frame, the identity

SαUα = 0 (4)

shows that only three of the Sα are independent, as one would expect from the
nonrelativistic case.

In a completely analogous way, one can generalize the nonrelativistic angular
velocity vector ω and the moment of inertia tensor I to their relativistic coun-
terparts ωα and Iαβ . The nonrelativistic rotational “kinetic” Lagrangian (3) can
then be written relativistically as

Lrot =
1
2
ωαIαβ ωβ. (5)

One might wonder, at this point, how a spin-half particle can have a “kinetic”
term of rotation, when it is well known that there is no classical “rotating model”
that represents spin angular momentum. The answer that the functional form of
the spin kinetic Lagrangian must be retained in the classical limit, regardless of
whether or not it corresponds to any particular “model” that one might dream
up. In fact, it will be found that the quantities ωα and Iαβ will completely disap-
pear from the final equations of motion; the only remaining quantity will be the
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physically observable quantity Sα. Thus, by what might arguably be considered a
sleight of hand, we can analyze the system in question within Lagrangian mechan-
ics, without recourse to the particular Newtonian models of Refs. 4, 6–8, nor the
original heuristic (albeit brilliant) arguments of Thomas2 and Bargmann, Michel
and Telegdi.3

Before we can write down the final expression for the Lagrangian we shall
use, we must first “massage” the magnetic interaction Lagrangian (1) into a more
suitable form. Our major task is to the interpret the spin tensor , σαβ , that the
Dirac equation introduces. This is not a trivial task: translating between the spin
vector that we have already defined, Sα, and a spin tensor , requires the use of
both the alternating tensor εαβµν , and another four-vector. Often, in quantum
mechanics, one uses the canonical momentum vector, pα, for this purpose; the
resultant “spin” vector is known as the Pauli–Lubanski vector ,

Wα ≡ εαβµνpβSµν . (6)

This quantity is, indeed, very useful in many situations. However, we are here
considering Lagrangian mechanics; therefore, we should expect that mechanical
momenta (or in other words, generalized velocities) should be employed; canonical
momenta belong to Hamiltonian dynamics. We therefore follow Jackson (Ref. 12,
p. 556) in using the four-velocity to define the transformation between the spin
tensor and the spin vector, namely

Sα =
1
2
εαβµνUβSµν . (7)

It is straightforward to verify that the reverse transformation of (7) is given by

Sαβ = εαβµνUµSν . (8)

Inserting this into (1) and simplifying, we finally obtain our desired magnetic
interaction Lagrangian,

Lint = µαF̃αβUβ, (9)

where ε0123 ≡ +1, F̃αβ ≡ 1
2εαβ

µνFµν is the dual electromagnetic field strength ten-
sor, and the magnetic moment four-vector µα is, as noted previously, considered to
be a four-vector “embedded” in the intrinsic rotational coördinates of the particle,
and hence is functionally dependent on the Euler angles, but not their derivatives.

Our complete Lagrangian is then assembled simply from the kinetic rotational
term (5), the magnetic interaction term (9), and the standard translational kinetic
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and electric charge interaction terms:

L =
1
2
mUαUα +

1
2
ωαIαβ ωβ + qUαAα + µαF̃αβUβ. (10)

It is this Lagrangian, and most particularly its functional form, that forms the
basis of the following section.

3. Derivation

We now turn to the question of deriving, from the Euler–Lagrange equations, the
equations of motion for the particle under study. (In the following, our language
shall describe classical quantities in the same way that Newton would have done,
but in reality we are referring to the expectation values of the corresponding quan-
tum mechanical operators for the single particle in question.) The generalized
coördinates for the particle, following the discussion of the previous section, are
taken to be the four translational degrees of freedom zα, together with the three
Euler angles describing the intrinsic “orientation” of the particle.

The mathematical manipulations necessary to obtain the seven Euler–Lagrange
equations are in principle no different to those in everyday classical mechanical
problems.11 There is one subtlety, however, that enters into one’s consideration of
the spin vector Sα and the magnetic moment vector µα. By their very definition,
these vectors are “tied” to the particle’s four-velocity, in the sense that identities
such as (4) always holds true. One must therefore be careful when defining their
proper-time derivative: since they are, in effect, defined with respect to an accel-
erated frame of reference; there is a difference between taking the time-derivatives
of the components of the vector, and the components of the time-derivatives of
the vector, as General Relativity teaches us. In fact, the philosophical framework
of General Relativity tells us that it is the latter that is the generally invariant,
“covariant” derivative which should be used in the relativistic Euler–Lagrange
equations; the former is simply the “partial” derivative. However, it is straight-
forward to verify that they can be related via

(
d

dτ
C

)α

≡ Ċα + Uα
(
U̇βCβ

)
, (11)

where Cα is any spacelike vector that is orthogonal to the particle’s four-velocity
(such as Sα and µα), the left hand side denotes the “covariant” derivative, and
Ċα the “partial” derivative, of such a vector. (The Thomas precession13,2 is in
fact just another way of expressing this “General Relativity” effect — namely, the
non-vanishing commutator of Lorentz boosts.)
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It is now relatively straightforward to apply the Euler–Lagrange equations to
the Lagrangian (10). The three Euler angle degrees of freedom lead, just as in the
nonrelativistic case,11 to the torque equation of motion for the particle. With some
algebra and simplification, they [together with the identity (4) and the relation
(11)] lead to the four-vector equation of motion

Ṡα + UαU̇βSβ = Fαβµβ + UαµνFνβUβ. (12)

It should come as no surprise that this equation is precisely that obtained by
Bargmann, Michel and Telegdi [Eq. (6) of Ref. 3], before they simply substituted
in the Lorentz force law for U̇β [i.e. Eq. (7) of Ref. 3]. As was noted in Sec. 1, this
equation — Eq. (12) — is true in general for any pointlike object generating an
external magnetic dipole field.4

We now turn our attention to the four translational degrees of freedom of
the particle. The Euler–Lagrange equations for these coördinates, for the same
Lagrangian (10) as used above to generate the Bargmann–Michel–Telegdi equation,
immediately yield the four-equation of motion

d

dτ
(mUα) = qFαβUβ +Uβµν∂νF̃αβ + F̃αβ

(
µ̇β + UβU̇νµ

ν
)

+εαβµνµ
βUµJν

ext. (13)

The first term on the right side is, of course, simply the Lorentz force. The
second and third terms, on the other hand, are infinitely more interesting. The
second term represents the gradient forces on the magnetic dipole moment, i.e. in
the nonrelativistic limit, (µ·∇)B. The third term represents a force of the type
−µ̇×E in the nonrelativistic limit. The reason that they are so interesting is
that many authors have argued that precisely these terms should constitute the
nonrelativistic limit of the magnetic dipole force (see e.g. Ref. 5 and references
therein; also Refs. 4, 7, 8). Here, we have obtained these terms from a relativistic
Lagrangian directly, without need for assumptions other than those outlined in
the previous section.

The last term in (13) is, as a matter of principle, much deeper, but in practice,
completely ignorable. It constitutes a contact force between the particle and the
electromagnetic current that is generating the “external” field. In practice, such an
interaction is usually ignored; however, upon further investigation, it is recognized
that it is precisely this contact force that allows the expression (13) to otherwise
resemble so closely the force on a “monopole-constructed” dipole model,4,6 while
on the other hand possessing an interaction energy equivalent to a “current loop”
model4,6−8 as required for agreement with atomic hyperfine levels.14 It is in this
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way that the “Lagrangian-based” model of this paper seems to select those de-
sirable properties of both the “monopole-constructed” and “current-loop” models,
while being classically equivalent to neither.

Now that we have dealt with the dynamics of the Euler–Lagrange formalism,
and have obtained allegedly appropriate equations of motion, we can now specify
the exact “constitutive relation” between the magnetic moment and the spin of
the particle, for the particular case we wish to study: a spin-half particle. From
quantum mechanics, we know that the these two quantities are always parallel,
namely,

µα = ζSα, (14)

where ζ ≡ µ/s is some constant, a property of the particle in question, which,
for particle of charge q, is commonly written in terms of the g factor as ζ ≡
gq/2m. Before we can use (14), however, we first note that Eq. (13) is itself in a
somewhat awkward form: the right hand side involves both µ̇α and U̇α. However,
the parallelism condition (14) allows us to uncouple Eqs. (12) and (13) simply by
substituting (12) into (13), yielding

d

dτ
(mUα) = qFαβUβ + Uβµν∂νF̃αβ + ζ

{
F̃αβF β

νµ
ν + F̃αβUβ (µσFστU

τ )
}

, (15)

where we have, for practical simplicity, dropped the contact term in (13).
There are now several important things we can do with Eqs. (12) and (15).

Most importantly, we examine how the mass of the particle changes with time;
if it is not constant, then our equations of motion cannot possibly apply to any
particle, such as an electron or muon, that has a constant rest mass. (It should
be noted that the classical relativistic formalism we have employed has made no
assumptions as to the constancy of the rest mass m with time: in general, the
mass may change as the system in question gains energy from or loses energy to
the external field.) It is straightforward to verify that the general proper-time rate
of change of the mass of a particle, ṁ, can be expressed as

ṁ ≡ Uα d

dτ
(mUα) . (16)

Using the the identity (4), and the fact that F̃αβF β
ν is proportional to the metric,

gαν , it follows that (15) yields, in (16), ṁ = 0. In other words, the set of Eqs.
(12) and (15) rigorously maintain the constancy of the mass of the particle. This
property is far from trivial; for example, in a classic textbook (Ref. 15, p. 74), a
time-varying “effective mass” of the electron was introduced, due to the fact that
the equations of motion derived therein allowed time-changing rest masses. It is
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of utmost importance that this difficulty — present in most previous attempts
at consistent equations of motion for a dipole — is overcome in the Lagrangian
treatment of this paper.

We now verify that the the parallelism condition, (14), is consistent with the
equations of motion (12) and (15). The reason for this concern is that we have
assumed that the magnetic moment is a constant-magnitude vector, whereas the
spin itself is a dynamical quantity that may, in general, change its magnitude. We
must verify that, if (14) is assumed to hold true at one particular proper time
τ , the equation of motion (12) does not change the magnitude of the spin. On
diffentiation of the identity s2 ≡ −SαSα, one finds ṡ = −1

s ṠαSα; use of (14) in
(12) then shows that (12) does, in fact, yield ṡ = 0. Thus, the magnitude of the
spin is a rigorous constant of the motion, just as is the mass.

Our work is now essentially complete. However, to make practical use of
the equations (12) and (15), it is appropriate to both present them in a more
computationally-friendly form, and to highlight clearly where they add to existing
knowledge of spin-half particles. These two tasks can essentially be carried out
simultaneously. We shall transform (12) and (15) into the standard “3 + 1” form,
as, for example, presented in Jackson’s textbook (Ref. 12, pp. 556–560). This in-
volves using the three-velocity of the particle in some particular fixed “lab” frame,
v (Jackson uses the symbol β), as well as the three-spin s of the particle as seen
in its rest frame, but referred to the (nonrotating) coördinates of the “lab” frame.
The procedure used to effect this transformation is described in detail in Ref. 12;
the algebra is tedious, but straightforward. The results for Eqs. (15) and (12) are

dv

dt
=

q

γm
E′′ +

geff

γm
B′′ +

Θ
γ2m

s′ (17)

and
ds

dt
= s×Ωnew, (18)

where

Ωnew =
{

ζ − γ − 1
γ

q

m

}
B −

{
ζ − γ

γ + 1
q

m

}
v×E − γ

γ + 1

{
ζ − q

m

}
(v ·B) v

+
γ − 1

γ

geff

m
E +

γ

γ + 1
geff

m
v×B − γ

γ + 1
geff

m
(v ·E) v +

Θ
m(γ + 1)

v×s

and we have defined the convenient quantities

ζ ≡ µ

s
,
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Θ ≡ ζ2 (E ·B) ,

∂′ ≡ ∂

∂t
+

γ

γ + 1
(v ·∇) ,

s′ ≡ s− γ

γ + 1
(v ·s) v,

E′ ≡ E + v×B − γ

γ + 1
(v ·E) v,

E′′ ≡ E + v×B − (v ·E)v,

B′′ ≡ B − v×E − (v ·B) v,

and geff ≡ ζ (s·∇) + γζ (s·v) ∂′ − γζ2 (
s·E′) ,

and, in all expressions, the partial derivatives act only on the external field quan-
tities E and B.

For ease of comparison with the equations of motion in current usage, we
present the Lorentz force law in the same form as (17),

dv

dt
=

q

γm
E′′, (19)

and, likewise, the precession frequency vector for the Thomas spin equation (Ref.
12, p. 559):

Ωold =
{

ζ − γ − 1
γ

q

m

}
B −

{
ζ − γ

γ + 1
q

m

}
v×E − γ

γ + 1

{
ζ − q

m

}
(v ·B) v.

It can be seen that, as advertised, the Lorentz and Thomas equations are con-
tained completely in the new equations. However, several new features are present
in both the new force equation, (17), and the new precession frequency vector,
Ωnew. Most obviously, the magnetic dipole force is now included in (17), albeit
somewhat obscured by the multitude of “convenient quantities” introduced for
typographical sanity. A recognition of this expression may again be obtained by
taking the nonrelativistic limit (first order in v, ignoring Thomas precession and
other relativistic effects); (17) then returns us to

d

dt
(mv) = q (E + v×B) + (µ·∇) (B − v×E)− µ̇×E,

which is, as noted earlier, the now generally-accepted5,7−9 dipole force expression.
There are of course numerous new subtleties of (17) that arise from relativistic
kinematics; we shall however defer a more exhaustive investigation of them to
another place.
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Turning now to the spin precession Eq. (18), what may come as a surprise to
some is that there are differences between Ωold and Ωnew. The reason however is
simply found: the Thomas precession effects in the spin precession equation depend
on the acceleration of the particle; clearly, if we have obtained a more accurate force
law, then these changes will necessarily feed through to the spin equation as well.
It is interesting to note that the approximate nature of the Thomas expression Ωold

was noted explicitly by Thomas himself,2 and by Bargmann, Michel and Telegdi in
their rederivation,3 but that, in the intervening decades, this approximate nature
has been lost on many practitioners, who mistakenly believe Ωold to be an exact
expression.

At this point, it is worthwhile commenting on the absence of any radiation
reaction forces in the equations that have been derived above. Their omission can,
in fact, be traced back directly to the (implicit) assumption that the electromag-
netic potentials and fields in the Lagrangian (10) are the externally generated ones
only . In the case of the electric charge interaction, it was recognized by Lorentz,16

and later clearly explained by Heitler,17 that this is an incorrect assumption. For
full consistency, one must include the potentials and fields of the particle itself in
the Lagrangian, even though they appear, at first sight, to be hopelessly divergent
quantities. If one proceeds with extreme care, one can show that the effects on
the equations of motion of this “self-interaction” are, in fact, twofold: firstly, the
addition of the (finite) radiation reaction terms of the Lorentz–Dirac equation; and
secondly, the dynamical effects explaining the electromagnetic self-energy contri-
butions to the rest mass of the system, for whatever arbitrary charge distribution
is assumed. The beauty of this procedure is that it reveals the all-encompassing
nature of the Lagrangian; no further input is required to obtain the equations of
motion.

The success of the above procedure clearly indicates that a similar procedure
should be undertaken for the additional magnetic moment interaction Lagrangian
present in (10). Barut and Unal10 have considered the dipole radiation reaction
question from the point of view of a semi-classical Zitterbewegung model, but to our
knowledge an exact treatment of this problem in terms of the classical spin vector
s has not been performed. This problem is one that we are currently investigating.
However, it is vastly more complicated than the electric charge case, by virtue of
the inclusion of rotatonal degrees of freedom for the particle. In addition, one
already knows in advance that the electric charge and magnetic moment interact
in their respective radiative terms, as is evidenced by the Sokolov–Ternov effect18

(the polarization of electrons due to their emitted synchrotron radiation), spectac-
ularly confirmed in the polarization experiments at LEP in recent years.19,20 Any
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prospective solution of the combined radiation reaction equations for a charged,
spinning particle must therefore, at the very least, reproduce this important result.

4. Conclusions

It has been shown in this paper that it is possible to construct a fully consistent,
comprehensive, relativistic classical Lagrangian framework for analyzing the mo-
tion of spinning particles possessing both electric charge and magnetic dipole mo-
ments. The results obtained here are not revolutionary. They encompass the well-
known Lorentz force and Thomas–Bargmann–Michel–Telegdi equations. They
provide a rigorous foundation for the magnetic dipole force law currently believed
to be the most appropriate for such particles. They further integrate, seamlessly,
this dipole force with the Lorentz force and Thomas–Bargmann–Michel–Telegdi
equations, in a fully relativistic way.

It should be noted that the results of this paper agree with the lowest-order
terms obtained in the analysis of Anandan, based on the Dirac equation21 — and
of particular note, the “Anandan force” proportional to E × (µ×B), which is
of course simply the zeroth-order term in the force term −µ̇ ×E above, when it
realized that µ̇ is, via the Thomas–BMT equation, proportional to µ×B to zeroth
order. The current work, however, includes terms to all orders in the particle’s
velocity, not just the lowest-order limit of Anandan. It should also be noted
that the criticisms of Casella and Werner22 of Anandan’s analysis21 are erroneous,
being based on an obvious omission of all “spin-flip” terms from their quantum
mechanical equations of motion.

The framework outlined in this paper may now be used as a platform for full
inclusion of radiation reaction — not just for the electric charge, but also for the
magnetic moment, and their mutual interactions — in the classical limit. If the
enormous assistance provided by the existing classical radiation reaction theory,
both in terrestrial and astrophysical applications, is any guide, then one can only
speculate what additional richness of physical phenomena will be made sensible
with this addition to our analytical resources.
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Appendix G

Computer Algebra

Mrs. Dunn looked at her son with bewilderment.

“I don’t undertand. How can a computer do your homework?”

“Well, first we feed all the information from our schoolbooks into it,
then we analyze the problems we have for homework, and we program
them, and we let the machine solve them and type them out for us.”

—— “Danny Dunn and the Homework Machine” (1958) [241]

G.1 Introduction

The author, reading such words in 1974, found them tantalisingly exciting,

but somewhat far-fetched. Twenty years later, the author finds himself fetch-

ing himself from afar.

This appendix contains the output listings of various computer algebra

programs, written by the author, that were used to both perform the lengthy

vector-algebraic calculations required for this thesis, and to put these expres-

sions into a LaTEX-readable format consistent with the macro set used by the

author.

Note that the output from several of the programs essentially serve as

appendices in their own right, and their typographical and linguistic format

are indistinguishable from that generated manually by the author.
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G.2 Description of the programs

There are five computer algebra programs, written by the author, that have

been used in the preparation of this thesis: radreact, kinemats, ret-

field, test3int and checkrs.

A brief description of each program, and the reasons for its existence,

follow.

G.2.1 radreact: Radiation reaction

When the author first made an attack on the radiation reaction calculations

of Chapter 6, he expanded the Taylor series (2.84) to two fewer orders than

now appear. This was sufficient to compute the electric charge radiation

reaction self-force—i.e., the Lorentz calculation, corrected by the author with

the gravitational redshift factor;—and, while more algebraically complicated

than the näıve Lorentz model of Galilean rigidity, the expressions involved

were not overly onerous.

The successful correction of the Lorentz derivation led to plans of its

extension to the dipole moments. The first stage, of course, was the com-

putation of the explicit retarded fields from the dipole—now presented in

Chapter 5; this had not, at the time, yet been performed. Once it was

found that they were obtainable in a reasonably simple form, the radiation

reaction calculations were begun. It was immediately clear that, due to the

1/R3 rather than 1/R2 variation of the static fields, an extra order would be

required in the calculations. This was begun.

During this task, further comtemplation revealed that the only practi-

cal way of computing the gradient dipole forces—other than the unpalatable

prospect of computing the retarded four-gradients explicitly, and painfully

trying anew to simplify them—was by including yet another order of ε in the

retarded field expressions, and then using the explicit rd and rs (and hence
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r) dependence to extract the three-gradient at t = 0. That this would begin

to blow out the length of the algebraic expressions involved is recognised sim-

ply by considering the combinatorics of the available three-vector quantities.

Nevertheless, the calculations in progress (to one lower of ε than ultimately

required) were completed, for the kinematical expressions listed explicitly in

Chapter 6. From there, the retarded fields of the electric charge only were

expanded to this extra order in ε. This allowed a computation of all of the

radiation reaction effects due to the electric charge fields, since there was

now sufficient orders of ε to compute the gradient dipole forces.

When this was done, the “spin renormalisation” effect, described in Chap-

ter 6, was one consequence. At first, this was perplexing. However, once the

origin in terms of the static fields was clearly understood—and, moreover,

agreement was found between the expression derived from the radiation re-

action calculations and that from first principles—the feeling that the com-

putations being undertaken were indeed physically correct was cemented.

The results, to this point, had all been extensively cross-checked. All

calculations were carried out twice, at separated intervals. The crucial three-

vector Taylor series expressions have a nice consistency check: the quantity

γ(τ) may be computed two ways: from v(τ), or by taking the derivative

dτ t(τ); these results agree. Quantities such as n, n′ and n′′ were dot-

producted together, and the results compared with that expected (for ex-

ample, n2 = 1). The high degree of cancellation of a number of the terms

in the integrated results also indicated that the calculations were most likely

sound.

The task of extending these calculations to another order in ε were then

begun. They were carried out—and double-checked—up to the calculation of

n. However, at this point, the combinatorical explosion began to wear down

the author. Simply writing out expressions with more than seventy terms,

with half a dozen or more factors in each, was excessively time-consuming.

Moreover, little insight is required from that point, to the end of the com-
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putations: they are simply algebraic manipulations (with some—but not too

much—subtlety required to handle the three-vector gradients and integra-

tions), more suited to a computer than a human. (This is to be contrasted

with the the calculation of the Taylor series coëfficients, which is almost

indecipherable if done the näıve way, but most manageable if iterated or-

der by order.) Thus, it was suggested by the author’s supervisor, Professor

McKellar, that a computer algebra program such as Mathematica be used to

perform these calculations.

Investigations were made into this possibility. Two major obstacles were

found. Firstly, it did not appear that Mathematica possessed sufficient in-

herent intelligence to handle three-vectors in the abstract way required for

these calculations. This could, of course, be programmed in, but that would

require a substantial programming investment, in a language the author was

totally unfamiliar with, at a very late stage of the game. Secondly, it was

not clear how the output of Mathematica’s manipulations could be compared

with the existing hand-computed results, on the one hand; or integrated

into the LaTEXable body of this thesis, on the other; without a further sub-

stantial programming (or painful transcription) process. Investigation into

other available computer algebra systems showed possibility for alleviating

the first problem, but the second remained. There was also the logistical

problem that, while Mathematica is widely used throughout the University,

and hence help and support is readily available, the use of other packages

would be a major task, undertaken essentially alone, and from scratch.

For these reasons, the author decided to write a simplified computer al-

gebra system, that would be powerful enough to perform the computations

actually required for this thesis, without further bells or whistles; and, equally

important, the system would output the results using exactly the same macros

that the author has used to prepare the remainder of this thesis. Familiar-

ity with the two obvious language contenders, ANSI C and C++, yielded a

difficult choice; despite the elegance of C++ for such tasks, ANSI C was ulti-
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mately chosen, both for simplicity, and to ensure a standard result that could

be run on any machine—the author already having been burnt previously

by the implementation-dependencies of C++, which has not, unfortunately,

been standardised as yet.

Of course, the output of computer programs must always be eyed suspi-

ciously, being only as reliable as the programmer’s concentration level at the

most fatigued point of his work. It is for this reason that the fully checked,

manually-obtained results for the electric charge field contributions to the

radiation reaction terms—computed from beginning to end—were crucial,

for the purpose of debugging the program at each stage of its development.

The computations up to n of the final-order-in-ε results were also important,

in order to verify that the algorithms were correctly handling the extra order

of complexity involved. Once the integrity of the system had been exhaus-

tively verified, the remaining computations were performing exclusively by

computer—being, of course, too lengthy to continue further on paper.

At a late stage, it was recognised that the definition of the relativistically

rigid body originally used by the author did not correctly handle the subtle

Thomas precession of the constituents, as the body made the transition to

a finite velocity and acceleration (see Section 3.3). This rendered almost

all of the author’s manually-computed results erroneous, in the lower orders.

Fortunately, the program radreact was completed before this oversight was

noted, and it was quite a minor task adding the extra precession expression

to the program.

When the program was then run anew, it was found that, indeed, practi-

cally all expressions which contained sufficient orders in τ or ε (specifically,

those for which terms involving both v̇ and v̈ were present) were changed

by the redefinition of the rigid body. However,—and most surprisingly,—the

final radiation reaction equations of motion were not changed at all , despite

the fact that even the penultimate equations had significant modifications.

Although the deep physical meaning behind such an “invariance” of the re-
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sults to changes in the rigid body definition was mysterious, the fact that

the computer algebra program did indeed return to the same answer—by a

somewhat circuitous path—indicated to the author that the program was,

at the least, robust.

Of course, the program still relies on the author’s assumptions; no amount

of robustness would counter the effects of an erroneous formulation. The

reader is left to decide for themselves if the author’s framework is justifiable.

G.2.2 kinemats: Kinematical quantities

Following the successful creation of most of the libraries required for the

program radreact, the author realised that there would be little extra

overhead involved in using those same libraries to verify the other, quite

complicated algebraic results obtained prior to the attack on the radiation

reaction problem. In particular, there were numerous kinematical identi-

ties that had been computed and extensively cross-checked by the author, on

paper, that were at the time collected together into an appendix titled “Kine-

matical Quantities”; and there were the author’s greatly simplified explicit

expressions for the retarded dipole fields, given (then, as now) in Chapter 5.

Thus, the program kinemats was written to verify the kinematical results

collected in the appendix “Kinematical Quantities”. It was found that all

results were (as expected) correct.

However, when the program radreact was nearing completion, it was

found that extra kinematical results were required, over and above those

originally computed. It was at this stage found most time-efficient to compute

these using the (by now fully debugged) program kinemats, bypassing a

manual evaluation altogether.

Faced with the task of grafting these new results into the existing separate

appendix, the author realised that it it would be simpler to scrap the original

appendix altogether, and instead use the output of kinemats as the sole
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appendical reference. In following this course of action, the output of the

program was brought up to the same standards as those of the appendix it

was replacing: extra explanatory text was added, equations were numbered,

and the results collected together into convenient subsections. The result is

that the output from kinemats is now very close to the original appendix,—

together with extra results that would be intractably complicated if computed

by hand,—with the added advantage that the possibility of human error in

the transcription of mathematical results has been eradicated.

G.2.3 retfield: Retarded fields

After the program kinemats was completed, the author proceeded to write

the program retfield, to verify that the simplified retarded dipole field

expressions obtained (after much pain) by the author, on paper, were in fact

correct.

To do so, the program first extracts the electric and magnetic parts of the

electromagnetic field strength tensor Fαβ, using the results computed in ki-

nemats, in terms of the three-vectors n, v, σ′, and their lab-time derivatives;

n′ and n′′ are not used. The program then expands out the n′ and n′′

appearing in the author’s expressions, also in terms of these quantities. The

two sets of results are then compared.

This verification process turned out to be surprisingly straightforward,

using the computer algebra libraries already written; the author’s expressions

were, in fact, verified, without need for any modifications or corrections.

G.2.4 test3int: Testing of 3-d integrations

The program test3int was written to test the various three-dimensional

integration routines invoked in the final step of the radiation reaction calcu-

lations.
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Because test3int was used only for verification of integrity purposes,

the output is straight ASCII text, rather than LaTEX source text.

G.2.5 checkrs: Checking of inner integrals

The program checkrs does not actually use any of the computer algebra

libraries used for the above programs, but is instead a rudimentary numerical

integration program that computes an result required in the verification of

the rs integrals in Chapter 6. It is listed here along with the other ANSI C

programs for convenience.

G.3 Running the programs

Although all of the results of the computer algebra program are listed explic-

itly in this thesis, some readers may be interested in running the programs

themselves, to observe the computations being performed first-hand.

To do so, one requires the following: a computer system with an ANSI C

compiler installed; a computer system with a “big” implementation of TEX

and LaTEX installed (not necessarily the same system); and the thirty-three

files listed in Table G.1 that are included in digital copies of this thesis. One

also needs to know how to carry out the instructions below on the computer

systems in question.

The twenty-four files ending with .c and .h must be copied to the com-

puter system equipped with the ANSI C compiler.

Table G.1 should be consulted to determine which .c files are required

for the program desired; these should be compiled, and the resulting object

files linked.

The resultant binary file should then be run; the program will output text

both to the display device, and simultaneously to the relevant file listed in

the ‘Output filename’ column of Table G.2. This output file, together with
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Program Filename Description

kinemats kinemats.h Header file.
kinemats.c Source code.

retfield retfield.h Header file.
retfield.c Source code.

radreact radreact.h Header file.
radreacn.c (n = 1 to 5) Source code.

test3int test3int.c Source code.

checkrs checkrs.c Source code.

All algebra.h Header file for computer algebra library.
algebran.c (n = 1 to 6) Computer algebra library.
fraction.h Header file for fraction library.
fraction.c Fraction library.
latexout.h Header file for LaTEX output library.
latexout.c LaTEX output library.
miscutil.h Miscellaneous utilities.

LaTEX macros.tex Macro set for thesis.
american.tex American spelling and punctuation choices.
british.tex British spelling and punctuation choices.
costella.tex The author’s spelling and punctuation choices.
km.tex Skeleton file for program kinemats.
rf.tex Skeleton file for program retfield.
rr.tex Skeleton file for program radreact.
t3.tex Skeleton file for program test3int.
crs.tex Skeleton file for program checkrs.

Table G.1: The thirty-three files, included in digital copies of this thesis,
required to run the computer algebra programs described in this appendix.
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Program Output filename Skeleton filename
kinemats kmoutth.tex km.tex
retfield rfoutth.tex rf.tex
radreact rroutth.tex rr.tex
test3int t3outth.txt t3.tex
checkrs crsoutth.txt crs.tex

Table G.2: Output and skeleton filenames for the five ANSI C programs.
(See description in text.)

the corresponding file listed in the ‘Skeleton filename’ column of Table G.2,

and the first four files listed in the ‘LaTEX’ section of Table G.1, should be

copied to the computer system installed with TEX and LaTEX. The ‘skeleton

file’—which simply includes the output file and enables processing as a stan-

dalone section—should then be LaTEXed, using the spelling and punctuation

conventions desired (american, british or costella). The resulting .dvi

file is the fully-formatted output of the program, which can then be printed

or viewed as desired.

If one encounters problems with the above use of the ‘skeleton file’, the

output from the three programs that produce LaTEX source code (kinemats,

retfield and radreact) may be processed directly. To do so, one needs

to add the \StartChap and \SingleSection commands at the start of the

file (after the file macros.tex is included), and the \EndChap command to

the end of the file. The output files from the remaining two programs are

plain ASCII text.

The following sections contain the fully-LaTEXed output of the five com-

puter algebra programs kinemats, retfield, radreact, test3int and

checkrs.
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G.4 kinemats: Kinematical quantities

G.4.1 Introduction

This program computes various formulæ for kinematical quantities used in

this thesis.

G.4.2 Lorentz transformation

If a four-vector X has explicit components Xα in some lab frame, then a boost

of X by the three-velocity v transforms its components into X ′α, according

to

X ′ 0 = γX0 + γ(v ·X),

X ′ = X + γX0v + γ2(γ + 1)−1(v ·X)v, (G.1)

where every definition of a three-velocity v carries with it the implicit defi-

nition of a corresponding gamma factor ,

γ ≡ 1√
1− v2

. (G.2)

One may verify that

X ′ 2 = X02 −X2.

The components X ′α may be interpreted as being the components of X in

a “primed lab frame”. The primed lab frame sees the original lab frame

as moving with three-velocity +v, i.e., the primed frame is moving with

three-velocity −v with respect to the original frame.

G.4.3 Four-velocity of a particle

The four-velocity, U , of a particle has components

U ≡ (1,0) (G.3)
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in the MCLF of the particle; in a frame in which it moves with three-velocity

v, application of the Lorentz transformation (G.1) yields

U0 = γ,

U = γv. (G.4)

One may verify that

U2 = 1.

G.4.4 Four-spin of a particle

The four-spin, Σ , of a particle has components

Σ ≡ (0, σ) (G.5)

in the MCLF of the particle; in a frame in which it moves with three-velocity

v, application of the Lorentz transformation yields

Σ 0 = γ(v ·σ),

Σ = σ + γ2(γ + 1)−1(v ·σ)v.

One may verify that

Σ 2 = −1.

G.4.5 The FitzGerald three-spin

We [65] introduce a further quantity, derived from the three-spin σ, that con-

siderably simplifies a number of explicit algebraic expressions: the FitzGerald

three-spin,

σ′ = σ − γ(γ + 1)−1(v ·σ)v. (G.6)
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The reason for us naming it after FitzGerald can be seen by computing its

three-magnitude:

σ′ 2 = 1− (v ·σ)2.

The magnitude of σ′ is (like that of σ) unity, if σ lies in a plane perpendicular

to the three-velocity v; but it is contracted by a factor of

√
1− v2 ≡ 1

γ

if σ lies parallel or antiparallel to the direction of v; in other words, σ′ acts

like a FitzGerald–Lorentz contracted [87] version of σ.

It is curious, but probably not fundamentally meaningful, that a con-

cept from the pre-relativistic days should be a useful tool in a completely

relativistic analysis.

G.4.6 Proper-time and lab-time derivatives

The proper-time rate of change experienced by a particle moving with four-

velocity U , of an arbitrary quantity external to the particle (e.g., an external

field), is computed by means of the relativistic convective derivative operator,

dτ ≡ (U ·∂) ≡ γ∂0 + γ(v ·∇). (G.7)

The proper-time rate of change of a component of a kinematical property

of a particle (i.e., the partial proper-time derivative), as seen in some given

lab frame, is defined to be related to the lab-time rate of change of that

component by means of the time-dilation formula:

[dτ ] ≡ γdt. (G.8)

G.4.7 Partial kinematical derivatives

We now take successive proper-time derivatives of the components of U and

Σ (i.e., partial proper-time derivatives). To do so, we first take dt of (G.2)
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to find

γ̇ ≡ γ3(v ·v̇). (G.9)

Using (G.8) and (G.9), and taking note of the overdot conventions, we thus

find

[U̇0] = γ4(v ·v̇),

[U̇ ] = γ2v̇ + γ4(v ·v̇)v,

[Ü0] = γ5v̇2 + γ5(v ·v̈) + 4γ7(v ·v̇)2,

[Ü ] = γ3v̈ + γ5v̇2v + 3γ5(v ·v̇)v̇ + γ5(v ·v̈)v + 4γ7(v ·v̇)2v,

[
...
U0] = γ6(v ·...v) + 3γ6(v̇ ·v̈) + 28γ10(v ·v̇)3 + 13γ8v̇2(v ·v̇)

+ 13γ8(v ·v̇)(v ·v̈),

[
...
U] = γ4...v + 4γ6v̇2v̇ + 6γ6(v ·v̇)v̈ + 4γ6(v ·v̈)v̇ + γ6(v ·...v)v + 3γ6(v̇ ·v̈)v

+ 19γ8(v ·v̇)2v̇ + 28γ10(v ·v̇)3v + 13γ8v̇2(v ·v̇)v

+ 13γ8(v ·v̇)(v ·v̈)v,

[
....
U0] = 3γ7v̈2 + 13γ9v̇4 + γ7(v ·....v) + 4γ7(v̇ ·...v) + 13γ9(v ·v̈)2

+ 280γ13(v ·v̇)4 + 26γ9v̇2(v ·v̈) + 188γ11v̇2(v ·v̇)2

+ 19γ9(v ·v̇)(v ·...v) + 57γ9(v ·v̇)(v̇ ·v̈) + 188γ11(v ·v̇)2(v ·v̈),

[
....
U] = γ5....v + 10γ7v̇2v̈ + 3γ7v̈2v + 13γ9v̇4v + 10γ7(v ·v̇)

...
v + 10γ7(v ·v̈)v̈

+ 5γ7(v ·...v)v̇ + γ7(v ·....v)v + 15γ7(v̇ ·v̈)v̇ + 4γ7(v̇ ·...v)v

+ 55γ9(v ·v̇)2v̈ + 13γ9(v ·v̈)2v + 180γ11(v ·v̇)3v̇ + 280γ13(v ·v̇)4v

+ 75γ9v̇2(v ·v̇)v̇ + 26γ9v̇2(v ·v̈)v + 188γ11v̇2(v ·v̇)2v

+ 75γ9(v ·v̇)(v ·v̈)v̇ + 19γ9(v ·v̇)(v ·...v)v + 57γ9(v ·v̇)(v̇ ·v̈)v

+ 188γ11(v ·v̇)2(v ·v̈)v,
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[Σ̇ 0] = γ2(v ·σ̇) + γ2(v̇ ·σ) + γ4(v ·v̇)(v ·σ),

[Σ̇] = γσ̇ + γ3(γ + 1)−1(v ·σ)v̇ + γ3(γ + 1)−1(v ·σ̇)v

+ γ3(γ + 1)−1(v̇ ·σ)v + 2γ5(γ + 1)−1(v ·v̇)(v ·σ)v

− γ6(γ + 1)−2(v ·v̇)(v ·σ)v,

[Σ̈ 0] = γ3(v ·σ̈) + 2γ3(v̇ ·σ̇) + γ3(v̈ ·σ) + γ5v̇2(v ·σ) + 3γ5(v ·v̇)(v ·σ̇)

+ 3γ5(v ·v̇)(v̇ ·σ) + γ5(v ·v̈)(v ·σ) + 4γ7(v ·v̇)2(v ·σ),

[Σ̈] = γ2σ̈ + γ4(v ·v̇)σ̇ + γ4(γ + 1)−1(v ·σ)v̈ + 2γ4(γ + 1)−1(v ·σ̇)v̇

+ γ4(γ + 1)−1(v ·σ̈)v + 2γ4(γ + 1)−1(v̇ ·σ)v̇

+ 2γ4(γ + 1)−1(v̇ ·σ̇)v + γ4(γ + 1)−1(v̈ ·σ)v

+ 2γ6(γ + 1)−1v̇2(v ·σ)v − γ7(γ + 1)−2v̇2(v ·σ)v

+ 5γ6(γ + 1)−1(v ·v̇)(v ·σ)v̇ + 5γ6(γ + 1)−1(v ·v̇)(v ·σ̇)v

+ 5γ6(γ + 1)−1(v ·v̇)(v̇ ·σ)v + 2γ6(γ + 1)−1(v ·v̈)(v ·σ)v

− 2γ7(γ + 1)−2(v ·v̇)(v ·σ)v̇ − 2γ7(γ + 1)−2(v ·v̇)(v ·σ̇)v

− 2γ7(γ + 1)−2(v ·v̇)(v̇ ·σ)v − γ7(γ + 1)−2(v ·v̈)(v ·σ)v

+ 10γ8(γ + 1)−1(v ·v̇)2(v ·σ)v − 8γ9(γ + 1)−2(v ·v̇)2(v ·σ)v

+ 2γ10(γ + 1)−3(v ·v̇)2(v ·σ)v,

[
...
Σ 0] = γ4(v · ...σ) + 3γ4(v̇ ·σ̈) + 3γ4(v̈ ·σ̇) + γ4(

...
v ·σ) + 4γ6v̇2(v ·σ̇)

+ 4γ6v̇2(v̇ ·σ) + 6γ6(v ·v̇)(v ·σ̈) + 12γ6(v ·v̇)(v̇ ·σ̇)

+ 6γ6(v ·v̇)(v̈ ·σ) + 4γ6(v ·v̈)(v ·σ̇) + 4γ6(v ·v̈)(v̇ ·σ)

+ γ6(v ·...v)(v ·σ) + 3γ6(v ·σ)(v̇ ·v̈) + 19γ8(v ·v̇)2(v ·σ̇)

+ 19γ8(v ·v̇)2(v̇ ·σ) + 28γ10(v ·v̇)3(v ·σ) + 13γ8v̇2(v ·v̇)(v ·σ)

+ 13γ8(v ·v̇)(v ·v̈)(v ·σ),

[
...
Σ] = γ3 ...σ + γ5v̇2σ̇ + 3γ5(v ·v̇)σ̈ + γ5(v ·v̈)σ̇ + 4γ7(v ·v̇)2σ̇

+ γ5(γ + 1)−1(v ·σ)
...
v + 3γ5(γ + 1)−1(v ·σ̇)v̈
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+ 3γ5(γ + 1)−1(v ·σ̈)v̇ + γ5(γ + 1)−1(v · ...σ)v

+ 3γ5(γ + 1)−1(v̇ ·σ)v̈ + 6γ5(γ + 1)−1(v̇ ·σ̇)v̇

+ 3γ5(γ + 1)−1(v̇ ·σ̈)v + 3γ5(γ + 1)−1(v̈ ·σ)v̇

+ 3γ5(γ + 1)−1(v̈ ·σ̇)v + γ5(γ + 1)−1(
...
v ·σ)v

+ 7γ7(γ + 1)−1v̇2(v ·σ)v̇ + 7γ7(γ + 1)−1v̇2(v ·σ̇)v

+ 7γ7(γ + 1)−1v̇2(v̇ ·σ)v − 3γ8(γ + 1)−2v̇2(v ·σ)v̇

− 3γ8(γ + 1)−2v̇2(v ·σ̇)v − 3γ8(γ + 1)−2v̇2(v̇ ·σ)v

+ 9γ7(γ + 1)−1(v ·v̇)(v ·σ)v̈ + 18γ7(γ + 1)−1(v ·v̇)(v ·σ̇)v̇

+ 9γ7(γ + 1)−1(v ·v̇)(v ·σ̈)v + 18γ7(γ + 1)−1(v ·v̇)(v̇ ·σ)v̇

+ 18γ7(γ + 1)−1(v ·v̇)(v̇ ·σ̇)v + 9γ7(γ + 1)−1(v ·v̇)(v̈ ·σ)v

+ 7γ7(γ + 1)−1(v ·v̈)(v ·σ)v̇ + 7γ7(γ + 1)−1(v ·v̈)(v ·σ̇)v

+ 7γ7(γ + 1)−1(v ·v̈)(v̇ ·σ)v + 2γ7(γ + 1)−1(v ·...v)(v ·σ)v

+ 6γ7(γ + 1)−1(v ·σ)(v̇ ·v̈)v − 3γ8(γ + 1)−2(v ·v̇)(v ·σ)v̈

− 6γ8(γ + 1)−2(v ·v̇)(v ·σ̇)v̇ − 3γ8(γ + 1)−2(v ·v̇)(v ·σ̈)v

− 6γ8(γ + 1)−2(v ·v̇)(v̇ ·σ)v̇ − 6γ8(γ + 1)−2(v ·v̇)(v̇ ·σ̇)v

− 3γ8(γ + 1)−2(v ·v̇)(v̈ ·σ)v − 3γ8(γ + 1)−2(v ·v̈)(v ·σ)v̇

− 3γ8(γ + 1)−2(v ·v̈)(v ·σ̇)v − 3γ8(γ + 1)−2(v ·v̈)(v̇ ·σ)v

− γ8(γ + 1)−2(v ·...v)(v ·σ)v − 3γ8(γ + 1)−2(v ·σ)(v̇ ·v̈)v

+ 40γ9(γ + 1)−1(v ·v̇)2(v ·σ)v̇ + 40γ9(γ + 1)−1(v ·v̇)2(v ·σ̇)v

+ 40γ9(γ + 1)−1(v ·v̇)2(v̇ ·σ)v − 27γ10(γ + 1)−2(v ·v̇)2(v ·σ)v̇

− 27γ10(γ + 1)−2(v ·v̇)2(v ·σ̇)v − 27γ10(γ + 1)−2(v ·v̇)2(v̇ ·σ)v

+ 6γ11(γ + 1)−3(v ·v̇)2(v ·σ)v̇ + 6γ11(γ + 1)−3(v ·v̇)2(v ·σ̇)v

+ 6γ11(γ + 1)−3(v ·v̇)2(v̇ ·σ)v + 80γ11(γ + 1)−1(v ·v̇)3(v ·σ)v

− 82γ12(γ + 1)−2(v ·v̇)3(v ·σ)v + 36γ13(γ + 1)−3(v ·v̇)3(v ·σ)v

− 6γ14(γ + 1)−4(v ·v̇)3(v ·σ)v + 32γ9(γ + 1)−1v̇2(v ·v̇)(v ·σ)v
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− 25γ10(γ + 1)−2v̇2(v ·v̇)(v ·σ)v + 6γ11(γ + 1)−3v̇2(v ·v̇)(v ·σ)v

+ 32γ9(γ + 1)−1(v ·v̇)(v ·v̈)(v ·σ)v

− 25γ10(γ + 1)−2(v ·v̇)(v ·v̈)(v ·σ)v

+ 6γ11(γ + 1)−3(v ·v̇)(v ·v̈)(v ·σ)v,

Evaluating all these quantities for v = 0, we find

U0
∣∣∣
v=0

= 1,

U |v=0 = 0,

[U̇0]
∣∣∣
v=0

= 0,

[U̇ ]
∣∣∣
v=0

= v̇,

[Ü0]
∣∣∣
v=0

= v̇2,

[Ü ]
∣∣∣
v=0

= v̈,

[
...
U0]

∣∣∣
v=0

= 3(v̇ ·v̈),

[
...
U]

∣∣∣
v=0

=
...
v + 4v̇2v̇,

[
....
U0]

∣∣∣
v=0

= 13v̇4 + 3v̈2 + 4(v̇ ·...v),

[
....
U]

∣∣∣
v=0

=
....
v + 10v̇2v̈ + 15(v̇ ·v̈)v̇,

Σ 0
∣∣∣
v=0

= 0,

Σ|v=0 = σ,

[Σ̇ 0]
∣∣∣
v=0

= (v̇ ·σ),

[Σ̇]
∣∣∣
v=0

= σ̇,
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[Σ̈ 0]
∣∣∣
v=0

= 2(v̇ ·σ̇) + (v̈ ·σ),

[Σ̈]
∣∣∣
v=0

= σ̈ + (v̇ ·σ)v̇,

[
...
Σ 0]

∣∣∣
v=0

= 3(v̇ ·σ̈) + 3(v̈ ·σ̇) + (
...
v ·σ) + 4v̇2(v̇ ·σ),

[
...
Σ]

∣∣∣
v=0

=
...
σ + v̇2σ̇ +

3

2
(v̇ ·σ)v̈ + 3(v̇ ·σ̇)v̇ +

3

2
(v̈ ·σ)v̇,

G.4.8 Covariant kinematical derivatives

Computing now the covariant proper-time derivatives of U and Σ , related

to their partial counterparts by

(Ċ)α ≡ [Ċα] + Uα(C ·U̇),

we find

(U̇)0 = γ4(v ·v̇),

(U̇ ) = γ2v̇ + γ4(v ·v̇)v,

(Ü)0 = γ5(v ·v̈) + 3γ7(v ·v̇)2,

(Ü ) = γ3v̈ + 3γ5(v ·v̇)v̇ + γ5(v ·v̈)v + 3γ7(v ·v̇)2v,

(
...
U)0 = γ6(v ·...v) + 18γ10(v ·v̇)3 + 3γ8v̇2(v ·v̇) + 10γ8(v ·v̇)(v ·v̈),

(
...
U) = γ4...v + 3γ6v̇2v̇ + 6γ6(v ·v̇)v̈ + 4γ6(v ·v̈)v̇ + γ6(v ·...v)v

+ 18γ8(v ·v̇)2v̇ + 18γ10(v ·v̇)3v + 3γ8v̇2(v ·v̇)v

+ 10γ8(v ·v̇)(v ·v̈)v,

(
....
U)0 = γ7(v ·....v) + 10γ9(v ·v̈)2 + 162γ13(v ·v̇)4 + 9γ9v̇2(v ·v̈)

+ 57γ11v̇2(v ·v̇)2 + 15γ9(v ·v̇)(v ·...v) + 10γ9(v ·v̇)(v̇ ·v̈)
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+ 124γ11(v ·v̇)2(v ·v̈),

(
....
U) = γ5....v + 9γ7v̇2v̈ + 10γ7(v ·v̇)

...
v + 10γ7(v ·v̈)v̈ + 5γ7(v ·...v)v̇

+ γ7(v ·....v)v + 10γ7(v̇ ·v̈)v̇ + 54γ9(v ·v̇)2v̈ + 10γ9(v ·v̈)2v

+ 162γ11(v ·v̇)3v̇ + 162γ13(v ·v̇)4v + 57γ9v̇2(v ·v̇)v̇

+ 9γ9v̇2(v ·v̈)v + 57γ11v̇2(v ·v̇)2v + 70γ9(v ·v̇)(v ·v̈)v̇

+ 15γ9(v ·v̇)(v ·...v)v + 10γ9(v ·v̇)(v̇ ·v̈)v + 124γ11(v ·v̇)2(v ·v̈)v,

(Σ̇ )0 = γ2(v ·σ̇) + γ2(γ + 1)−1(v̇ ·σ)− γ4(γ + 1)−1(v̇ ·σ)

+ γ4(γ + 1)−1(v ·v̇)(v ·σ),

(Σ̇) = γσ̇ + γ3(γ + 1)−1(v ·σ)v̇ + γ3(γ + 1)−1(v ·σ̇)v

− γ4(γ + 1)−1(v̇ ·σ)v + γ5(γ + 1)−2(v ·v̇)(v ·σ)v,

(Σ̈ )0 = γ3(v ·σ̈) + 2γ3(γ + 1)−1(v̇ ·σ̇) + γ3(γ + 1)−1(v̈ ·σ)

− 2γ5(γ + 1)−1(v̇ ·σ̇)− γ5(γ + 1)−1(v̈ ·σ) + γ5(γ + 1)−2v̇2(v ·σ)

− γ7(γ + 1)−2v̇2(v ·σ) + 3γ5(v ·v̇)(v ·σ̇)− 7γ6(v ·v̇)(v̇ ·σ)

+ γ5(γ + 1)−1(v ·v̈)(v ·σ) + 3γ5(γ + 1)(v ·v̇)(v̇ ·σ)

− 2γ6(γ + 1)−1(v ·v̇)(v ·σ̇) + 2γ7(γ + 1)−1(v ·v̇)(v̇ ·σ)

+ 4γ7(γ + 1)−1(v ·v̇)2(v ·σ)− 2γ8(γ + 1)−2(v ·v̇)2(v ·σ),

(Σ̈) = γ2σ̈ + γ4(v ·v̇)σ̇ + γ4(γ + 1)−2(v̇ ·σ)v̇ + γ4(γ + 1)−1(v ·σ)v̈

+ 2γ4(γ + 1)−1(v ·σ̇)v̇ + γ4(γ + 1)−1(v ·σ̈)v

− 2γ5(γ + 1)−1(v̇ ·σ̇)v − γ5(γ + 1)−1(v̈ ·σ)v

− γ6(γ + 1)−2(v̇ ·σ)v̇ − γ7(γ + 1)−2v̇2(v ·σ)v + γ6(v ·v̇)(v̇ ·σ)v

+ γ6(γ + 1)−2(v ·v̈)(v ·σ)v + 4γ6(γ + 1)−1(v ·v̇)(v ·σ)v̇

+ 3γ6(γ + 1)−1(v ·v̇)(v ·σ̇)v − 2γ7(γ + 1)−2(v ·v̇)(v ·σ)v̇

− 2γ7(γ + 1)−2(v ·v̇)(v ·σ̇)v − 5γ7(γ + 1)−1(v ·v̇)(v̇ ·σ)v

+ 2γ8(γ + 1)−2(v ·v̇)(v̇ ·σ)v + 4γ8(γ + 1)−2(v ·v̇)2(v ·σ)v

− 2γ9(γ + 1)−3(v ·v̇)2(v ·σ)v,
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(
...
Σ )0 = γ4(v · ...σ) + 3γ4(γ + 1)−2(v̇ ·σ̈) + 3γ4(γ + 1)−2(v̈ ·σ̇)

+ γ4(γ + 1)−2(
...
v ·σ) + 3γ5(γ + 1)−3(v̇ ·σ̈) + 3γ5(γ + 1)−3(v̈ ·σ̇)

+ γ5(γ + 1)−3(
...
v ·σ)− 6γ7(γ + 1)−2(v̇ ·σ̈)− 6γ7(γ + 1)−2(v̈ ·σ̇)

− 2γ7(γ + 1)−2(
...
v ·σ) + 3γ8(γ + 1)−3(v̇ ·σ̈) + 3γ8(γ + 1)−3(v̈ ·σ̇)

+ γ8(γ + 1)−3(
...
v ·σ)− 11γ7v̇2(v̇ ·σ) + 4γ6(γ + 1)−2v̇2(v ·σ̇)

+ 4γ6(γ + 1)v̇2(v̇ ·σ) + 2γ7(γ + 1)−3v̇2(v ·σ̇)

+ 6γ8(γ + 1)−1v̇2(v̇ ·σ)− 2γ9(γ + 1)−3v̇2(v ·σ̇)

+ 6γ6(v ·v̇)(v ·σ̈) + 4γ6(v ·v̈)(v ·σ̇)− 27γ7(v ·v̇)(v̇ ·σ̇)

− 14γ7(v ·v̇)(v̈ ·σ) + 19γ8(v ·v̇)2(v ·σ̇)− 50γ9(v ·v̇)2(v̇ ·σ)

+ 4γ6(γ + 1)−2(v ·v̈)(v̇ ·σ) + 3γ6(γ + 1)−2(v ·σ)(v̇ ·v̈)

+ γ6(γ + 1)−1(v ·...v)(v ·σ) + 12γ6(γ + 1)(v ·v̇)(v̇ ·σ̇)

+ 6γ6(γ + 1)(v ·v̇)(v̈ ·σ) + 3γ7(γ + 1)−3(v ·v̈)(v̇ ·σ)

− 3γ7(γ + 1)−1(v ·v̇)(v ·σ̈)− 3γ7(γ + 1)−1(v ·v̈)(v ·σ̇)

− 3γ8(γ + 1)−2(v ·σ)(v̇ ·v̈) + 6γ8(γ + 1)−1(v ·v̇)(v̇ ·σ̇)

+ 3γ8(γ + 1)−1(v ·v̇)(v̈ ·σ) + 19γ8(γ + 1)(v ·v̇)2(v̇ ·σ)

− 5γ9(γ + 1)−2(v ·v̈)(v̇ ·σ)− 21γ9(γ + 1)−1(v ·v̇)2(v ·σ̇)

+ 3γ10(γ + 1)−3(v ·v̈)(v̇ ·σ) + 6γ10(γ + 1)−2(v ·v̇)2(v ·σ̇)

+ 27γ10(γ + 1)−1(v ·v̇)2(v̇ ·σ) + 28γ10(γ + 1)−1(v ·v̇)3(v ·σ)

− 6γ11(γ + 1)−2(v ·v̇)2(v̇ ·σ)− 24γ11(γ + 1)−2(v ·v̇)3(v ·σ)

+ 6γ12(γ + 1)−3(v ·v̇)3(v ·σ) + 13γ8v̇2(v ·v̇)(v ·σ)

− 28γ9(γ + 1)−1v̇2(v ·v̇)(v ·σ) + 9γ10(γ + 1)−2v̇2(v ·v̇)(v ·σ)

+ 13γ8(γ + 1)−1(v ·v̇)(v ·v̈)(v ·σ)

− 6γ9(γ + 1)−2(v ·v̇)(v ·v̈)(v ·σ),

(
...
Σ) = γ3 ...σ + γ5v̇2σ̇ + 3γ5(v ·v̇)σ̈ + γ5(v ·v̈)σ̇ + 4γ7(v ·v̇)2σ̇

+ 3γ5(γ + 1)−3(v̇ ·σ̇)v̇ + γ5(γ + 1)−3(v̈ ·σ)v̇
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+ 2γ5(γ + 1)−2(v̇ ·σ)v̈ + γ5(γ + 1)−1(v ·σ)
...
v

+ 3γ5(γ + 1)−1(v ·σ̇)v̈ + 3γ5(γ + 1)−1(v ·σ̈)v̇

+ γ5(γ + 1)−1(v · ...σ)v + 3γ6(γ + 1)−4(v̇ ·σ̇)v̇

+ γ6(γ + 1)−3(v̇ ·σ)v̈ − 3γ6(γ + 1)−1(v̇ ·σ̈)v

− 3γ6(γ + 1)−1(v̈ ·σ̇)v − γ6(γ + 1)−1(
...
v ·σ)v

− 3γ7(γ + 1)−2(v̈ ·σ)v̇ − γ8(γ + 1)−3(v̇ ·σ)v̈

− 6γ8(γ + 1)−3(v̇ ·σ̇)v̇ + γ8(γ + 1)−3(v̈ ·σ)v̇

+ 3γ9(γ + 1)−4(v̇ ·σ̇)v̇ + γ7(γ + 1)−4v̇2(v ·σ̇)v

+ 4γ7(γ + 1)−1v̇2(v ·σ)v̇ − 3γ8(γ + 1)−2v̇2(v ·σ)v̇

− 4γ8(γ + 1)−1v̇2(v̇ ·σ)v − 3γ9(γ + 1)−3v̇2(v ·σ̇)v

+ 3γ9(γ + 1)−2v̇2(v̇ ·σ)v + γ10(γ + 1)−4v̇2(v ·σ̇)v

+ 9γ7(v ·v̇)(v̇ ·σ)v̇ + 3γ7(v ·v̇)(v̇ ·σ̇)v + γ7(v ·v̇)(v̈ ·σ)v

+ 2γ7(v ·v̈)(v̇ ·σ)v + 9γ9(v ·v̇)2(v̇ ·σ)v

+ γ7(γ + 1)−2(v ·...v)(v ·σ)v + 8γ7(γ + 1)−1(v ·v̇)(v ·σ)v̈

+ 15γ7(γ + 1)−1(v ·v̇)(v ·σ̇)v̇ + 6γ7(γ + 1)−1(v ·v̇)(v ·σ̈)v

+ 5γ7(γ + 1)−1(v ·v̈)(v ·σ)v̇ + 4γ7(γ + 1)−1(v ·v̈)(v ·σ̇)v

− 3γ8(γ + 1)−2(v ·v̇)(v ·σ)v̈ − 6γ8(γ + 1)−2(v ·v̇)(v ·σ̇)v̇

− 3γ8(γ + 1)−2(v ·v̇)(v ·σ̈)v − 3γ8(γ + 1)−2(v ·v̈)(v ·σ)v̇

− 3γ8(γ + 1)−2(v ·v̈)(v ·σ̇)v − 3γ8(γ + 1)−2(v ·σ)(v̇ ·v̈)v

− 21γ8(γ + 1)−1(v ·v̇)(v̇ ·σ)v̇ − 18γ8(γ + 1)−1(v ·v̇)(v̇ ·σ̇)v

− 9γ8(γ + 1)−1(v ·v̇)(v̈ ·σ)v − 7γ8(γ + 1)−1(v ·v̈)(v̇ ·σ)v

+ 6γ9(γ + 1)−2(v ·v̇)(v̇ ·σ)v̇ + 6γ9(γ + 1)−2(v ·v̇)(v̇ ·σ̇)v

+ 3γ9(γ + 1)−2(v ·v̇)(v̈ ·σ)v + 3γ9(γ + 1)−2(v ·v̈)(v̇ ·σ)v

+ 28γ9(γ + 1)−1(v ·v̇)2(v ·σ)v̇ + 19γ9(γ + 1)−1(v ·v̇)2(v ·σ̇)v

− 24γ10(γ + 1)−2(v ·v̇)2(v ·σ)v̇ − 21γ10(γ + 1)−2(v ·v̇)2(v ·σ̇)v
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− 40γ10(γ + 1)−1(v ·v̇)2(v̇ ·σ)v + 6γ11(γ + 1)−3(v ·v̇)2(v ·σ)v̇

+ 6γ11(γ + 1)−3(v ·v̇)2(v ·σ̇)v + 27γ11(γ + 1)−2(v ·v̇)2(v̇ ·σ)v

+ 28γ11(γ + 1)−2(v ·v̇)3(v ·σ)v − 6γ12(γ + 1)−3(v ·v̇)2(v̇ ·σ)v

− 24γ12(γ + 1)−3(v ·v̇)3(v ·σ)v + 6γ13(γ + 1)−4(v ·v̇)3(v ·σ)v

+ 4γ9(γ + 1)−1v̇2(v ·v̇)(v ·σ)v − 16γ10(γ + 1)−2v̇2(v ·v̇)(v ·σ)v

+ 6γ11(γ + 1)−3v̇2(v ·v̇)(v ·σ)v

+ 13γ9(γ + 1)−2(v ·v̇)(v ·v̈)(v ·σ)v

− 6γ10(γ + 1)−3(v ·v̇)(v ·v̈)(v ·σ)v,

Evaluating these expressions for v = 0, we find

(U̇)0
∣∣∣
v=0

= 0,

(U̇ )
∣∣∣
v=0

= v̇,

(Ü)0
∣∣∣
v=0

= 0,

(Ü )
∣∣∣
v=0

= v̈,

(
...
U)0

∣∣∣
v=0

= 0,

(
...
U)

∣∣∣
v=0

=
...
v + 3v̇2v̇,

(
....
U)0

∣∣∣
v=0

= 0,

(
....
U)

∣∣∣
v=0

=
....
v + 9v̇2v̈ + 10(v̇ ·v̈)v̇,

(Σ̇ )0
∣∣∣
v=0

= 0,

(Σ̇)
∣∣∣
v=0

= σ̇,

(Σ̈ )0
∣∣∣
v=0

= 0,

(Σ̈)
∣∣∣
v=0

= σ̈,
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(
...
Σ )0

∣∣∣
v=0

= 0,

(
...
Σ)

∣∣∣
v=0

=
...
σ + v̇2σ̇ +

1

2
(v̇ ·σ)v̈ − 1

2
(v̈ ·σ)v̇,

G.4.9 FitzGerald spin derivatives

The spin derivatives computed in Sections G.4.7 and G.4.8 were given in

terms of the three-spin σ; this vector is intuitively understandable, and

has been universally used historically. However, as noted in Section G.4.5,

some theoretical results are considerably simplified algbraically if rewritten

in terms of the FitzGerald three-spin σ′. We now recompute the partial and

covariant derivatives of Σ in terms of σ′.

It may be shown that

σ = σ′ + γ2(γ + 1)−1(v ·σ′)v;

to verify this, simply substitute σ′ into the right-hand side; one finds

σ = σ.

Using σ′ in the definition of Σ , and then differentiating the resulting expres-

sions anew, both partially and covariantly, we find

Σ 0 = γ2(v ·σ′),

Σ = σ′ + γ2(v ·σ′)v,

[Σ̇ 0] = γ3(v ·σ̇′) + γ3(v̇ ·σ′) + 2γ5(v ·v̇)(v ·σ′),

[Σ̇] = γσ̇′ + γ3(v ·σ′)v̇ + γ3(v ·σ̇′)v + γ3(v̇ ·σ′)v + 2γ5(v ·v̇)(v ·σ′)v,

[Σ̈ 0] = γ4(v ·σ̈′) + 2γ4(v̇ ·σ̇′) + γ4(v̈ ·σ′) + 2γ6v̇2(v ·σ′)

+ 5γ6(v ·v̇)(v ·σ̇′) + 5γ6(v ·v̇)(v̇ ·σ′) + 2γ6(v ·v̈)(v ·σ′)

+ 10γ8(v ·v̇)2(v ·σ′),
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[Σ̈] = γ2σ̈′ + γ4(v ·v̇)σ̇′ + γ4(v ·σ′)v̈ + 2γ4(v ·σ̇′)v̇ + γ4(v ·σ̈′)v

+ 2γ4(v̇ ·σ′)v̇ + 2γ4(v̇ ·σ̇′)v + γ4(v̈ ·σ′)v + 2γ6v̇2(v ·σ′)v

+ 5γ6(v ·v̇)(v ·σ′)v̇ + 5γ6(v ·v̇)(v ·σ̇′)v + 5γ6(v ·v̇)(v̇ ·σ′)v

+ 2γ6(v ·v̈)(v ·σ′)v + 10γ8(v ·v̇)2(v ·σ′)v,

[
...
Σ 0] = 3γ5(v̇ ·σ̈′) + 3γ5(v̈ ·σ̇′) + γ5(

...
v ·σ′) + 7γ7v̇2(v ·σ̇′) + 7γ7v̇2(v̇ ·σ′)

+ 9γ7(v ·v̇)(v ·σ̈′) + 18γ7(v ·v̇)(v̇ ·σ̇′) + 9γ7(v ·v̇)(v̈ ·σ′)

+ 7γ7(v ·v̈)(v ·σ̇′) + 7γ7(v ·v̈)(v̇ ·σ′) + 2γ7(v ·...v)(v ·σ′)

+ 6γ7(v ·σ′)(v̇ ·v̈) + 40γ9(v ·v̇)2(v ·σ̇′) + 40γ9(v ·v̇)2(v̇ ·σ′)

+ 80γ11(v ·v̇)3(v ·σ′) + 32γ9v̇2(v ·v̇)(v ·σ′)

+ 32γ9(v ·v̇)(v ·v̈)(v ·σ′),

[
...
Σ] = γ5v̇2σ̇′ + 3γ5(v ·v̇)σ̈′ + γ5(v ·v̈)σ̇′ + γ5(v ·σ′)

...
v + 3γ5(v ·σ̇′)v̈

+ 3γ5(v ·σ̈′)v̇ + 3γ5(v̇ ·σ′)v̈ + 6γ5(v̇ ·σ̇′)v̇ + 3γ5(v̇ ·σ̈′)v

+ 3γ5(v̈ ·σ′)v̇ + 3γ5(v̈ ·σ̇′)v + γ5(
...
v ·σ′)v + 4γ7(v ·v̇)2σ̇′

+ 7γ7v̇2(v ·σ′)v̇ + 7γ7v̇2(v ·σ̇′)v + 7γ7v̇2(v̇ ·σ′)v

+ 9γ7(v ·v̇)(v ·σ′)v̈ + 18γ7(v ·v̇)(v ·σ̇′)v̇ + 9γ7(v ·v̇)(v ·σ̈′)v

+ 18γ7(v ·v̇)(v̇ ·σ′)v̇ + 18γ7(v ·v̇)(v̇ ·σ̇′)v + 9γ7(v ·v̇)(v̈ ·σ′)v

+ 7γ7(v ·v̈)(v ·σ′)v̇ + 7γ7(v ·v̈)(v ·σ̇′)v + 7γ7(v ·v̈)(v̇ ·σ′)v

+ 2γ7(v ·...v)(v ·σ′)v + 6γ7(v ·σ′)(v̇ ·v̈)v + 40γ9(v ·v̇)2(v ·σ′)v̇

+ 40γ9(v ·v̇)2(v ·σ̇′)v + 40γ9(v ·v̇)2(v̇ ·σ′)v + 80γ11(v ·v̇)3(v ·σ′)v

+ 32γ9v̇2(v ·v̇)(v ·σ′)v + 32γ9(v ·v̇)(v ·v̈)(v ·σ′)v,

(Σ̇ )0 = γ3(v ·σ̇′) + γ5(v ·v̇)(v ·σ′),

(Σ̇) = γσ̇′ + γ3(v ·σ′)v̇ + γ3(v ·σ̇′)v + γ5(v ·v̇)(v ·σ′)v,

(Σ̈ )0 = γ4(v ·σ̈′) + 3γ6(v ·v̇)(v ·σ̇′) + γ6(v ·v̇)(v̇ ·σ′) + γ6(v ·v̈)(v ·σ′)
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+ 4γ8(v ·v̇)2(v ·σ′),

(Σ̈) = γ2σ̈′ + γ4(v ·v̇)σ̇′ + γ4(v ·σ′)v̈ + 2γ4(v ·σ̇′)v̇ + γ4(v ·σ̈′)v

+ γ4(v̇ ·σ′)v̇ + 4γ6(v ·v̇)(v ·σ′)v̇ + 3γ6(v ·v̇)(v ·σ̇′)v

+ γ6(v ·v̇)(v̇ ·σ′)v + γ6(v ·v̈)(v ·σ′)v + 4γ8(v ·v̇)2(v ·σ′)v,

(
...
Σ )0 = γ7v̇2(v ·σ̇′) + 6γ7(v ·v̇)(v ·σ̈′) + 3γ7(v ·v̇)(v̇ ·σ̇′) + γ7(v ·v̇)(v̈ ·σ′)

+ 4γ7(v ·v̈)(v ·σ̇′) + 2γ7(v ·v̈)(v̇ ·σ′) + γ7(v ·...v)(v ·σ′)

+ 19γ9(v ·v̇)2(v ·σ̇′) + 9γ9(v ·v̇)2(v̇ ·σ′) + 28γ11(v ·v̇)3(v ·σ′)

+ 4γ9v̇2(v ·v̇)(v ·σ′) + 13γ9(v ·v̇)(v ·v̈)(v ·σ′),

(
...
Σ) = γ5v̇2σ̇′ + 3γ5(v ·v̇)σ̈′ + γ5(v ·v̈)σ̇′ + γ5(v ·σ′)

...
v + 3γ5(v ·σ̇′)v̈

+ 3γ5(v ·σ̈′)v̇ + 2γ5(v̇ ·σ′)v̈ + 3γ5(v̇ ·σ̇′)v̇ + γ5(v̈ ·σ′)v̇

+ 4γ7(v ·v̇)2σ̇′ + 4γ7v̇2(v ·σ′)v̇ + γ7v̇2(v ·σ̇′)v

+ 8γ7(v ·v̇)(v ·σ′)v̈ + 15γ7(v ·v̇)(v ·σ̇′)v̇ + 6γ7(v ·v̇)(v ·σ̈′)v

+ 9γ7(v ·v̇)(v̇ ·σ′)v̇ + 3γ7(v ·v̇)(v̇ ·σ̇′)v + γ7(v ·v̇)(v̈ ·σ′)v

+ 5γ7(v ·v̈)(v ·σ′)v̇ + 4γ7(v ·v̈)(v ·σ̇′)v + 2γ7(v ·v̈)(v̇ ·σ′)v

+ γ7(v ·...v)(v ·σ′)v + 28γ9(v ·v̇)2(v ·σ′)v̇ + 19γ9(v ·v̇)2(v ·σ̇′)v

+ 9γ9(v ·v̇)2(v̇ ·σ′)v + 28γ11(v ·v̇)3(v ·σ′)v + 4γ9v̇2(v ·v̇)(v ·σ′)v

+ 13γ9(v ·v̇)(v ·v̈)(v ·σ′)v,

G.4.10 Electric parts of six-vectors

We now obtain explicit expressions for the electric parts of the six-vectors

formed from the various four-vectors U , [U̇ ], [Ü ], Σ , [Σ̇ ], [Σ̈ ] and ζ—where

ζ ≡ (R, Rn),—that are required in order to compute the retarded electric

fields from electric charges and electric dipole moments. We find

U0Σ − Σ 0U = γσ′,

U0U̇ − U̇0U = γ3v̇,
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Σ 0U̇ − U̇0Σ = −γ4(v ·v̇)σ′ + γ4(v ·σ′)v̇,

U0ζ − ζ0U = −Rγv + Rγn,

ζ0U̇ − U̇0ζ = Rγ2v̇ + Rγ4(v ·v̇)v −Rγ4(v ·v̇)n,

ζ0Ü − Ü0ζ = Rγ3v̈ + Rγ5v̇2v −Rγ5v̇2n + 3Rγ5(v ·v̇)v̇

+ Rγ5(v ·v̈)v −Rγ5(v ·v̈)n + 4Rγ7(v ·v̇)2v

− 4Rγ7(v ·v̇)2n,

ζ0Σ̇ − Σ̇ 0ζ = Rγσ̇′ + Rγ3(v ·σ′)v̇ + Rγ3(v ·σ̇′)v −Rγ3(v ·σ̇′)n

+ Rγ3(v̇ ·σ′)v −Rγ3(v̇ ·σ′)n + 2Rγ5(v ·v̇)(v ·σ′)v

− 2Rγ5(v ·v̇)(v ·σ′)n,

ζ0Σ̈ − Σ̈ 0ζ = Rγ2σ̈′ + Rγ4(v ·v̇)σ̇′ + Rγ4(v ·σ′)v̈ + 2Rγ4(v ·σ̇′)v̇

+ Rγ4(v ·σ̈′)v −Rγ4(v ·σ̈′)n + 2Rγ4(v̇ ·σ′)v̇

+ 2Rγ4(v̇ ·σ̇′)v − 2Rγ4(v̇ ·σ̇′)n + Rγ4(v̈ ·σ′)v

−Rγ4(v̈ ·σ′)n + 2Rγ6v̇2(v ·σ′)v − 2Rγ6v̇2(v ·σ′)n

+ 5Rγ6(v ·v̇)(v ·σ′)v̇ + 5Rγ6(v ·v̇)(v ·σ̇′)v

− 5Rγ6(v ·v̇)(v ·σ̇′)n + 5Rγ6(v ·v̇)(v̇ ·σ′)v

− 5Rγ6(v ·v̇)(v̇ ·σ′)n + 2Rγ6(v ·v̈)(v ·σ′)v

− 2Rγ6(v ·v̈)(v ·σ′)n + 10Rγ8(v ·v̇)2(v ·σ′)v

− 10Rγ8(v ·v̇)2(v ·σ′)n.

G.4.11 Dot-products of four-vectors

Finally, we compute the various dot-products of the four-vectors U , [U̇ ], [Ü ],

Σ , [Σ̇ ], [Σ̈ ] and ζ that are required to compute the retarded electromagnetic
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fields. These products are labelled as follows:

ϕ ≡ (ζ ·U)−1,

ψ ≡ (ζ ·Σ ),

χ̇ ≡ (ζ ·U̇),

ϑ̇ ≡ [U ·Σ̇ ],

ψ̇ ≡ [ζ ·Σ̇ ],

χ̈ ≡ [ζ ·Ü ],

η̈ ≡ [ζ ·Σ̈ ].

One finds

ϕ−1 = Rγ −Rγ(v ·n),

ψ = −R(σ′·n) + ϕ−1γ(v ·σ′),

χ̇ = −Rγ2(v̇ ·n) + ϕ−1γ3(v ·v̇),

ϑ̇ = γ2(v̇ ·σ′) + γ4(v ·v̇)(v ·σ′),

ψ̇ = −Rγ(σ̇′·n) + ϕ−1γ2(v ·σ̇′) + ϕ−1γ2(v̇ ·σ′)−Rγ3(v ·σ′)(v̇ ·n)

+ 2ϕ−1γ4(v ·v̇)(v ·σ′),

χ̈ = ϕ−1γ4v̇2 −Rγ3(v̈ ·n) + ϕ−1γ4(v ·v̈) + 4ϕ−1γ6(v ·v̇)2

− 3Rγ5(v ·v̇)(v̇ ·n),

η̈ = −Rγ2(σ̈′·n) + ϕ−1γ3(v ·σ̈′) + 2ϕ−1γ3(v̇ ·σ̇′) + ϕ−1γ3(v̈ ·σ′)

+ 2ϕ−1γ5v̇2(v ·σ′)−Rγ4(v ·v̇)(σ̇′·n)−Rγ4(v ·σ′)(v̈ ·n)

− 2Rγ4(v ·σ̇′)(v̇ ·n)− 2Rγ4(v̇ ·σ′)(v̇ ·n) + 5ϕ−1γ5(v ·v̇)(v ·σ̇′)

+ 5ϕ−1γ5(v ·v̇)(v̇ ·σ′) + 2ϕ−1γ5(v ·v̈)(v ·σ′) + 10ϕ−1γ7(v ·v̇)2(v ·σ′)

− 5Rγ6(v ·v̇)(v ·σ′)(v̇ ·n).
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G.4.12 Radiation reaction torque

We now compute just one consequence of the radiation reaction results of

Chapter 6, namely, the finite radiation reaction torque on a charged magnetic

dipole, due to its Thomas–BMT motion. It was found in Chapter 6 that the

finite terms in the torque expression, for v=0, are

Nself =
1

3
µ2η0 σ×

{
2
...
σ − σ×(v̇×v̈)

}
. (G.10)

From the expressions in Section G.4.8, one finds that (G.10) can be written

in covariant form as

(Ṡ) =
2

3
µ2η0 U×Σ×

{
(
...
Σ ) + U̇2(Σ̇ )

}
. (G.11)

From (G.11), one can find the rate of change of the three-spin σ, in any lab

frame:

σ̇ = σ×
{

1

γ
C − 1

γ + 1
C0v

}
+ σ̇T ≡ σ×ΩRR + σ̇T , (G.12)

where σ̇T is the Thomas precession contribution to σ̇, and

C ≡ 2

3

µ2

s
η0

{
(
...
Σ ) + U̇2(Σ̇ )

}
.

We remove inconvenient constants in ΩRR by defining a related vector Ω′
RR:

ΩRR ≡ µ2

6πs
Ω′

RR. (G.13)

Apart from the Thomas precession contribution, we use (G.11) and (G.13),

and the expressions in Section G.4.8, to find the general rate of change of

spin in any lab frame:

Ω′
RR = γ2 ...σ + 3γ4(v ·v̇)σ̈ + γ4(v ·v̈)σ̇ + 3γ6(v ·v̇)2σ̇

+ 3γ4(γ + 1)−3(v̇ ·σ̇)v̇ + γ4(γ + 1)−3(v̈ ·σ)v̇

+ 2γ4(γ + 1)−2(v̇ ·σ)v̈ + γ4(γ + 1)−1(v ·σ)
...
v
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+ 3γ4(γ + 1)−1(v ·σ̇)v̈ + 3γ4(γ + 1)−1(v ·σ̈)v̇

− 3γ4(γ + 1)−1(v̇ ·σ̈)v − 3γ4(γ + 1)−1(v̈ ·σ̇)v

− γ4(γ + 1)−1(
...
v ·σ)v + 3γ5(γ + 1)−4(v̇ ·σ̇)v̇

+ γ5(γ + 1)−3(v̇ ·σ)v̈ − 3γ6(γ + 1)−2(v̈ ·σ)v̇

− γ7(γ + 1)−3(v̇ ·σ)v̈ − 6γ7(γ + 1)−3(v̇ ·σ̇)v̇

+ γ7(γ + 1)−3(v̈ ·σ)v̇ + 3γ8(γ + 1)−4(v̇ ·σ̇)v̇

+ 3γ6(γ + 1)−2v̇2(v ·σ)v̇ − 3γ6(γ + 1)−2v̇2(v ·σ̇)v

− 3γ6(γ + 1)−2v̇2(v̇ ·σ)v + 9γ6(v ·v̇)(v̇ ·σ)v̇

− 3γ6(γ + 1)−2(v ·σ)(v̇ ·v̈)v + 8γ6(γ + 1)−1(v ·v̇)(v ·σ)v̈

+ 15γ6(γ + 1)−1(v ·v̇)(v ·σ̇)v̇ − 9γ6(γ + 1)−1(v ·v̇)(v̇ ·σ̇)v

− 5γ6(γ + 1)−1(v ·v̇)(v̈ ·σ)v + 5γ6(γ + 1)−1(v ·v̈)(v ·σ)v̇

− 2γ6(γ + 1)−1(v ·v̈)(v̇ ·σ)v − 3γ7(γ + 1)−2(v ·v̇)(v ·σ)v̈

− 6γ7(γ + 1)−2(v ·v̇)(v ·σ̇)v̇ − 3γ7(γ + 1)−2(v ·v̈)(v ·σ)v̇

− 21γ7(γ + 1)−1(v ·v̇)(v̇ ·σ)v̇ + 6γ8(γ + 1)−2(v ·v̇)(v̇ ·σ)v̇

+ 27γ8(γ + 1)−1(v ·v̇)2(v ·σ)v̇ − 9γ8(γ + 1)−1(v ·v̇)2(v̇ ·σ)v

− 24γ9(γ + 1)−2(v ·v̇)2(v ·σ)v̇ + 6γ10(γ + 1)−3(v ·v̇)2(v ·σ)v̇

− 9γ8(γ + 1)−2v̇2(v ·v̇)(v ·σ)v + 3γ9(γ + 1)−3v̇2(v ·v̇)(v ·σ)v.

When v = 0, we find

Ω′
RR =

...
σ +

1

2
(v̇ ·σ)v̈ − 1

2
(v̈ ·σ)v̇,

in agreement with the original expression (G.10).

For circular motion and uniform precession around the same axis, with

rates ΩM and ΩP respectively, we construct Cartesian axes with i in the

direction of the frequencies’ axis, and k in the direction of v, and paramet-

rise the spin direction σ according to

σ ≡ i sin θ − j cos θ sin φ + k cos θ cos φ,
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where φ(t) ≡ ΩP t. We then find

Ω′
RR = Ω 3

P γ2σ×i − 8Ω 2
MΩP γ4σ×i + 2Ω 3

Mγ3(γ + 1)−2σ×i

− 4Ω 3
Mγ5(γ + 1)−2σ×i + 2Ω 3

Mγ7(γ + 1)−2σ×i

− 3ΩMΩ 2
P γ2(γ + 1)−2σ×i − 3ΩMΩ 2

P γ3(γ + 1)−3σ×i

+ 6ΩMΩ 2
P γ5(γ + 1)−2σ×i − 3ΩMΩ 2

P γ6(γ + 1)−3σ×i

+ 2Ω 2
MΩP γ2(γ + 1)−3σ×i + 20Ω 2

MΩP γ5(γ + 1)−1σ×i

− 10Ω 2
MΩP γ6(γ + 1)−2σ×i + 2Ω 2

MΩP γ7(γ + 1)−3σ×i .

Substituting the Lorentz–Thomas result of

ΩP = (1 + aγ)ΩM ,

where

a ≡ g − 2

2

is the magnetic anomaly, we find

Ω′
RR = −Ω 3

Mγ3σ×i + 2Ω 3
Mγ5σ×i − Ω 3

Maγ3σ×i + 4Ω 3
Maγ5σ×i

+ 3Ω 3
Ma2γ5σ×i + Ω 3

Ma3γ5σ×i .

This result is discussed in Chapter 6.

G.5 retfield: Retarded fields

G.5.1 Introduction

This program verifies that the explicit expressions obtained by the author for

the retarded fields agree with those extractable directly from the manifestly-

covariant expressions.
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G.5.2 Covariant field expressions

Since a significant amount of intelligence is required to convert the manifest-

ly-covariant retarded field expressions to their final simplified non-covariant

form, we will here only verify that the initial and final expressions agree,

when all convenient quantities are expanded out explicitly. We start with

the manifestly covariant field expressions which, in the case of the dipole

fields, have been explicitly verified against the Cohn–Wiebe expressions:

F q
2 = ϕ3ζ∧U,

F q
1 = ϕ2ζ∧U̇ − ϕ3χ̇ζ∧U,

F d
3 = ϕ3U∧Σ − 3ϕ5ψζ∧U,

F d
2 = ϕ2U̇∧Σ + ϕ3[ζ∧Σ̇ ] + ϕ3ψU∧U̇ − ϕ3χ̇U∧Σ

+ 6ϕ5χ̇ψζ∧U − 3ϕ4ψ̇ζ∧U − 3ϕ4ψζ∧U̇ + ϕ3ϑ̇ζ∧U,

F d
1 = ϕ2[ζ∧Σ̈ ]− ϕ3ψ[ζ∧Ü ] + ϕ4ψχ̈ζ∧U − 2ϕ3ψ̇ζ∧U̇ + 3ϕ4χ̇ψ̇ζ∧U

− ϕ3χ̇[ζ∧Σ̇ ]− ϕ3η̈ζ∧U − 3ϕ5χ̇2ψζ∧U + 3ϕ4ψχ̇ζ∧U̇ ,

where

ζ ≡ x− z,

ϕ ≡ (ζ ·U)−1,

χ̇ ≡ (ζ ·U̇),

χ̈ ≡ [ζ ·Ü ],

ψ ≡ (ζ ·Σ ),

ψ̇ ≡ [ζ ·Σ̇ ],

ϑ̇ ≡ [U ·Σ̇ ],

η̈ ≡ [ζ ·Σ̈ ].
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G.5.3 Directly extracted expressions

Using the expressions calculated in the program kinemats in the above

expressions, one can extract the following explicit expressions for the retarded

fields, by direct calculation:

E′q
1 = −κ2v̇ − κ3(v̇ ·n)v + κ3(v̇ ·n)n,

E′q
2 = −κ3γ−2v + κ3γ−2n,

E′d
1 = −κ2σ̈′− κ3(σ′·n)v̈ − 2κ3(σ̇′·n)v̇ − κ3(σ̈′·n)v + κ3(σ̈′·n)n

− κ3(v̇ ·n)σ̇′− 3κ4(σ′·n)(v̇ ·n)v̇ − κ4(σ′·n)(v̈ ·n)v

+ κ4(σ′·n)(v̈ ·n)n− 3κ4(σ̇′·n)(v̇ ·n)v + 3κ4(σ̇′·n)(v̇ ·n)n

− 3κ5(σ′·n)(v̇ ·n)2v + 3κ5(σ′·n)(v̇ ·n)2n,

E′d
2 = −κ3γ−2σ̇′+ 2κ3(σ′·v)v̇ + κ3(σ′·v̇)v − κ3(σ′·v̇)n + κ3(σ′·n)v̇

+ 2κ3(σ̇′·v)v − 2κ3(σ̇′·v)n− κ3(v̇ ·n)σ′− 3κ4γ−2(σ′·n)v̇

− 3κ4γ−2(σ̇′·n)v + 3κ4γ−2(σ̇′·n)n + 3κ4(σ′·v)(v̇ ·n)v

− 3κ4(σ′·v)(v̇ ·n)n + 3κ4(σ′·n)(v ·v̇)v − 3κ4(σ′·n)(v ·v̇)n

− 6κ5γ−2(σ′·n)(v̇ ·n)v + 6κ5γ−2(σ′·n)(v̇ ·n)n,

E′d
3 = −κ3γ−2σ′+ 3κ4γ−2(σ′·v)v − 3κ4γ−2(σ′·v)n− 3κ5γ−4(σ′·n)v

+ 3κ5γ−4(σ′·n)n,

B′q
1 = κ2v̇×n + κ3(v̇ ·n)v×n,

B′q
2 = κ3γ−2v×n,
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B′d
1 = κ2σ̈′×n + κ3(σ′·n)v̈×n + 2κ3(σ̇′·n)v̇×n + κ3(σ̈′·n)v×n

+ κ3(v̇ ·n)σ̇′×n + 3κ4(σ′·n)(v̇ ·n)v̇×n + κ4(σ′·n)(v̈ ·n)v×n

+ 3κ4(σ̇′·n)(v̇ ·n)v×n + 3κ5(σ′·n)(v̇ ·n)2v×n,

B′d
2 = κ2σ′×v̇ + κ3γ−2σ̇′×n− 2κ3(σ′·v)v̇×n− κ3(σ′·v̇)v×n

+ κ3(σ′·n)v×v̇ − 2κ3(σ̇′·v)v×n + κ3(v̇ ·n)σ′×v

+ 3κ4γ−2(σ′·n)v̇×n + 3κ4γ−2(σ̇′·n)v×n− 3κ4(σ′·v)(v̇ ·n)v×n

− 3κ4(σ′·n)(v ·v̇)v×n + 6κ5γ−2(σ′·n)(v̇ ·n)v×n,

B′d
3 = κ3γ−2σ′×v − 3κ4γ−2(σ′·v)v×n + 3κ5γ−4(σ′·n)v×n.

G.5.4 The author’s expressions

The final, simplified expressions obtained by the author (on paper) for the

retarded fields are as follows:

E′q
1 = κ3n×E′′q

1 ,

where

E′′q
1 = −v̇×n′;

hence,

E′q
1 = κ3(v̇ ·n)n′ − κ3(n·n′)v̇;

E′q
2 = κ3γ−2n′,

E′d
1 = κ3n×E′′d

1 ,
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where

E′′d
1 = −σ̇′×v̇ − σ̈′×n′ − κ(σ′·n)v̈×n′ − 3κ(σ̇′·n)v̇×n′

− 3κ2(σ′·n)(v̇ ·n)v̇×n′;

hence,

E′d
1 = κ3(σ̇′·n)v̇ + κ3(σ̈′·n)n′ − κ3(v̇ ·n)σ̇′− κ3(n·n′)σ̈′

+ κ4(σ′·n)(v̈ ·n)n′ − κ4(σ′·n)(n·n′)v̈ + 3κ4(σ̇′·n)(v̇ ·n)n′

− 3κ4(σ̇′·n)(n·n′)v̇ + 3κ5(σ′·n)(v̇ ·n)2n′

− 3κ5(σ′·n)(v̇ ·n)(n·n′)v̇;

E′d
2 = −κ3γ−2σ̇′− κ3(σ′·v̇)n′ + κ3(σ′·n′)v̇ + κ3(σ̇′·v)n′ − κ3(v̇ ·n)σ′

+ 3κ4(σ̇′·n′′)n′ + 3κ5(σ′·n)(v̇ ·n′′)n′ + 3κ5(σ′·n′′)(v̇ ·n)n′

− 3κ5(σ′·n′′)(n·n′)v̇,

E′d
3 = −κ3γ−2σ′+ 3κ5γ−2(σ′·n′′)n′,

B′q
1 = n×E′q

1 ,

B′q
2 = n×E′q

2 ,

B′d
1 = n×E′d

1 ,

B′d
2 = n×E′d

2 + κ2σ′×v̇ + κ3(σ′·n)v̇×n′ − κ3(v̇ ·n)σ′×n′,

B′d
3 = v×E′d

3 .
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Expanding out these expressions explicitly, we find

E′q
1 = −κ2v̇ − κ3(v̇ ·n)v + κ3(v̇ ·n)n,

E′q
2 = −κ3γ−2v + κ3γ−2n,

E′d
1 = −κ2σ̈′− κ3(σ′·n)v̈ − 2κ3(σ̇′·n)v̇ − κ3(σ̈′·n)v + κ3(σ̈′·n)n

− κ3(v̇ ·n)σ̇′− 3κ4(σ′·n)(v̇ ·n)v̇ − κ4(σ′·n)(v̈ ·n)v

+ κ4(σ′·n)(v̈ ·n)n− 3κ4(σ̇′·n)(v̇ ·n)v + 3κ4(σ̇′·n)(v̇ ·n)n

− 3κ5(σ′·n)(v̇ ·n)2v + 3κ5(σ′·n)(v̇ ·n)2n,

E′d
2 = −κ3γ−2σ̇′+ 2κ3(σ′·v)v̇ + κ3(σ′·v̇)v − κ3(σ′·v̇)n + κ3(σ′·n)v̇

+ 2κ3(σ̇′·v)v − 2κ3(σ̇′·v)n− κ3(v̇ ·n)σ′− 3κ4γ−2(σ′·n)v̇

− 3κ4γ−2(σ̇′·n)v + 3κ4γ−2(σ̇′·n)n + 3κ4(σ′·v)(v̇ ·n)v

− 3κ4(σ′·v)(v̇ ·n)n + 3κ4(σ′·n)(v ·v̇)v − 3κ4(σ′·n)(v ·v̇)n

− 6κ5γ−2(σ′·n)(v̇ ·n)v + 6κ5γ−2(σ′·n)(v̇ ·n)n,

E′d
3 = −κ3γ−2σ′+ 3κ4γ−2(σ′·v)v − 3κ4γ−2(σ′·v)n− 3κ5γ−4(σ′·n)v

+ 3κ5γ−4(σ′·n)n,

B′q
1 = κ2v̇×n + κ3(v̇ ·n)v×n,

B′q
2 = κ3γ−2v×n,

B′d
1 = κ2σ̈′×n + κ3(σ′·n)v̈×n + 2κ3(σ̇′·n)v̇×n + κ3(σ̈′·n)v×n

+ κ3(v̇ ·n)σ̇′×n + 3κ4(σ′·n)(v̇ ·n)v̇×n + κ4(σ′·n)(v̈ ·n)v×n

+ 3κ4(σ̇′·n)(v̇ ·n)v×n + 3κ5(σ′·n)(v̇ ·n)2v×n,
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B′d
2 = κ2σ′×v̇ + κ3γ−2σ̇′×n− 2κ3(σ′·v)v̇×n− κ3(σ′·v̇)v×n

+ κ3(σ′·n)v×v̇ − 2κ3(σ̇′·v)v×n + κ3(v̇ ·n)σ′×v

+ 3κ4γ−2(σ′·n)v̇×n + 3κ4γ−2(σ̇′·n)v×n− 3κ4(σ′·v)(v̇ ·n)v×n

− 3κ4(σ′·n)(v ·v̇)v×n + 6κ5γ−2(σ′·n)(v̇ ·n)v×n,

B′d
3 = κ3γ−2σ′×v − 3κ4γ−2(σ′·v)v×n + 3κ5γ−4(σ′·n)v×n.

G.5.5 Comparison of expressions

To compare these two sets of results quickly, we simply subtract the latter

from the former; we find

∆E′q
1 = 0,

∆E′q
2 = 0,

∆E′d
1 = 0,

∆E′d
2 = 0,

∆E′d
3 = 0,

∆B′q
1 = 0,

∆B′q
2 = 0,

∆B′d
1 = 0,

∆B′d
2 = 0,

∆B′d
3 = 0.

Hence, the author’s simplified expressions for the retarded fields have been

explicitly verified.
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G.6 radreact: Radiation reaction

G.6.1 Introduction

This program computes the radiation reaction equations of motion for par-

ticles carrying electric charge and electric and magnetic dipole moments.

G.6.2 Pointlike particle trajectory

The following four-vector expression is an input to the program, computed

by the author on paper:

t(τ) = τ +
1

6
τ 3v̇2 +

1

8
τ 4(v̇ ·v̈) +

13

120
τ 5v̇4 +

1

40
τ 5v̈2 +

1

30
τ 5(v̇ ·...v)

+
1

144
τ 6(v̇ ·....v) +

1

72
τ 6(v̈ ·...v) +

3

16
τ 6v̇2(v̇ ·v̈) + O(τ 7),

z(τ) =
1

2
τ 2v̇ +

1

6
τ 3v̈ +

1

24
τ 4...v +

1

6
τ 4v̇2v̇ +

1

120
τ 5....v +

1

12
τ 5v̇2v̈

+
1

8
τ 5(v̇ ·v̈)v̇ + O(τ 6), (G.14)

Although these expressions are tedious to derive, they are easy to verify.

Firstly, we compute ż2(τ), by differentiating (G.14) with respect to τ :

ż2(τ) = 1,

the required result. We now compute v(τ) ≡ dτz(τ)/dτ t(τ):

v(τ) = τ v̇ +
1

2
τ 2v̈ +

1

6
τ 3...v +

1

6
τ 3v̇2v̇ +

1

24
τ 4....v +

1

6
τ 4v̇2v̈ +

1

8
τ 4(v̇ ·v̈)v̇

+ O(τ 5); (G.15)

computing γ(τ) ≡ (1− v2(τ))−1/2, we find

γ(τ) = 1 +
1

2
τ 2v̇2 +

1

2
τ 3(v̇ ·v̈) +

13

24
τ 4v̇4 +

1

8
τ 4v̈2 +

1

6
τ 4(v̇ ·...v)

+
1

24
τ 5(v̇ ·....v) +

1

12
τ 5(v̈ ·...v) +

9

8
τ 5v̇2(v̇ ·v̈) + O(τ 6). (G.16)
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Our second piece of verification evidence lies with the observation that γ(τ)

may alternatively be computed via γ(τ) ≡ dτ t(τ); this gives

γ(τ) = 1 +
1

2
τ 2v̇2 +

1

2
τ 3(v̇ ·v̈) +

13

24
τ 4v̇4 +

1

8
τ 4v̈2 +

1

6
τ 4(v̇ ·...v)

+
1

24
τ 5(v̇ ·....v) +

1

12
τ 5(v̈ ·...v) +

9

8
τ 5v̇2(v̇ ·v̈) + O(τ 6), (G.17)

which is identical to (G.16). Now, upon reversion of t(τ), one finds

τ(t) = t− 1

6
t3v̇2 − 1

8
t4(v̇ ·v̈)− 1

40
t5v̇4 − 1

40
t5v̈2 − 1

30
t5(v̇ ·...v)

− 1

144
t6(v̇ ·....v)− 1

72
t6(v̈ ·...v)− 1

24
t6v̇2(v̇ ·v̈) + O(t7). (G.18)

Using (G.18) in (G.15), we thus find

v(t) = tv̇ +
1

2
t2v̈ +

1

6
t3

...
v +

1

24
t4

....
v + O(t5),

which of course defines v̇, v̈,
...
v and

....
v; this completes the verification of the

input expressions.

G.6.3 Trajectories of rigid body constituents

We now compute the trajectory of the constituent r. This is given by

zα
r (τ) = zα(τ) + ∆zα

r (τ), (G.19)

where

∆tr(τ) = γ(τ)
(
u(τ)·v(τ)

)
,

∆zr(τ) = u(τ) +
γ2(τ)

γ(τ) + 1

(
u(τ)·v(τ)

)
v(τ), (G.20)

where u(0) = r, and

dτu(τ) =
γ3(τ)

γ(τ) + 1
u(τ)×

(
v(τ)×v̇(τ)

)
. (G.21)
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Firstly, iterating the differential equation (G.21) for u(τ), we find

u(τ) = r − 1

12
τ 3(r ·v̇)v̈ +

1

12
τ 3(r ·v̈)v̇ − 1

24
τ 4(r ·v̇)

...
v +

1

24
τ 4(r ·...v)v̇

− 1

80
τ 5(r ·v̇)

....
v − 1

120
τ 5(r ·v̈)

...
v +

1

120
τ 5(r ·...v)v̈ +

1

80
τ 5(r ·....v)v̇

− 19

240
τ 5v̇2(r ·v̇)v̈ +

19

240
τ 5v̇2(r ·v̈)v̇ + O(τ 6). (G.22)

As a cross-check of (G.22), we use (G.18) to replace τ by t, and then take

the t-derivative of the result; we find

u̇(t) = −1

4
t2(r ·v̇)v̈ +

1

4
t2(r ·v̈)v̇ − 1

6
t3(r ·v̇)

...
v +

1

6
t3(r ·...v)v̇

− 1

16
t4(r ·v̇)

....
v − 1

24
t4(r ·v̈)

...
v +

1

24
t4(r ·...v)v̈ +

1

16
t4(r ·....v)v̇

− 3

16
t4v̇2(r ·v̇)v̈ +

3

16
t4v̇2(r ·v̈)v̇ + O(τ 5). (G.23)

On the other hand, one may compute u̇ directly, via

u̇(t) =
γ2(t)

γ(t) + 1
u(t)×

(
v(t)×v̇(t)

)
;

one finds

u̇(t) = −1

4
t2(r ·v̇)v̈ +

1

4
t2(r ·v̈)v̇ − 1

6
t3(r ·v̇)

...
v +

1

6
t3(r ·...v)v̇

− 1

16
t4(r ·v̇)

....
v − 1

24
t4(r ·v̈)

...
v +

1

24
t4(r ·...v)v̈ +

1

16
t4(r ·....v)v̇

− 3

16
t4v̇2(r ·v̇)v̈ +

3

16
t4v̇2(r ·v̈)v̇ + O(τ 5), (G.24)

which is identical to (G.23).

Using the expression (G.22) in (G.20), we find

tr(τ) = τ + τ(r ·v̇) +
1

2
τ 2(r ·v̈) +

1

6
τ 3v̇2 +

1

6
τ 3(r ·...v) +

2

3
τ 3v̇2(r ·v̇)

+
1

24
τ 4(r ·....v) +

1

8
τ 4(v̇ ·v̈) +

1

2
τ 4v̇2(r ·v̈) +

13

24
τ 4(r ·v̇)(v̇ ·v̈)

+ O(τ 5), (G.25)
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zr(τ) = r +
1

2
τ 2v̇ +

1

2
τ 2(r ·v̇)v̇ +

1

6
τ 3v̈ +

1

6
τ 3(r ·v̇)v̈ +

1

3
τ 3(r ·v̈)v̇

+
1

24
τ 4...v +

1

6
τ 4v̇2v̇ +

1

24
τ 4(r ·v̇)

...
v +

1

8
τ 4(r ·v̈)v̈ +

1

8
τ 4(r ·...v)v̇

+
13

24
τ 4v̇2(r ·v̇)v̇ +

1

120
τ 5....v +

1

12
τ 5v̇2v̈ +

1

120
τ 5(r ·v̇)

....
v

+
1

30
τ 5(r ·v̈)

...
v +

1

20
τ 5(r ·...v)v̈ +

1

30
τ 5(r ·....v)v̇ +

1

8
τ 5(v̇ ·v̈)v̇

+
7

30
τ 5v̇2(r ·v̇)v̈ +

13

30
τ 5v̇2(r ·v̈)v̇ +

11

24
τ 5(r ·v̇)(v̇ ·v̈)v̇

+ O(τ 6). (G.26)

As an explicit cross-check, we compute the four-scalar

∆z2
r ≡ ∆t2r(τ)−∆z2

r(τ),

and find

∆z2
r (τ) = −r2,

as expected.

G.6.4 Rigid body redshift formula

We now compute dττr, via

dττr ≡
√

(dτ tr)2 − (dτzr)2;

from (G.25) and (G.26), the result is

dττr = 1 + (r ·v̇) + τ(r ·v̈) +
1

2
τ 2(r ·...v) +

3

2
τ 2v̇2(r ·v̇) +

1

6
τ 3(r ·....v)

+
3

2
τ 3v̇2(r ·v̈) +

5

3
τ 3(r ·v̇)(v̇ ·v̈) + O(τ 4).

Of greatest importance,

dττr|τ=0 = 1 + (r ·v̇);
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we define the redshift factor

λ ≡ 1 + (r ·v̇) (G.27)

for use in the following.

G.6.5 Lab-time constituent trajectories

We now obtain the trajectory of the constituent r, without reference to the

body τ at all. Reverting tr(τ), we find

τ(tr) = λ−1tr − 1

2
λ−3t2r(r ·v̈)− 1

6
λ−4t3rv̇

2 − 1

6
λ−4t3r(r ·

...
v)

− 2

3
λ−4t3rv̇

2(r ·v̇) +
1

2
λ−5t3r(r ·v̈)2 − 1

24
λ−5t4r(r ·

....
v)

− 1

8
λ−5t4r(v̇ ·v̈)− 1

2
λ−5t4rv̇

2(r ·v̈)− 13

24
λ−5t4r(r ·v̇)(v̇ ·v̈)

+
5

12
λ−6t4rv̇

2(r ·v̈) +
5

12
λ−6t4r(r ·v̈)(r ·...v) +

5

3
λ−6t4rv̇

2(r ·v̇)(r ·v̈)

− 5

8
λ−7t4r(r ·v̈)3 + O(t5r); (G.28)

using (G.28) in (G.26) gives

zr(t) = r +
1

2
λ−1t2v̇ +

1

6
λ−2t3v̈ − 1

6
λ−3t3(r ·v̈)v̇ +

1

24
λ−3t4

...
v

− 1

8
λ−4t4(r ·v̈)v̈ − 1

24
λ−4t4(r ·...v)v̇ − 1

8
λ−4t4v̇2(r ·v̇)v̇

+
1

8
λ−5t4(r ·v̈)2v̇ +

1

120
λ−4t5

....
v − 1

20
λ−5t5(r ·v̈)

...
v

− 1

30
λ−5t5(r ·...v)v̈ − 1

120
λ−5t5(r ·....v)v̇ − 1

10
λ−5t5v̇2(r ·v̇)v̈

− 1

15
λ−5t5v̇2(r ·v̈)v̇ − 1

12
λ−5t5(r ·v̇)(v̇ ·v̈)v̇ +

1

8
λ−6t5(r ·v̈)2v̈

+
1

12
λ−6t5(r ·v̈)(r ·...v)v̇ +

1

4
λ−6t5v̇2(r ·v̇)(r ·v̈)v̇

− 1

8
λ−7t5(r ·v̈)3v̇ + O(t6), (G.29)

where now t is understood to be tr.
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G.6.6 Infinitesimally small spherical bodies

We now consider rigid bodies that are infinitesimally small three-spheres, of

radius ε, and compute the quantities required to calculate the self-fields. By

taking r as well as t to be of order ε in (G.29), and relabelling r by r′, we

have

zr′(t) = r′ +
1

2
t2v̇ +

1

6
t3v̈ − 1

2
t2(r′·v̇)v̇ +

1

24
t4

...
v − 1

3
t3(r′·v̇)v̈

− 1

6
t3(r′·v̈)v̇ +

1

2
t2(r′·v̇)2v̇ +

1

120
t5

....
v − 1

8
t4(r′·v̇)

...
v

− 1

8
t4(r′·v̈)v̈ − 1

24
t4(r′·...v)v̇ − 1

8
t4v̇2(r′·v̇)v̇ +

1

2
t3(r′·v̇)2v̈

+
1

2
t3(r′·v̇)(r′·v̈)v̇ − 1

2
t2(r′·v̇)3v̇ + O(ε6). (G.30)

G.6.7 The retarded radius vector

The three-vector from the retarded constituent r′ to the constituent r at

t = 0 is denoted R; hence,

R ≡ r − zr′(tret), (G.31)

where by definition

tret ≡ −R. (G.32)

From (G.30), (G.31) and (G.32), we find

R = r − r′ − 1

2
R2v̇ +

1

6
R3v̈ +

1

2
R2(r′·v̇)v̇ − 1

24
R4...v − 1

3
R3(r′·v̇)v̈

− 1

6
R3(r′·v̈)v̇ − 1

2
R2(r′·v̇)2v̇ +

1

120
R5....v +

1

8
R4(r′·v̇)

...
v

+
1

8
R4(r′·v̈)v̈ +

1

24
R4(r′·...v)v̇ +

1

8
R4v̇2(r′·v̇)v̇ +

1

2
R3(r′·v̇)2v̈

+
1

2
R3(r′·v̇)(r′·v̈)v̇ +

1

2
R2(r′·v̇)3v̇ + O(ε6). (G.33)
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G.6.8 Sum and difference variables

We now switch to the variables

rd ≡ r − r′,

rs ≡ r + r′, (G.34)

whence the reverse transformation is

r ≡ 1

2

(
rs + rd

)
,

r′ ≡ 1

2

(
rs − rd

)
; (G.35)

using relations (G.35) in (G.33), we find

R = rd − 1

2
R2v̇ +

1

6
R3v̈ − 1

4
R2(rd ·v̇)v̇ +

1

4
R2(rs ·v̇)v̇ − 1

24
R4...v

+
1

6
R3(rd ·v̇)v̈ +

1

12
R3(rd ·v̈)v̇ − 1

6
R3(rs ·v̇)v̈ − 1

12
R3(rs ·v̈)v̇

− 1

8
R2(rd ·v̇)2v̇ − 1

8
R2(rs ·v̇)2v̇ +

1

4
R2(rd ·v̇)(rs ·v̇)v̇ +

1

120
R5....v

− 1

16
R4(rd ·v̇)

...
v − 1

16
R4(rd ·v̈)v̈ − 1

48
R4(rd ·...v)v̇ +

1

16
R4(rs ·v̇)

...
v

+
1

16
R4(rs ·v̈)v̈ +

1

48
R4(rs ·...v)v̇ − 1

16
R4v̇2(rd ·v̇)v̇

+
1

16
R4v̇2(rs ·v̇)v̇ +

1

8
R3(rd ·v̇)2v̈ +

1

8
R3(rs ·v̇)2v̈

+
1

8
R3(rd ·v̇)(rd ·v̈)v̇ − 1

4
R3(rd ·v̇)(rs ·v̇)v̈ − 1

8
R3(rd ·v̇)(rs ·v̈)v̇

− 1

8
R3(rd ·v̈)(rs ·v̇)v̇ +

1

8
R3(rs ·v̇)(rs ·v̈)v̇ − 1

16
R2(rd ·v̇)3v̇

+
1

16
R2(rs ·v̇)3v̇ − 3

16
R2(rd ·v̇)(rs ·v̇)2v̇ +

3

16
R2(rd ·v̇)2(rs ·v̇)v̇

+ O(ε6). (G.36)
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G.6.9 Final expression for retarded radius vector

Squaring (G.36), we find

R2 = r2
d −R2(rd ·v̇) +

1

4
R4v̇2 +

1

3
R3(rd ·v̈)− 1

2
R2(rd ·v̇)2

+
1

2
R2(rd ·v̇)(rs ·v̇)− 1

6
R5(v̇ ·v̈)− 1

12
R4(rd ·...v) +

1

4
R4v̇2(rd ·v̇)

− 1

4
R4v̇2(rs ·v̇) +

1

2
R3(rd ·v̇)(rd ·v̈)− 1

6
R3(rd ·v̇)(rs ·v̈)

− 1

3
R3(rd ·v̈)(rs ·v̇)− 1

4
R2(rd ·v̇)3 − 1

4
R2(rd ·v̇)(rs ·v̇)2

+
1

2
R2(rd ·v̇)2(rs ·v̇) +

1

36
R6v̈2 +

1

24
R6(v̇ ·...v) +

1

60
R5(rd ·....v)

− 1

12
R5v̇2(rd ·v̈) +

1

12
R5v̇2(rs ·v̈)− 1

4
R5(rd ·v̇)(v̇ ·v̈)

+
1

4
R5(rs ·v̇)(v̇ ·v̈)− 1

8
R4(rd ·v̈)2 +

1

16
R4v̇2(rd ·v̇)2

+
3

16
R4v̇2(rs ·v̇)2 − 1

6
R4(rd ·v̇)(rd ·...v) +

1

24
R4(rd ·v̇)(rs ·...v)

+
1

8
R4(rd ·v̈)(rs ·v̈) +

1

8
R4(rd ·...v)(rs ·v̇)− 1

4
R4v̇2(rd ·v̇)(rs ·v̇)

+
1

2
R3(rd ·v̇)2(rd ·v̈)− 1

4
R3(rd ·v̇)2(rs ·v̈) +

1

4
R3(rd ·v̈)(rs ·v̇)2

− 3

4
R3(rd ·v̇)(rd ·v̈)(rs ·v̇) +

1

4
R3(rd ·v̇)(rs ·v̇)(rs ·v̈)− 1

8
R2(rd ·v̇)4

+
1

8
R2(rd ·v̇)(rs ·v̇)3 − 3

8
R2(rd ·v̇)2(rs ·v̇)2 +

3

8
R2(rd ·v̇)3(rs ·v̇)

+ O(ε7); (G.37)

substituting (G.37) into itself until R is eliminated, and then square-rooting,

we find

R = rd − 1

2
rd(rd ·v̇) +

1

8
r3
d v̇2 +

1

6
r2
d (rd ·v̈) +

1

8
rd(rd ·v̇)2 +

1

4
rd(rd ·v̇)(rs ·v̇)

− 1

12
r4
d (v̇ ·v̈)− 1

24
r3
d (rd ·...v)− 3

16
r3
d v̇2(rd ·v̇)− 1

8
r3
d v̇2(rs ·v̇)

− 1

12
r2
d (rd ·v̇)(rd ·v̈)− 1

12
r2
d (rd ·v̇)(rs ·v̈)− 1

6
r2
d (rd ·v̈)(rs ·v̇)
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− 1

16
rd(rd ·v̇)3 − 1

8
rd(rd ·v̇)(rs ·v̇)2 − 1

8
rd(rd ·v̇)2(rs ·v̇) +

7

128
r5
d v̇4

+
1

72
r5
d v̈2 +

1

48
r5
d (v̇ ·...v) +

1

120
r4
d (rd ·....v) +

1

12
r4
d v̇2(rd ·v̈)

+
1

24
r4
d v̇2(rs ·v̈) +

1

8
r4
d (rd ·v̇)(v̇ ·v̈) +

1

8
r4
d (rs ·v̇)(v̇ ·v̈)

+
1

144
r3
d (rd ·v̈)2 +

7

64
r3
d v̇2(rd ·v̇)2 +

3

32
r3
d v̇2(rs ·v̇)2

+
1

48
r3
d (rd ·v̇)(rd ·...v) +

1

48
r3
d (rd ·v̇)(rs ·...v) +

1

16
r3
d (rd ·v̈)(rs ·v̈)

+
1

16
r3
d (rd ·...v)(rs ·v̇) +

11

32
r3
d v̇2(rd ·v̇)(rs ·v̇) +

1

12
r2
d (rd ·v̇)2(rd ·v̈)

+
1

24
r2
d (rd ·v̇)2(rs ·v̈) +

1

8
r2
d (rd ·v̈)(rs ·v̇)2 +

1

8
r2
d (rd ·v̇)(rd ·v̈)(rs ·v̇)

+
1

8
r2
d (rd ·v̇)(rs ·v̇)(rs ·v̈) +

3

128
rd(rd ·v̇)4 +

1

16
rd(rd ·v̇)(rs ·v̇)3

+
3

32
rd(rd ·v̇)2(rs ·v̇)2 +

3

32
rd(rd ·v̇)3(rs ·v̇) + O(ε6). (G.38)

Substituting (G.38) into (G.36), and switching to the variables rd, rs, nd and

ns, defined by

nd ≡ rd

rd
,

ns ≡ rs

rs
, (G.39)

we find

R = rdnd − 1

2
r2
d v̇ +

1

6
r3
d v̈ +

1

4
r3
d (nd ·v̇)v̇ +

1

4
r2
d rs(ns ·v̇)v̇ − 1

24
r4
d

...
v

− 1

8
r4
d v̇2v̇ − 1

12
r4
d (nd ·v̇)v̈ − 1

8
r4
d (nd ·v̇)2v̇ − 1

12
r4
d (nd ·v̈)v̇

− 1

6
r3
d rs(ns ·v̇)v̈ − 1

12
r3
d rs(ns ·v̈)v̇ − 1

4
r3
d rs(nd ·v̇)(ns ·v̇)v̇

− 1

8
r2
d r2

s (ns ·v̇)2v̇ +
1

120
r5
d

....
v +

1

16
r5
d v̇2v̈ +

1

48
r5
d (nd ·v̇)

...
v

+
1

16
r5
d (nd ·v̇)2v̈ +

1

16
r5
d (nd ·v̇)3v̇ +

1

48
r5
d (nd ·v̈)v̈ +

1

48
r5
d (nd ·...v)v̇
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+
1

12
r5
d (v̇ ·v̈)v̇ +

1

8
r5
d v̇2(nd ·v̇)v̇ +

1

12
r5
d (nd ·v̇)(nd ·v̈)v̇

+
1

16
r4
d rs(ns ·v̇)

...
v +

1

16
r4
d rs(ns ·v̈)v̈ +

1

48
r4
d rs(ns ·...v)v̇

+
1

4
r4
d rsv̇

2(ns ·v̇)v̇ +
1

8
r4
d rs(nd ·v̇)(ns ·v̇)v̈ +

1

12
r4
d rs(nd ·v̇)(ns ·v̈)v̇

+
3

16
r4
d rs(nd ·v̇)2(ns ·v̇)v̇ +

1

8
r4
d rs(nd ·v̈)(ns ·v̇)v̇ +

1

8
r3
d r2

s (ns ·v̇)2v̈

+
3

16
r3
d r2

s (nd ·v̇)(ns ·v̇)2v̇ +
1

8
r3
d r2

s (ns ·v̇)(ns ·v̈)v̇

+
1

16
r2
d r3

s (ns ·v̇)3v̇ + O(ε6). (G.40)

G.6.10 The retarded normal vector

We now compute the vector n, defined as

n ≡ R

R
; (G.41)

using (G.38), (G.39), (G.40) and (G.41), we find

n = nd − 1

2
rdv̇ +

1

2
rd(nd ·v̇)nd +

1

6
r2
d v̈ − 1

8
r2
d v̇2nd +

1

8
r2
d (nd ·v̇)2nd

− 1

6
r2
d (nd ·v̈)nd +

1

4
rdrs(ns ·v̇)v̇ − 1

4
rdrs(nd ·v̇)(ns ·v̇)nd − 1

24
r3
d

...
v

− 1

16
r3
d v̇2v̇ − 1

16
r3
d (nd ·v̇)2v̇ +

1

16
r3
d (nd ·v̇)3nd +

1

24
r3
d (nd ·...v)nd

+
1

12
r3
d (v̇ ·v̈)nd +

1

16
r3
d v̇2(nd ·v̇)nd − 1

12
r3
d (nd ·v̇)(nd ·v̈)nd

− 1

6
r2
d rs(ns ·v̇)v̈ − 1

12
r2
d rs(ns ·v̈)v̇ +

1

8
r2
d rsv̇

2(ns ·v̇)nd

+
1

12
r2
d rs(nd ·v̇)(ns ·v̈)nd − 1

8
r2
d rs(nd ·v̇)2(ns ·v̇)nd

+
1

6
r2
d rs(nd ·v̈)(ns ·v̇)nd − 1

8
rdr

2
s (ns ·v̇)2v̇ +

1

8
rdr

2
s (nd ·v̇)(ns ·v̇)2nd

+
1

120
r4
d

....
v +

1

24
r4
d v̇2v̈ − 5

128
r4
d v̇4nd − 1

72
r4
d v̈2nd +

1

24
r4
d (nd ·v̇)2v̈

+
3

128
r4
d (nd ·v̇)4nd − 1

144
r4
d (nd ·v̈)v̈ +

1

48
r4
d (nd ·v̈)2nd
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− 1

120
r4
d (nd ·....v)nd +

1

24
r4
d (v̇ ·v̈)v̇ − 1

48
r4
d (v̇ ·...v)nd

+
1

64
r4
d v̇2(nd ·v̇)2nd − 1

24
r4
d v̇2(nd ·v̈)nd +

1

24
r4
d (nd ·v̇)(nd ·v̈)v̇

+
1

48
r4
d (nd ·v̇)(nd ·...v)nd − 1

24
r4
d (nd ·v̇)(v̇ ·v̈)nd

− 1

12
r4
d (nd ·v̇)2(nd ·v̈)nd +

1

16
r3
d rs(ns ·v̇)

...
v +

1

16
r3
d rs(ns ·v̈)v̈

+
1

48
r3
d rs(ns ·...v)v̇ +

5

32
r3
d rsv̇

2(ns ·v̇)v̇ − 1

24
r3
d rsv̇

2(ns ·v̈)nd

− 1

48
r3
d rs(nd ·v̇)(ns ·...v)nd +

3

32
r3
d rs(nd ·v̇)2(ns ·v̇)v̇

+
1

24
r3
d rs(nd ·v̇)2(ns ·v̈)nd − 3

32
r3
d rs(nd ·v̇)3(ns ·v̇)nd

− 1

16
r3
d rs(nd ·v̈)(ns ·v̈)nd − 1

16
r3
d rs(nd ·...v)(ns ·v̇)nd

− 1

8
r3
d rs(ns ·v̇)(v̇ ·v̈)nd − 5

32
r3
d rsv̇

2(nd ·v̇)(ns ·v̇)nd

+
1

8
r3
d rs(nd ·v̇)(nd ·v̈)(ns ·v̇)nd +

1

8
r2
d r2

s (ns ·v̇)2v̈

− 3

32
r2
d r2

s v̇2(ns ·v̇)2nd +
3

32
r2
d r2

s (nd ·v̇)2(ns ·v̇)2nd

− 1

8
r2
d r2

s (nd ·v̈)(ns ·v̇)2nd +
1

8
r2
d r2

s (ns ·v̇)(ns ·v̈)v̇

− 1

8
r2
d r2

s (nd ·v̇)(ns ·v̇)(ns ·v̈)nd +
1

16
rdr

3
s (ns ·v̇)3v̇

− 1

16
rdr

3
s (nd ·v̇)(ns ·v̇)3nd + O(ε5). (G.42)

G.6.11 Retarded velocity and derivatives

Taking successive t-derivatives of (G.30), we find

vr′(t) = tv̇ +
1

2
t2v̈ − t(r′·v̇)v̇ +

1

6
t3

...
v − t2(r′·v̇)v̈ − 1

2
t2(r′·v̈)v̇

+ t(r′·v̇)2v̇ +
1

24
t4

....
v − 1

2
t3(r′·v̇)

...
v − 1

2
t3(r′·v̈)v̈ − 1

6
t3(r′·...v)v̇

− 1

2
t3v̇2(r′·v̇)v̇ +

3

2
t2(r′·v̇)2v̈ +

3

2
t2(r′·v̇)(r′·v̈)v̇ − t(r′·v̇)3v̇
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+ O(ε5), (G.43)

v̇r′(t) = v̇ + tv̈ − (r′·v̇)v̇ +
1

2
t2

...
v − 2t(r′·v̇)v̈ − t(r′·v̈)v̇ + (r′·v̇)2v̇

+
1

6
t3

....
v − 3

2
t2(r′·v̇)

...
v − 3

2
t2(r′·v̈)v̈ − 1

2
t2(r′·...v)v̇ − 3

2
t2v̇2(r′·v̇)v̇

+ 3t(r′·v̇)2v̈ + 3t(r′·v̇)(r′·v̈)v̇ − (r′·v̇)3v̇ + O(ε4), (G.44)

v̈r′(t) = v̈ + t
...
v − 2(r′·v̇)v̈ − (r′·v̈)v̇ +

1

2
t2

....
v − 3t(r′·v̇)

...
v − 3t(r′·v̈)v̈

− t(r′·...v)v̇ − 3tv̇2(r′·v̇)v̇ + 3(r′·v̇)2v̈ + 3(r′·v̇)(r′·v̈)v̇

+ O(ε3). (G.45)

Substituting t = tret from (G.32), by using (G.38) in (G.43), (G.44) and

(G.45), we find

vret = −rdv̇ +
1

2
r2
d v̈ +

1

2
rdrs(ns ·v̇)v̇ − 1

6
r3
d

...
v − 1

8
r3
d v̇2v̇ − 1

8
r3
d (nd ·v̇)2v̇

+
1

12
r3
d (nd ·v̈)v̇ − 1

2
r2
d rs(ns ·v̇)v̈ − 1

4
r2
d rs(ns ·v̈)v̇ − 1

4
rdr

2
s (ns ·v̇)2v̇

+
1

24
r4
d

....
v +

1

8
r4
d v̇2v̈ +

1

8
r4
d (nd ·v̇)2v̈ − 1

12
r4
d (nd ·v̈)v̈

− 1

24
r4
d (nd ·...v)v̇ +

1

12
r4
d (v̇ ·v̈)v̇ − 1

8
r4
d v̇2(nd ·v̇)v̇

+
1

8
r4
d (nd ·v̇)(nd ·v̈)v̇ +

1

4
r3
d rs(ns ·v̇)

...
v +

1

4
r3
d rs(ns ·v̈)v̈

+
1

12
r3
d rs(ns ·...v)v̇ +

7

16
r3
d rsv̇

2(ns ·v̇)v̇ − 1

24
r3
d rs(nd ·v̇)(ns ·v̈)v̇

+
3

16
r3
d rs(nd ·v̇)2(ns ·v̇)v̇ − 1

8
r3
d rs(nd ·v̈)(ns ·v̇)v̇ +

3

8
r2
d r2

s (ns ·v̇)2v̈

+
3

8
r2
d r2

s (ns ·v̇)(ns ·v̈)v̇ +
1

8
rdr

3
s (ns ·v̇)3v̇ + O(ε5), (G.46)

v̇ret = v̇ − rdv̈ +
1

2
rd(nd ·v̇)v̇ − 1

2
rs(ns ·v̇)v̇ +

1

2
r2
d

...
v − 1

2
r2
d (nd ·v̇)v̈
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+
1

4
r2
d (nd ·v̇)2v̇ − 1

2
r2
d (nd ·v̈)v̇ + rdrs(ns ·v̇)v̈ +

1

2
rdrs(ns ·v̈)v̇

− 1

2
rdrs(nd ·v̇)(ns ·v̇)v̇ +

1

4
r2
s (ns ·v̇)2v̇ − 1

6
r3
d

....
v − 1

8
r3
d v̇2v̈

+
1

4
r3
d (nd ·v̇)

...
v − 3

8
r3
d (nd ·v̇)2v̈ +

1

8
r3
d (nd ·v̇)3v̇ +

7

12
r3
d (nd ·v̈)v̈

+
1

4
r3
d (nd ·...v)v̇ +

3

4
r3
d v̇2(nd ·v̇)v̇ − 1

2
r3
d (nd ·v̇)(nd ·v̈)v̇

− 3

4
r2
d rs(ns ·v̇)

...
v − 3

4
r2
d rs(ns ·v̈)v̈ − 1

4
r2
d rs(ns ·...v)v̇

− 3

4
r2
d rsv̇

2(ns ·v̇)v̇ +
3

4
r2
d rs(nd ·v̇)(ns ·v̇)v̈ +

1

2
r2
d rs(nd ·v̇)(ns ·v̈)v̇

− 3

8
r2
d rs(nd ·v̇)2(ns ·v̇)v̇ +

3

4
r2
d rs(nd ·v̈)(ns ·v̇)v̇ − 3

4
rdr

2
s (ns ·v̇)2v̈

+
3

8
rdr

2
s (nd ·v̇)(ns ·v̇)2v̇ − 3

4
rdr

2
s (ns ·v̇)(ns ·v̈)v̇ − 1

8
r3
s (ns ·v̇)3v̇

+ O(ε4), (G.47)

v̈ret = v̈ − rd
...
v + rd(nd ·v̇)v̈ +

1

2
rd(nd ·v̈)v̇ − rs(ns ·v̇)v̈ − 1

2
rs(ns ·v̈)v̇

+
1

2
r2
d

....
v − r2

d (nd ·v̇)
...
v +

3

4
r2
d (nd ·v̇)2v̈ − 3

2
r2
d (nd ·v̈)v̈

− 1

2
r2
d (nd ·...v)v̇ − 3

2
r2
d v̇2(nd ·v̇)v̇ +

3

4
r2
d (nd ·v̇)(nd ·v̈)v̇

+
3

2
rdrs(ns ·v̇)

...
v +

3

2
rdrs(ns ·v̈)v̈ +

1

2
rdrs(ns ·...v)v̇ +

3

2
rdrsv̇

2(ns ·v̇)v̇

− 3

2
rdrs(nd ·v̇)(ns ·v̇)v̈ − 3

4
rdrs(nd ·v̇)(ns ·v̈)v̇

− 3

4
rdrs(nd ·v̈)(ns ·v̇)v̇ +

3

4
r2
s (ns ·v̇)2v̈ +

3

4
r2
s (ns ·v̇)(ns ·v̈)v̇

+ O(ε3). (G.48)

G.6.12 Gamma factor

Computing γ−2
ret ≡ 1− v2

ret from (G.46), we find

γ−2
ret = 1− r2

d v̇2 + r3
d (v̇ ·v̈) + r2

d rsv̇
2(ns ·v̇)− 1

4
r4
d v̇4 − 1

4
r4
d v̈2 − 1

3
r4
d (v̇ ·...v)
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− 1

4
r4
d v̇2(nd ·v̇)2 +

1

6
r4
d v̇2(nd ·v̈)− 1

2
r3
d rsv̇

2(ns ·v̈)

− 3

2
r3
d rs(ns ·v̇)(v̇ ·v̈)− 3

4
r2
d r2

s v̇2(ns ·v̇)2 +
1

12
r5
d (v̇ ·....v) +

1

6
r5
d (v̈ ·...v)

− 1

12
r5
d v̇2(nd ·...v) +

13

24
r5
d v̇2(v̇ ·v̈)− 1

4
r5
d v̇4(nd ·v̇)

+
3

8
r5
d (nd ·v̇)2(v̇ ·v̈)− 1

4
r5
d (nd ·v̈)(v̇ ·v̈) +

1

4
r5
d v̇2(nd ·v̇)(nd ·v̈)

+
1

6
r4
d rsv̇

2(ns ·...v) + r4
d rsv̇

4(ns ·v̇) +
1

2
r4
d rsv̈

2(ns ·v̇)

+
2

3
r4
d rs(ns ·v̇)(v̇ ·...v) +

3

4
r4
d rs(ns ·v̈)(v̇ ·v̈)− 1

12
r4
d rsv̇

2(nd ·v̇)(ns ·v̈)

+
1

2
r4
d rsv̇

2(nd ·v̇)2(ns ·v̇)− 1

3
r4
d rsv̇

2(nd ·v̈)(ns ·v̇)

+
3

2
r3
d r2

s (ns ·v̇)2(v̇ ·v̈) + r3
d r2

s v̇2(ns ·v̇)(ns ·v̈) +
1

2
r2
d r3

s v̇2(ns ·v̇)3

+ O(ε6).

G.6.13 Modified retarded normal vectors

We now compute n′ and n′′ via

n′ ≡ n− vret,

n′′ ≡ n′ − vret×(n×vret); (G.49)

using (G.42) and (G.46), we find

n′ = nd +
1

2
rdv̇ +

1

2
rd(nd ·v̇)nd − 1

3
r2
d v̈ − 1

8
r2
d v̇2nd +

1

8
r2
d (nd ·v̇)2nd

− 1

6
r2
d (nd ·v̈)nd − 1

4
rdrs(ns ·v̇)v̇ − 1

4
rdrs(nd ·v̇)(ns ·v̇)nd +

1

8
r3
d

...
v

+
1

16
r3
d v̇2v̇ +

1

16
r3
d (nd ·v̇)2v̇ +

1

16
r3
d (nd ·v̇)3nd − 1

12
r3
d (nd ·v̈)v̇

+
1

24
r3
d (nd ·...v)nd +

1

12
r3
d (v̇ ·v̈)nd +

1

16
r3
d v̇2(nd ·v̇)nd

− 1

12
r3
d (nd ·v̇)(nd ·v̈)nd +

1

3
r2
d rs(ns ·v̇)v̈ +

1

6
r2
d rs(ns ·v̈)v̇
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+
1

8
r2
d rsv̇

2(ns ·v̇)nd +
1

12
r2
d rs(nd ·v̇)(ns ·v̈)nd

− 1

8
r2
d rs(nd ·v̇)2(ns ·v̇)nd +

1

6
r2
d rs(nd ·v̈)(ns ·v̇)nd +

1

8
rdr

2
s (ns ·v̇)2v̇

+
1

8
rdr

2
s (nd ·v̇)(ns ·v̇)2nd − 1

30
r4
d

....
v − 1

12
r4
d v̇2v̈ − 5

128
r4
d v̇4nd

− 1

72
r4
d v̈2nd − 1

12
r4
d (nd ·v̇)2v̈ +

3

128
r4
d (nd ·v̇)4nd +

11

144
r4
d (nd ·v̈)v̈

+
1

48
r4
d (nd ·v̈)2nd +

1

24
r4
d (nd ·...v)v̇ − 1

120
r4
d (nd ·....v)nd

− 1

24
r4
d (v̇ ·v̈)v̇ − 1

48
r4
d (v̇ ·...v)nd +

1

8
r4
d v̇2(nd ·v̇)v̇

+
1

64
r4
d v̇2(nd ·v̇)2nd − 1

24
r4
d v̇2(nd ·v̈)nd − 1

12
r4
d (nd ·v̇)(nd ·v̈)v̇

+
1

48
r4
d (nd ·v̇)(nd ·...v)nd − 1

24
r4
d (nd ·v̇)(v̇ ·v̈)nd

− 1

12
r4
d (nd ·v̇)2(nd ·v̈)nd − 3

16
r3
d rs(ns ·v̇)

...
v − 3

16
r3
d rs(ns ·v̈)v̈

− 1

16
r3
d rs(ns ·...v)v̇ − 9

32
r3
d rsv̇

2(ns ·v̇)v̇ − 1

24
r3
d rsv̇

2(ns ·v̈)nd

+
1

24
r3
d rs(nd ·v̇)(ns ·v̈)v̇ − 1

48
r3
d rs(nd ·v̇)(ns ·...v)nd

− 3

32
r3
d rs(nd ·v̇)2(ns ·v̇)v̇ +

1

24
r3
d rs(nd ·v̇)2(ns ·v̈)nd

− 3

32
r3
d rs(nd ·v̇)3(ns ·v̇)nd +

1

8
r3
d rs(nd ·v̈)(ns ·v̇)v̇

− 1

16
r3
d rs(nd ·v̈)(ns ·v̈)nd − 1

16
r3
d rs(nd ·...v)(ns ·v̇)nd

− 1

8
r3
d rs(ns ·v̇)(v̇ ·v̈)nd − 5

32
r3
d rsv̇

2(nd ·v̇)(ns ·v̇)nd

+
1

8
r3
d rs(nd ·v̇)(nd ·v̈)(ns ·v̇)nd − 1

4
r2
d r2

s (ns ·v̇)2v̈

− 3

32
r2
d r2

s v̇2(ns ·v̇)2nd +
3

32
r2
d r2

s (nd ·v̇)2(ns ·v̇)2nd

− 1

8
r2
d r2

s (nd ·v̈)(ns ·v̇)2nd − 1

4
r2
d r2

s (ns ·v̇)(ns ·v̈)v̇

− 1

8
r2
d r2

s (nd ·v̇)(ns ·v̇)(ns ·v̈)nd − 1

16
rdr

3
s (ns ·v̇)3v̇
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− 1

16
rdr

3
s (nd ·v̇)(ns ·v̇)3nd + O(ε5), (G.50)

n′′ = nd +
1

2
rdv̇ +

1

2
rd(nd ·v̇)nd − 1

3
r2
d v̈ − 9

8
r2
d v̇2nd + r2

d (nd ·v̇)v̇

+
1

8
r2
d (nd ·v̇)2nd − 1

6
r2
d (nd ·v̈)nd − 1

4
rdrs(ns ·v̇)v̇

− 1

4
rdrs(nd ·v̇)(ns ·v̇)nd +

1

8
r3
d

...
v +

1

16
r3
d v̇2v̇ − 1

2
r3
d (nd ·v̇)v̈

+
9

16
r3
d (nd ·v̇)2v̇ +

1

16
r3
d (nd ·v̇)3nd − 7

12
r3
d (nd ·v̈)v̇

+
1

24
r3
d (nd ·...v)nd +

13

12
r3
d (v̇ ·v̈)nd − 7

16
r3
d v̇2(nd ·v̇)nd

− 1

12
r3
d (nd ·v̇)(nd ·v̈)nd +

1

3
r2
d rs(ns ·v̇)v̈ +

1

6
r2
d rs(ns ·v̈)v̇

+
9

8
r2
d rsv̇

2(ns ·v̇)nd − r2
d rs(nd ·v̇)(ns ·v̇)v̇ +

1

12
r2
d rs(nd ·v̇)(ns ·v̈)nd

− 1

8
r2
d rs(nd ·v̇)2(ns ·v̇)nd +

1

6
r2
d rs(nd ·v̈)(ns ·v̇)nd +

1

8
rdr

2
s (ns ·v̇)2v̇

+
1

8
rdr

2
s (nd ·v̇)(ns ·v̇)2nd − 1

30
r4
d

....
v − 21

128
r4
d v̇4nd − 19

72
r4
d v̈2nd

+
1

6
r4
d (nd ·v̇)

...
v − 1

3
r4
d (nd ·v̇)2v̈ +

3

8
r4
d (nd ·v̇)3v̇ +

3

128
r4
d (nd ·v̇)4nd

+
47

144
r4
d (nd ·v̈)v̈ +

1

48
r4
d (nd ·v̈)2nd +

5

24
r4
d (nd ·...v)v̇

− 1

120
r4
d (nd ·....v)nd − 1

8
r4
d (v̇ ·v̈)v̇ − 17

48
r4
d (v̇ ·...v)nd +

1

4
r4
d v̇2(nd ·v̇)v̇

− 23

64
r4
d v̇2(nd ·v̇)2nd +

7

24
r4
d v̇2(nd ·v̈)nd − 2

3
r4
d (nd ·v̇)(nd ·v̈)v̇

+
1

48
r4
d (nd ·v̇)(nd ·...v)nd +

11

24
r4
d (nd ·v̇)(v̇ ·v̈)nd

− 1

12
r4
d (nd ·v̇)2(nd ·v̈)nd − 3

16
r3
d rs(ns ·v̇)

...
v − 3

16
r3
d rs(ns ·v̈)v̈

− 1

16
r3
d rs(ns ·...v)v̇ − 9

32
r3
d rsv̇

2(ns ·v̇)v̇ − 13

24
r3
d rsv̇

2(ns ·v̈)nd

+
3

4
r3
d rs(nd ·v̇)(ns ·v̇)v̈ +

13

24
r3
d rs(nd ·v̇)(ns ·v̈)v̇
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− 1

48
r3
d rs(nd ·v̇)(ns ·...v)nd − 27

32
r3
d rs(nd ·v̇)2(ns ·v̇)v̇

+
1

24
r3
d rs(nd ·v̇)2(ns ·v̈)nd − 3

32
r3
d rs(nd ·v̇)3(ns ·v̇)nd

+
7

8
r3
d rs(nd ·v̈)(ns ·v̇)v̇ − 1

16
r3
d rs(nd ·v̈)(ns ·v̈)nd

− 1

16
r3
d rs(nd ·...v)(ns ·v̇)nd − 13

8
r3
d rs(ns ·v̇)(v̇ ·v̈)nd

+
19

32
r3
d rsv̇

2(nd ·v̇)(ns ·v̇)nd +
1

8
r3
d rs(nd ·v̇)(nd ·v̈)(ns ·v̇)nd

− 1

4
r2
d r2

s (ns ·v̇)2v̈ − 27

32
r2
d r2

s v̇2(ns ·v̇)2nd +
3

4
r2
d r2

s (nd ·v̇)(ns ·v̇)2v̇

+
3

32
r2
d r2

s (nd ·v̇)2(ns ·v̇)2nd − 1

8
r2
d r2

s (nd ·v̈)(ns ·v̇)2nd

− 1

4
r2
d r2

s (ns ·v̇)(ns ·v̈)v̇ − 1

8
r2
d r2

s (nd ·v̇)(ns ·v̇)(ns ·v̈)nd

− 1

16
rdr

3
s (ns ·v̇)3v̇ − 1

16
rdr

3
s (nd ·v̇)(ns ·v̇)3nd + O(ε5). (G.51)

G.6.14 Retarded Doppler factor

We now compute the retarded “Doppler factor” κ via

κ ≡ 1

1− (n·vret)
;

from (G.42) and (G.46), we find

κ = 1− rd(nd ·v̇) +
1

2
r2
d v̇2 +

1

2
r2
d (nd ·v̇)2 +

1

2
r2
d (nd ·v̈)

+
1

2
rdrs(nd ·v̇)(ns ·v̇)− 1

4
r3
d (nd ·v̇)3 − 1

6
r3
d (nd ·...v)− 5

12
r3
d (v̇ ·v̈)

− r3
d v̇2(nd ·v̇)− 1

2
r3
d (nd ·v̇)(nd ·v̈)− 1

2
r2
d rsv̇

2(ns ·v̇)

− 1

4
r2
d rs(nd ·v̇)(ns ·v̈)− 1

2
r2
d rs(nd ·v̇)2(ns ·v̇)− 1

2
r2
d rs(nd ·v̈)(ns ·v̇)

− 1

4
rdr

2
s (nd ·v̇)(ns ·v̇)2 +

3

8
r4
d v̇4 +

1

12
r4
d v̈2 +

1

8
r4
d (nd ·v̇)4

+
1

12
r4
d (nd ·v̈)2 +

1

24
r4
d (nd ·....v) +

1

8
r4
d (v̇ ·...v) +

7

8
r4
d v̇2(nd ·v̇)2
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+
25

48
r4
d v̇2(nd ·v̈) +

1

6
r4
d (nd ·v̇)(nd ·...v) +

5

6
r4
d (nd ·v̇)(v̇ ·v̈)

+
7

16
r4
d (nd ·v̇)2(nd ·v̈) +

5

24
r3
d rsv̇

2(ns ·v̈) +
1

12
r3
d rs(nd ·v̇)(ns ·...v)

+
1

4
r3
d rs(nd ·v̇)2(ns ·v̈) +

3

8
r3
d rs(nd ·v̇)3(ns ·v̇) +

1

4
r3
d rs(nd ·v̈)(ns ·v̈)

+
1

4
r3
d rs(nd ·...v)(ns ·v̇) +

5

8
r3
d rs(ns ·v̇)(v̇ ·v̈) +

7

4
r3
d rsv̇

2(nd ·v̇)(ns ·v̇)

+
3

4
r3
d rs(nd ·v̇)(nd ·v̈)(ns ·v̇) +

3

8
r2
d r2

s v̇2(ns ·v̇)2

+
3

8
r2
d r2

s (nd ·v̇)2(ns ·v̇)2 +
3

8
r2
d r2

s (nd ·v̈)(ns ·v̇)2

+
3

8
r2
d r2

s (nd ·v̇)(ns ·v̇)(ns ·v̈) +
1

8
rdr

3
s (nd ·v̇)(ns ·v̇)3 + O(ε5). (G.52)

G.6.15 Final redshift expression

Finally, we write the redshift factor λ of (G.27) in terms of rd, nd, rs and ns:

λ = 1 +
1

2
rd(nd ·v̇) +

1

2
rs(ns ·v̇). (G.53)

G.6.16 Spin of each constituent

The three-spin of the centre of the body, σ, has, by definition, the paramet-

risation

σ(t) = σ + tσ̇ +
1

2
t2σ̈ +

1

6
t3

...
σ +

1

24
t4

....
σ + O(ε5). (G.54)

Using t(τ) from (G.14), we find

σ(τ) = σ + τ σ̇ +
1

2
τ 2σ̈ +

1

6
τ 3 ...σ +

1

6
τ 3v̇2σ̇ +

1

24
τ 4....σ +

1

6
τ 4v̇2σ̈

+
1

8
τ 4(v̇ ·v̈)σ̇ + O(ε5). (G.55)

Now, the three-spin σr(τ) for any constituent r at body proper-time τ is

equal to that of the body as a whole, viz.,

σr(τ) ≡ σ(τ). (G.56)
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Using (G.28) and (G.55) in (G.56), we find

σr′(t) = σ + tσ̇ +
1

2
t2σ̈ − t(r′·v̇)σ̇ +

1

6
t3

...
σ − t2(r′·v̇)σ̈ − 1

2
t2(r′·v̈)σ̇

+ t(r′·v̇)2σ̇ +
1

24
t4

....
σ− 1

2
t3(r′·v̇)

...
σ − 1

2
t3(r′·v̈)σ̈ − 1

6
t3(r′·...v)σ̇

− 1

2
t3v̇2(r′·v̇)σ̇ +

3

2
t2(r′·v̇)2σ̈ +

3

2
t2(r′·v̇)(r′·v̈)σ̇ − t(r′·v̇)3σ̇

+ O(ε5); (G.57)

G.6.17 Constituent retarded FitzGerald spins

We can compute the retarded FitzGerald spin vector as a function of t, via

(G.6); using (G.46) and (G.57), we find

σ′
r′(t) = σ + tσ̇ +

1

2
t2σ̈ − 1

2
t2(v̇ ·σ)v̇ − t(r′·v̇)σ̇ +

1

6
t3

...
σ − 1

4
t3(v̇ ·σ)v̈

− 1

2
t3(v̇ ·σ̇)v̇ − 1

4
t3(v̈ ·σ)v̇ − t2(r′·v̇)σ̈ − 1

2
t2(r′·v̈)σ̇

+ t2(r′·v̇)(v̇ ·σ)v̇ + t(r′·v̇)2σ̇ +
1

24
t4

....
σ− 1

12
t4(v̇ ·σ)

...
v

− 1

4
t4(v̇ ·σ̇)v̈ − 1

4
t4(v̇ ·σ̈)v̇ − 1

8
t4(v̈ ·σ)v̈ − 1

4
t4(v̈ ·σ̇)v̇

− 1

12
t4(

...
v ·σ)v̇ − 1

8
t4v̇2(v̇ ·σ)v̇ − 1

2
t3(r′·v̇)

...
σ − 1

2
t3(r′·v̈)σ̈

− 1

6
t3(r′·...v)σ̇ − 1

2
t3v̇2(r′·v̇)σ̇ +

3

4
t3(r′·v̇)(v̇ ·σ)v̈

+
3

2
t3(r′·v̇)(v̇ ·σ̇)v̇ +

3

4
t3(r′·v̇)(v̈ ·σ)v̇ +

1

2
t3(r′·v̈)(v̇ ·σ)v̇

+
3

2
t2(r′·v̇)2σ̈ +

3

2
t2(r′·v̇)(r′·v̈)σ̇ − 3

2
t2(r′·v̇)2(v̇ ·σ)v̇

− t(r′·v̇)3σ̇ + O(ε5). (G.58)

Taking successive lab-time derivatives of (G.58), we find

σ̇′
r′(t) = σ̇ + tσ̈ − t(v̇ ·σ)v̇ − (r′·v̇)σ̇ +

1

2
t2

...
σ − 3

4
t2(v̇ ·σ)v̈
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− 3

2
t2(v̇ ·σ̇)v̇ − 3

4
t2(v̈ ·σ)v̇ − 2t(r′·v̇)σ̈ − t(r′·v̈)σ̇

+ 2t(r′·v̇)(v̇ ·σ)v̇ + (r′·v̇)2σ̇ +
1

6
t3

....
σ− 1

3
t3(v̇ ·σ)

...
v − t3(v̇ ·σ̇)v̈

− t3(v̇ ·σ̈)v̇ − 1

2
t3(v̈ ·σ)v̈ − t3(v̈ ·σ̇)v̇ − 1

3
t3(

...
v ·σ)v̇

− 1

2
t3v̇2(v̇ ·σ)v̇ − 3

2
t2(r′·v̇)

...
σ − 3

2
t2(r′·v̈)σ̈ − 1

2
t2(r′·...v)σ̇

− 3

2
t2v̇2(r′·v̇)σ̇ +

9

4
t2(r′·v̇)(v̇ ·σ)v̈ +

9

2
t2(r′·v̇)(v̇ ·σ̇)v̇

+
9

4
t2(r′·v̇)(v̈ ·σ)v̇ +

3

2
t2(r′·v̈)(v̇ ·σ)v̇ + 3t(r′·v̇)2σ̈

+ 3t(r′·v̇)(r′·v̈)σ̇ − 3t(r′·v̇)2(v̇ ·σ)v̇ − (r′·v̇)3σ̇ + O(ε4), (G.59)

σ̈′
r′(t) = σ̈ − (v̇ ·σ)v̇ + t

...
σ − 3

2
t(v̇ ·σ)v̈ − 3t(v̇ ·σ̇)v̇ − 3

2
t(v̈ ·σ)v̇

− 2(r′·v̇)σ̈ − (r′·v̈)σ̇ + 2(r′·v̇)(v̇ ·σ)v̇ +
1

2
t2

....
σ− t2(v̇ ·σ)

...
v

− 3t2(v̇ ·σ̇)v̈ − 3t2(v̇ ·σ̈)v̇ − 3

2
t2(v̈ ·σ)v̈ − 3t2(v̈ ·σ̇)v̇

− t2(
...
v ·σ)v̇ − 3

2
t2v̇2(v̇ ·σ)v̇ − 3t(r′·v̇)

...
σ − 3t(r′·v̈)σ̈ − t(r′·...v)σ̇

− 3tv̇2(r′·v̇)σ̇ +
9

2
t(r′·v̇)(v̇ ·σ)v̈ + 9t(r′·v̇)(v̇ ·σ̇)v̇

+
9

2
t(r′·v̇)(v̈ ·σ)v̇ + 3t(r′·v̈)(v̇ ·σ)v̇ + 3(r′·v̇)2σ̈ + 3(r′·v̇)(r′·v̈)σ̇

− 3(r′·v̇)2(v̇ ·σ)v̇ + O(ε3). (G.60)

Substituting t = tret ≡ −R, we find

σ′
ret = σ − rdσ̇ +

1

2
r2
d σ̈ − 1

2
r2
d (v̇ ·σ)v̇ +

1

2
rdrs(ns ·v̇)σ̇ − 1

6
r3
d

...
σ

− 1

8
r3
d v̇2σ̇ − 1

8
r3
d (nd ·v̇)2σ̇ +

1

12
r3
d (nd ·v̈)σ̇ +

1

4
r3
d (v̇ ·σ)v̈

+
1

2
r3
d (v̇ ·σ̇)v̇ +

1

4
r3
d (v̈ ·σ)v̇ − 1

2
r2
d rs(ns ·v̇)σ̈ − 1

4
r2
d rs(ns ·v̈)σ̇

+
1

2
r2
d rs(ns ·v̇)(v̇ ·σ)v̇ − 1

4
rdr

2
s (ns ·v̇)2σ̇ +

1

24
r4
d

....
σ +

1

8
r4
d v̇2σ̈
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+
1

8
r4
d (nd ·v̇)2σ̈ − 1

12
r4
d (nd ·v̈)σ̈ − 1

24
r4
d (nd ·...v)σ̇ +

1

12
r4
d (v̇ ·v̈)σ̇

− 1

12
r4
d (v̇ ·σ)

...
v − 1

4
r4
d (v̇ ·σ̇)v̈ − 1

4
r4
d (v̇ ·σ̈)v̇ − 1

8
r4
d (v̈ ·σ)v̈

− 1

4
r4
d (v̈ ·σ̇)v̇ − 1

12
r4
d (

...
v ·σ)v̇ − 1

8
r4
d v̇2(nd ·v̇)σ̇ − 1

4
r4
d v̇2(v̇ ·σ)v̇

+
1

8
r4
d (nd ·v̇)(nd ·v̈)σ̇ − 1

8
r4
d (nd ·v̇)2(v̇ ·σ)v̇ +

1

12
r4
d (nd ·v̈)(v̇ ·σ)v̇

+
1

4
r3
d rs(ns ·v̇)

...
σ +

1

4
r3
d rs(ns ·v̈)σ̈ +

1

12
r3
d rs(ns ·...v)σ̇

+
7

16
r3
d rsv̇

2(ns ·v̇)σ̇ − 1

24
r3
d rs(nd ·v̇)(ns ·v̈)σ̇

+
3

16
r3
d rs(nd ·v̇)2(ns ·v̇)σ̇ − 1

8
r3
d rs(nd ·v̈)(ns ·v̇)σ̇

− 3

8
r3
d rs(ns ·v̇)(v̇ ·σ)v̈ − 3

4
r3
d rs(ns ·v̇)(v̇ ·σ̇)v̇ − 3

8
r3
d rs(ns ·v̇)(v̈ ·σ)v̇

− 1

4
r3
d rs(ns ·v̈)(v̇ ·σ)v̇ +

3

8
r2
d r2

s (ns ·v̇)2σ̈ +
3

8
r2
d r2

s (ns ·v̇)(ns ·v̈)σ̇

− 3

8
r2
d r2

s (ns ·v̇)2(v̇ ·σ)v̇ +
1

8
rdr

3
s (ns ·v̇)3σ̇ + O(ε5), (G.61)

σ̇′
ret = σ̇ − rdσ̈ +

1

2
rd(nd ·v̇)σ̇ + rd(v̇ ·σ)v̇ − 1

2
rs(ns ·v̇)σ̇ +

1

2
r2
d

...
σ

− 1

2
r2
d (nd ·v̇)σ̈ +

1

4
r2
d (nd ·v̇)2σ̇ − 1

2
r2
d (nd ·v̈)σ̇ − 3

4
r2
d (v̇ ·σ)v̈

− 3

2
r2
d (v̇ ·σ̇)v̇ − 3

4
r2
d (v̈ ·σ)v̇ +

1

2
r2
d (nd ·v̇)(v̇ ·σ)v̇ + rdrs(ns ·v̇)σ̈

+
1

2
rdrs(ns ·v̈)σ̇ − 1

2
rdrs(nd ·v̇)(ns ·v̇)σ̇ − rdrs(ns ·v̇)(v̇ ·σ)v̇

+
1

4
r2
s (ns ·v̇)2σ̇ − 1

6
r3
d

....
σ− 1

8
r3
d v̇2σ̈ +

1

4
r3
d (nd ·v̇)

...
σ

− 3

8
r3
d (nd ·v̇)2σ̈ +

1

8
r3
d (nd ·v̇)3σ̇ +

7

12
r3
d (nd ·v̈)σ̈ +

1

4
r3
d (nd ·...v)σ̇

+
1

3
r3
d (v̇ ·σ)

...
v + r3

d (v̇ ·σ̇)v̈ + r3
d (v̇ ·σ̈)v̇ +

1

2
r3
d (v̈ ·σ)v̈ + r3

d (v̈ ·σ̇)v̇

+
1

3
r3
d (

...
v ·σ)v̇ +

3

4
r3
d v̇2(nd ·v̇)σ̇ +

5

8
r3
d v̇2(v̇ ·σ)v̇

466



− 1

2
r3
d (nd ·v̇)(nd ·v̈)σ̇ − 3

8
r3
d (nd ·v̇)(v̇ ·σ)v̈ − 3

4
r3
d (nd ·v̇)(v̇ ·σ̇)v̇

− 3

8
r3
d (nd ·v̇)(v̈ ·σ)v̇ +

3

8
r3
d (nd ·v̇)2(v̇ ·σ)v̇ − 7

12
r3
d (nd ·v̈)(v̇ ·σ)v̇

− 3

4
r2
d rs(ns ·v̇)

...
σ − 3

4
r2
d rs(ns ·v̈)σ̈ − 1

4
r2
d rs(ns ·...v)σ̇

− 3

4
r2
d rsv̇

2(ns ·v̇)σ̇ +
3

4
r2
d rs(nd ·v̇)(ns ·v̇)σ̈ +

1

2
r2
d rs(nd ·v̇)(ns ·v̈)σ̇

− 3

8
r2
d rs(nd ·v̇)2(ns ·v̇)σ̇ +

3

4
r2
d rs(nd ·v̈)(ns ·v̇)σ̇

+
9

8
r2
d rs(ns ·v̇)(v̇ ·σ)v̈ +

9

4
r2
d rs(ns ·v̇)(v̇ ·σ̇)v̇ +

9

8
r2
d rs(ns ·v̇)(v̈ ·σ)v̇

+
3

4
r2
d rs(ns ·v̈)(v̇ ·σ)v̇ − 3

4
r2
d rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)v̇

− 3

4
rdr

2
s (ns ·v̇)2σ̈ +

3

8
rdr

2
s (nd ·v̇)(ns ·v̇)2σ̇ − 3

4
rdr

2
s (ns ·v̇)(ns ·v̈)σ̇

+
3

4
rdr

2
s (ns ·v̇)2(v̇ ·σ)v̇ − 1

8
r3
s (ns ·v̇)3σ̇ + O(ε4), (G.62)

σ̈′
ret = σ̈ − (v̇ ·σ)v̇ − rd

...
σ + rd(nd ·v̇)σ̈ +

1

2
rd(nd ·v̈)σ̇ +

3

2
rd(v̇ ·σ)v̈

+ 3rd(v̇ ·σ̇)v̇ +
3

2
rd(v̈ ·σ)v̇ − rd(nd ·v̇)(v̇ ·σ)v̇ − rs(ns ·v̇)σ̈

− 1

2
rs(ns ·v̈)σ̇ + rs(ns ·v̇)(v̇ ·σ)v̇ +

1

2
r2
d

....
σ− r2

d (nd ·v̇)
...
σ

+
3

4
r2
d (nd ·v̇)2σ̈ − 3

2
r2
d (nd ·v̈)σ̈ − 1

2
r2
d (nd ·...v)σ̇ − r2

d (v̇ ·σ)
...
v

− 3r2
d (v̇ ·σ̇)v̈ − 3r2

d (v̇ ·σ̈)v̇ − 3

2
r2
d (v̈ ·σ)v̈ − 3r2

d (v̈ ·σ̇)v̇

− r2
d (

...
v ·σ)v̇ − 3

2
r2
d v̇2(nd ·v̇)σ̇ − 3

2
r2
d v̇2(v̇ ·σ)v̇

+
3

4
r2
d (nd ·v̇)(nd ·v̈)σ̇ +

3

2
r2
d (nd ·v̇)(v̇ ·σ)v̈ + 3r2

d (nd ·v̇)(v̇ ·σ̇)v̇

+
3

2
r2
d (nd ·v̇)(v̈ ·σ)v̇ − 3

4
r2
d (nd ·v̇)2(v̇ ·σ)v̇ +

3

2
r2
d (nd ·v̈)(v̇ ·σ)v̇

+
3

2
rdrs(ns ·v̇)

...
σ +

3

2
rdrs(ns ·v̈)σ̈ +

1

2
rdrs(ns ·...v)σ̇
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+
3

2
rdrsv̇

2(ns ·v̇)σ̇ − 3

2
rdrs(nd ·v̇)(ns ·v̇)σ̈ − 3

4
rdrs(nd ·v̇)(ns ·v̈)σ̇

− 3

4
rdrs(nd ·v̈)(ns ·v̇)σ̇ − 9

4
rdrs(ns ·v̇)(v̇ ·σ)v̈ − 9

2
rdrs(ns ·v̇)(v̇ ·σ̇)v̇

− 9

4
rdrs(ns ·v̇)(v̈ ·σ)v̇ − 3

2
rdrs(ns ·v̈)(v̇ ·σ)v̇

+
3

2
rdrs(nd ·v̇)(ns ·v̇)(v̇ ·σ)v̇ +

3

4
r2
s (ns ·v̇)2σ̈ +

3

4
r2
s (ns ·v̇)(ns ·v̈)σ̇

− 3

4
r2
s (ns ·v̇)2(v̇ ·σ)v̇ + O(ε3). (G.63)

G.6.18 General retarded field expressions

The retarded field expressions verified explicitly in the program retfield

are

E′q
1 = −κ3(n·n′)v̇ + κ3(n·v̇)n′,

E′q
2 = κ3γ−2n′,

E′d
1 = 3κ5(n·v̇)2(n·σ′)n′ − 3κ5(n·n′)(n·v̇)(n·σ′)v̇ − κ4(n·n′)(n·σ′)v̈

− 3κ4(n·n′)(n·σ̇′)v̇ + 3κ4(n·v̇)(n·σ̇′)n′ + κ4(n·v̈)(n·σ′)n′

− κ3(n·n′)σ̈′− κ3(n·v̇)σ̇′+ κ3(n·σ̇′)v̇ + κ3(n·σ̈′)n′,

E′d
2 = −3κ5(n·n′)(n′′·σ′)v̇ + 3κ5(n·v̇)(n′′·σ′)n′ + 3κ5(n·σ′)(n′′·v̇)n′

+ 3κ4(n′′·σ̇′)n′ − κ3γ−2σ̇′− κ3(n·v̇)σ′+ κ3(n′·σ′)v̇

+ κ3(v ·σ̇′)n′ − κ3(v̇ ·σ′)n′,

E′d
3 = 3κ5γ−2(n′′·σ′)n′ − κ3γ−2σ′,

B′q
1 = −κ3(n·n′)n×v̇ + κ3(n·v̇)n×n′,
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B′q
2 = κ3γ−2n×n′,

B′d
1 = 3κ5(n·v̇)2(n·σ′)n×n′ − 3κ5(n·n′)(n·v̇)(n·σ′)n×v̇

− κ4(n·n′)(n·σ′)n×v̈ − 3κ4(n·n′)(n·σ̇′)n×v̇

+ 3κ4(n·v̇)(n·σ̇′)n×n′ + κ4(n·v̈)(n·σ′)n×n′ − κ3(n·n′)n×σ̈′

− κ3(n·v̇)n×σ̇′+ κ3(n·σ̇′)n×v̇ + κ3(n·σ̈′)n×n′,

B′d
2 = −3κ5(n·n′)(n′′·σ′)n×v̇ + 3κ5(n·v̇)(n′′·σ′)n×n′

+ 3κ5(n·σ′)(n′′·v̇)n×n′ + 3κ4(n′′·σ̇′)n×n′ − κ3γ−2n×σ̇′

− κ3(n·v̇)n×σ′+ κ3(n·v̇)n′×σ′− κ3(n·σ′)n′×v̇

+ κ3(n′·σ′)n×v̇ + κ3(v ·σ̇′)n×n′ − κ3(v̇ ·σ′)n×n′ − κ2v̇×σ′,

B′d
3 = −3κ5γ−2(n′′·σ′)n′×v − κ3γ−2v×σ′,

G.6.19 The retarded self-fields

Using the expressions in the previous sections, we find

Eq
1 = −r−1

d v̇ + r−1
d (nd ·v̇)nd + v̈ − 1

2
v̇2nd +

3

2
(nd ·v̇)v̇ − (nd ·v̇)2nd

− (nd ·v̈)nd +
1

2
r−1
d rs(ns ·v̇)v̇ − 1

2
r−1
d rs(nd ·v̇)(ns ·v̇)nd − 1

2
rd

...
v

− 9

8
rdv̇

2v̇ − 4

3
rd(nd ·v̇)v̈ − 11

8
rd(nd ·v̇)2v̇ +

5

8
rd(nd ·v̇)3nd

− 5

6
rd(nd ·v̈)v̇ +

1

2
rd(nd ·...v)nd +

2

3
rd(v̇ ·v̈)nd +

15

8
rdv̇

2(nd ·v̇)nd

+
3

2
rd(nd ·v̇)(nd ·v̈)nd − rs(ns ·v̇)v̈ − 1

2
rs(ns ·v̈)v̇ +

1

2
rsv̇

2(ns ·v̇)nd

− 3

2
rs(nd ·v̇)(ns ·v̇)v̇ +

1

2
rs(nd ·v̇)(ns ·v̈)nd + rs(nd ·v̇)2(ns ·v̇)nd

+ rs(nd ·v̈)(ns ·v̇)nd − 1

4
r−1
d r2

s (ns ·v̇)2v̇ +
1

4
r−1
d r2

s (nd ·v̇)(ns ·v̇)2nd

+ O(ε2),
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Eq
2 = r−2

d nd +
1

2
r−1
d v̇ − 3

2
r−1
d (nd ·v̇)nd − 1

3
v̈ +

1

8
v̇2nd − (nd ·v̇)v̇

+
9

8
(nd ·v̇)2nd + (nd ·v̈)nd − 1

4
r−1
d rs(ns ·v̇)v̇

+
3

4
r−1
d rs(nd ·v̇)(ns ·v̇)nd +

1

8
rd

...
v +

3

16
rdv̇

2v̇ +
2

3
rd(nd ·v̇)v̈

+
17

16
rd(nd ·v̇)2v̇ − 11

16
rd(nd ·v̇)3nd +

1

2
rd(nd ·v̈)v̇ − 3

8
rd(nd ·...v)nd

− 21

16
rdv̇

2(nd ·v̇)nd − 3

2
rd(nd ·v̇)(nd ·v̈)nd +

1

3
rs(ns ·v̇)v̈

+
1

6
rs(ns ·v̈)v̇ − 1

8
rsv̇

2(ns ·v̇)nd + rs(nd ·v̇)(ns ·v̇)v̇

− 1

2
rs(nd ·v̇)(ns ·v̈)nd − 9

8
rs(nd ·v̇)2(ns ·v̇)nd − rs(nd ·v̈)(ns ·v̇)nd

+
1

8
r−1
d r2

s (ns ·v̇)2v̇ − 3

8
r−1
d r2

s (nd ·v̇)(ns ·v̇)2nd + O(ε2),

Ed
1 = −r−1

d σ̈ − r−1
d (nd ·v̇)σ̇ − r−1

d (nd ·σ)v̈ − 2r−1
d (nd ·σ̇)v̇

+ r−1
d (nd ·σ̈)nd + r−1

d (v̇ ·σ)v̇ − 3r−1
d (nd ·v̇)(nd ·σ)v̇

+ 3r−1
d (nd ·v̇)(nd ·σ̇)nd − r−1

d (nd ·v̇)(v̇ ·σ)nd

+ 3r−1
d (nd ·v̇)2(nd ·σ)nd + r−1

d (nd ·v̈)(nd ·σ)nd +
...
σ +

1

2
v̇2σ̇

+
3

2
(nd ·v̇)σ̈ + (nd ·v̇)2σ̇ +

1

2
(nd ·v̈)σ̇ + (nd ·σ)

...
v + 3(nd ·σ̇)v̈

+
5

2
(nd ·σ̈)v̇ − (nd · ...σ)nd − (v̇ ·σ)v̈ − 2(v̇ ·σ̇)v̇ − 1

2
(v̇ ·σ̈)nd

− 3

2
(v̈ ·σ)v̇ +

3

2
v̇2(nd ·σ)v̇ − 3

2
v̇2(nd ·σ̇)nd +

1

2
v̇2(v̇ ·σ)nd

+ 4(nd ·v̇)(nd ·σ)v̈ +
13

2
(nd ·v̇)(nd ·σ̇)v̇ − 7

2
(nd ·v̇)(nd ·σ̈)nd

− 5

2
(nd ·v̇)(v̇ ·σ)v̇ +

3

2
(nd ·v̇)(v̇ ·σ̇)nd +

3

2
(nd ·v̇)(v̈ ·σ)nd

+ 6(nd ·v̇)2(nd ·σ)v̇ − 6(nd ·v̇)2(nd ·σ̇)nd + 2(nd ·v̇)2(v̇ ·σ)nd

− 9

2
(nd ·v̇)3(nd ·σ)nd + 3(nd ·v̈)(nd ·σ)v̇ − 7

2
(nd ·v̈)(nd ·σ̇)nd
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+ (nd ·v̈)(v̇ ·σ)nd − (nd ·...v)(nd ·σ)nd − 1

2
(nd ·σ)(v̇ ·v̈)nd

− 3v̇2(nd ·v̇)(nd ·σ)nd − 13

2
(nd ·v̇)(nd ·v̈)(nd ·σ)nd

+ r−1
d rs(ns ·v̇)σ̈ +

1

2
r−1
d rs(ns ·v̈)σ̇ + r−1

d rs(nd ·v̇)(ns ·v̇)σ̇

+ r−1
d rs(nd ·σ)(ns ·v̇)v̈ +

1

2
r−1
d rs(nd ·σ)(ns ·v̈)v̇

+ 2r−1
d rs(nd ·σ̇)(ns ·v̇)v̇ − 1

2
r−1
d rs(nd ·σ̇)(ns ·v̈)nd

− r−1
d rs(nd ·σ̈)(ns ·v̇)nd − r−1

d rs(ns ·v̇)(v̇ ·σ)v̇

+ 3r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)v̇ − 1

2
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̈)nd

− 3r−1
d rs(nd ·v̇)(nd ·σ̇)(ns ·v̇)nd + r−1

d rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)nd

− 3r−1
d rs(nd ·v̇)2(nd ·σ)(ns ·v̇)nd − r−1

d rs(nd ·v̈)(nd ·σ)(ns ·v̇)nd

− 1

2
rd

....
σ− 11

8
rdv̇

2σ̈ − rd(nd ·v̇)
...
σ − 11

8
rd(nd ·v̇)2σ̈ − 3

4
rd(nd ·v̇)3σ̇

− 1

3
rd(nd ·v̈)σ̈ − 1

2
rd(nd ·σ)

....
v − 2rd(nd ·σ̇)

...
v − 17

6
rd(nd ·σ̈)v̈

− 3

2
rd(nd · ...σ)v̇ +

1

2
rd(nd ·....σ)nd − 2

3
rd(v̇ ·v̈)σ̇ +

1

2
rd(v̇ ·σ)

...
v

+
3

2
rd(v̇ ·σ̇)v̈ +

7

4
rd(v̇ ·σ̈)v̇ +

1

2
rd(v̇ · ...σ)nd +

4

3
rd(v̈ ·σ)v̈

+
8

3
rd(v̈ ·σ̇)v̇ +

1

6
rd(v̈ ·σ̈)nd + rd(

...
v ·σ)v̇ − 1

2
rdv̇

2(nd ·v̇)σ̇

− 11

4
rdv̇

2(nd ·σ)v̈ − 19

4
rdv̇

2(nd ·σ̇)v̇ +
21

8
rdv̇

2(nd ·σ̈)nd

+
27

8
rdv̇

2(v̇ ·σ)v̇ − 3

4
rdv̇

2(v̇ ·σ̇)nd − 3

4
rdv̇

2(v̈ ·σ)nd

+
3

4
rdv̇

4(nd ·σ)nd +
1

6
rdv̈

2(nd ·σ)nd − 7

6
rd(nd ·v̇)(nd ·v̈)σ̇

− 5

2
rd(nd ·v̇)(nd ·σ)

...
v − 7rd(nd ·v̇)(nd ·σ̇)v̈ − 11

2
rd(nd ·v̇)(nd ·σ̈)v̇

+ 2rd(nd ·v̇)(nd · ...σ)nd +
25

12
rd(nd ·v̇)(v̇ ·σ)v̈ +

15

4
rd(nd ·v̇)(v̇ ·σ̇)v̇
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− rd(nd ·v̇)(v̇ ·σ̈)nd +
13

4
rd(nd ·v̇)(v̈ ·σ)v̇ − 5

2
rd(nd ·v̇)(v̈ ·σ̇)nd

− rd(nd ·v̇)(
...
v ·σ)nd − 25

4
rd(nd ·v̇)2(nd ·σ)v̈ − 39

4
rd(nd ·v̇)2(nd ·σ̇)v̇

+
39

8
rd(nd ·v̇)2(nd ·σ̈)nd +

25

8
rd(nd ·v̇)2(v̇ ·σ)v̇

− 9

4
rd(nd ·v̇)2(v̇ ·σ̇)nd − 5

2
rd(nd ·v̇)2(v̈ ·σ)nd

− 57

8
rd(nd ·v̇)3(nd ·σ)v̇ +

27

4
rd(nd ·v̇)3(nd ·σ̇)nd

− 15

8
rd(nd ·v̇)3(v̇ ·σ)nd +

33

8
rd(nd ·v̇)4(nd ·σ)nd

− 3rd(nd ·v̈)(nd ·σ)v̈ − 55

12
rd(nd ·v̈)(nd ·σ̇)v̇ + 3rd(nd ·v̈)(nd ·σ̈)nd

+
13

12
rd(nd ·v̈)(v̇ ·σ)v̇ − 5

4
rd(nd ·v̈)(v̇ ·σ̇)nd − 4

3
rd(nd ·v̈)(v̈ ·σ)nd

+
17

6
rd(nd ·v̈)2(nd ·σ)nd − 3

2
rd(nd ·...v)(nd ·σ)v̇

+ 2rd(nd ·...v)(nd ·σ̇)nd − 1

2
rd(nd ·...v)(v̇ ·σ)nd +

1

2
rd(nd ·....v)(nd ·σ)nd

− 9

4
rd(nd ·σ)(v̇ ·v̈)v̇ +

1

2
rd(nd ·σ)(v̇ ·...v)nd +

5

2
rd(nd ·σ̇)(v̇ ·v̈)nd

− 2

3
rd(v̇ ·v̈)(v̇ ·σ)nd − 63

8
rdv̇

2(nd ·v̇)(nd ·σ)v̇

+
33

4
rdv̇

2(nd ·v̇)(nd ·σ̇)nd − 37

8
rdv̇

2(nd ·v̇)(v̇ ·σ)nd

+
81

8
rdv̇

2(nd ·v̇)2(nd ·σ)nd +
17

4
rdv̇

2(nd ·v̈)(nd ·σ)nd

− 37

4
rd(nd ·v̇)(nd ·v̈)(nd ·σ)v̇ +

21

2
rd(nd ·v̇)(nd ·v̈)(nd ·σ̇)nd

− 5

2
rd(nd ·v̇)(nd ·v̈)(v̇ ·σ)nd +

7

2
rd(nd ·v̇)(nd ·...v)(nd ·σ)nd

+
19

4
rd(nd ·v̇)(nd ·σ)(v̇ ·v̈)nd +

23

2
rd(nd ·v̇)2(nd ·v̈)(nd ·σ)nd

− 3

2
rs(ns ·v̇)

...
σ − 3

2
rs(ns ·v̈)σ̈ − 1

2
rs(ns ·...v)σ̇ − 9

4
rsv̇

2(ns ·v̇)σ̇

− 9

4
rs(nd ·v̇)(ns ·v̇)σ̈ − rs(nd ·v̇)(ns ·v̈)σ̇ − 3

2
rs(nd ·v̇)2(ns ·v̇)σ̇
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− 3

4
rs(nd ·v̈)(ns ·v̇)σ̇ − 3

2
rs(nd ·σ)(ns ·v̇)

...
v − 3

2
rs(nd ·σ)(ns ·v̈)v̈

− 1

2
rs(nd ·σ)(ns ·...v)v̇ − 9

2
rs(nd ·σ̇)(ns ·v̇)v̈ − 11

4
rs(nd ·σ̇)(ns ·v̈)v̇

+
1

2
rs(nd ·σ̇)(ns ·...v)nd − 15

4
rs(nd ·σ̈)(ns ·v̇)v̇ +

3

2
rs(nd ·σ̈)(ns ·v̈)nd

+
3

2
rs(nd · ...σ)(ns ·v̇)nd +

3

2
rs(ns ·v̇)(v̇ ·σ)v̈ + 3rs(ns ·v̇)(v̇ ·σ̇)v̇

+
3

4
rs(ns ·v̇)(v̇ ·σ̈)nd +

9

4
rs(ns ·v̇)(v̈ ·σ)v̇ +

5

4
rs(ns ·v̈)(v̇ ·σ)v̇

+
1

4
rs(ns ·v̈)(v̇ ·σ̇)nd − 15

4
rsv̇

2(nd ·σ)(ns ·v̇)v̇

+
1

4
rsv̇

2(nd ·σ)(ns ·v̈)nd +
15

4
rsv̇

2(nd ·σ̇)(ns ·v̇)nd

− 3

4
rsv̇

2(ns ·v̇)(v̇ ·σ)nd − 6rs(nd ·v̇)(nd ·σ)(ns ·v̇)v̈

− 7

2
rs(nd ·v̇)(nd ·σ)(ns ·v̈)v̇ +

1

2
rs(nd ·v̇)(nd ·σ)(ns ·...v)nd

− 39

4
rs(nd ·v̇)(nd ·σ̇)(ns ·v̇)v̇ +

7

2
rs(nd ·v̇)(nd ·σ̇)(ns ·v̈)nd

+
21

4
rs(nd ·v̇)(nd ·σ̈)(ns ·v̇)nd +

15

4
rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)v̇

− 9

4
rs(nd ·v̇)(ns ·v̇)(v̇ ·σ̇)nd − 9

4
rs(nd ·v̇)(ns ·v̇)(v̈ ·σ)nd

− 5

4
rs(nd ·v̇)(ns ·v̈)(v̇ ·σ)nd − 9rs(nd ·v̇)2(nd ·σ)(ns ·v̇)v̇

+
13

4
rs(nd ·v̇)2(nd ·σ)(ns ·v̈)nd + 9rs(nd ·v̇)2(nd ·σ̇)(ns ·v̇)nd

− 3rs(nd ·v̇)2(ns ·v̇)(v̇ ·σ)nd +
27

4
rs(nd ·v̇)3(nd ·σ)(ns ·v̇)nd

− 9

2
rs(nd ·v̈)(nd ·σ)(ns ·v̇)v̇ +

3

2
rs(nd ·v̈)(nd ·σ)(ns ·v̈)nd

+
21

4
rs(nd ·v̈)(nd ·σ̇)(ns ·v̇)nd − 3

2
rs(nd ·v̈)(ns ·v̇)(v̇ ·σ)nd

+
3

2
rs(nd ·...v)(nd ·σ)(ns ·v̇)nd +

3

4
rs(nd ·σ)(ns ·v̇)(v̇ ·v̈)nd

+ 6rsv̇
2(nd ·v̇)(nd ·σ)(ns ·v̇)nd
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+
39

4
rs(nd ·v̇)(nd ·v̈)(nd ·σ)(ns ·v̇)nd − 3

4
r−1
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s (ns ·v̇)2σ̈

− 3

4
r−1
d r2

s (nd ·v̇)(ns ·v̇)2σ̇ − 3

4
r−1
d r2

s (nd ·σ)(ns ·v̇)2v̈

− 3

2
r−1
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s (nd ·σ̇)(ns ·v̇)2v̇ +
3

4
r−1
d r2

s (nd ·σ̈)(ns ·v̇)2nd

− 3

4
r−1
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s (ns ·v̇)(ns ·v̈)σ̇ +
3

4
r−1
d r2

s (ns ·v̇)2(v̇ ·σ)v̇

− 9

4
r−1
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s (nd ·v̇)(nd ·σ)(ns ·v̇)2v̇ +
9

4
r−1
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s (nd ·v̇)(nd ·σ̇)(ns ·v̇)2nd

− 3

4
r−1
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+
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+
3
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+
3

4
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+
3

4
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d r2

s (nd ·v̇)(nd ·σ)(ns ·v̇)(ns ·v̈)nd + O(ε2),

Ed
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+
1

2
r−2
d rs(ns ·v̇)v̇×σ +

3

2
r−2
d rs(nd ·σ)(ns ·v̇)nd×v̇ − 1

2
nd× ...

σ

− v̇×σ̈ − 7

6
v̈×σ̇ − 1

2

...
v×σ − 1

8
v̇2nd×σ̇ − 5

4
v̇2v̇×σ

− (nd ·v̇)nd×σ̈ − 9

4
(nd ·v̇)v̇×σ̇ − (nd ·v̇)v̈×σ − 5

8
(nd ·v̇)2nd×σ̇

− 5

4
(nd ·v̇)2v̇×σ − 1

2
(nd ·v̈)nd×σ̇ − 7

6
(nd ·v̈)v̇×σ

− 3

2
(nd ·σ)nd×...

v − 1

2
(nd ·σ)v̇×v̈ − 9

2
(nd ·σ̇)nd×v̈

− 9

2
(nd ·σ̈)nd×v̇ +

7

4
(v̇ ·σ)nd×v̈ +

7

2
(v̇ ·σ̇)nd×v̇ +

9

4
(v̈ ·σ)nd×v̇

− 3

2
v̇2(nd ·σ)nd×v̇ − 15

2
(nd ·v̇)(nd ·σ)nd×v̈

− 15(nd ·v̇)(nd ·σ̇)nd×v̇ +
11

2
(nd ·v̇)(v̇ ·σ)nd×v̇

− 63

4
(nd ·v̇)2(nd ·σ)nd×v̇ − 17

2
(nd ·v̈)(nd ·σ)nd×v̇

− r−1
d rs(ns ·v̇)nd×σ̈ − 3

2
r−1
d rs(ns ·v̇)v̇×σ̇ − r−1

d rs(ns ·v̇)v̈×σ
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− 1

2
r−1
d rs(ns ·v̈)nd×σ̇ − 1

2
r−1
d rs(ns ·v̈)v̇×σ

− r−1
d rs(nd ·v̇)(ns ·v̇)nd×σ̇ − 3

2
r−1
d rs(nd ·v̇)(ns ·v̇)v̇×σ

− 3r−1
d rs(nd ·σ)(ns ·v̇)nd×v̈ − 3

2
r−1
d rs(nd ·σ)(ns ·v̈)nd×v̇

− 6r−1
d rs(nd ·σ̇)(ns ·v̇)nd×v̇ +

5

2
r−1
d rs(ns ·v̇)(v̇ ·σ)nd×v̇

− 21

2
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)nd×v̇ − 1

4
r−2
d r2

s (ns ·v̇)2nd×σ̇

− 1

4
r−2
d r2

s (ns ·v̇)2v̇×σ − 3

4
r−2
d r2

s (nd ·σ)(ns ·v̇)2nd×v̇

+
1

6
rdnd×....

σ +
5

12
rdv̇× ...

σ +
2

3
rdv̈×σ̈ +

13

24
rd

...
v×σ̇ +

1

6
rd

....
v×σ

+
1

4
rdv̇

2nd×σ̈ +
25

16
rdv̇

2v̇×σ̇ +
9

8
rdv̇

2v̈×σ +
1

2
rd(nd ·v̇)nd× ...

σ

+
3

2
rd(nd ·v̇)v̇×σ̈ +

5

4
rd(nd ·v̇)v̈×σ̇ +

5

12
rd(nd ·v̇)

...
v×σ

+
3

4
rd(nd ·v̇)2nd×σ̈ +

33

16
rd(nd ·v̇)2v̇×σ̇ +

7

8
rd(nd ·v̇)2v̈×σ

+
3

8
rd(nd ·v̇)3nd×σ̇ +

7

8
rd(nd ·v̇)3v̇×σ +

5

12
rd(nd ·v̈)nd×σ̈

+
17

12
rd(nd ·v̈)v̇×σ̇ +

7

12
rd(nd ·v̈)v̈×σ +

1

8
rd(nd ·...v)nd×σ̇

+
1

2
rd(nd ·...v)v̇×σ +

1

2
rd(nd ·σ)nd×....

v +
7

24
rd(nd ·σ)v̇×...

v

+ 2rd(nd ·σ̇)nd×...
v +

3

4
rd(nd ·σ̇)v̇×v̈ + 3rd(nd ·σ̈)nd×v̈

+ 2rd(nd · ...σ)nd×v̇ +
4

3
rd(v̇ ·v̈)v̇×σ − 3

4
rd(v̇ ·σ)nd×...

v

− 11

24
rd(v̇ ·σ)v̇×v̈ − 9

4
rd(v̇ ·σ̇)nd×v̈ − 9

4
rd(v̇ ·σ̈)nd×v̇

− 3

2
rd(v̈ ·σ)nd×v̈ − 3rd(v̈ ·σ̇)nd×v̇ − 25

24
rd(

...
v ·σ)nd×v̇

+
1

2
rdv̇

2(nd ·v̇)nd×σ̇ +
19

8
rdv̇

2(nd ·v̇)v̇×σ +
15

8
rdv̇

2(nd ·σ)nd×v̈

+
15

4
rdv̇

2(nd ·σ̇)nd×v̇ − 29

8
rdv̇

2(v̇ ·σ)nd×v̇
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+
3

4
rd(nd ·v̇)(nd ·v̈)nd×σ̇ +

7

4
rd(nd ·v̇)(nd ·v̈)v̇×σ

+
13

4
rd(nd ·v̇)(nd ·σ)nd×...

v + 2rd(nd ·v̇)(nd ·σ)v̇×v̈

+
39

4
rd(nd ·v̇)(nd ·σ̇)nd×v̈ +

39

4
rd(nd ·v̇)(nd ·σ̈)nd×v̇

− 13

4
rd(nd ·v̇)(v̇ ·σ)nd×v̈ − 13

2
rd(nd ·v̇)(v̇ ·σ̇)nd×v̇

− 21

4
rd(nd ·v̇)(v̈ ·σ)nd×v̇ +

81

8
rd(nd ·v̇)2(nd ·σ)nd×v̈

+
81

4
rd(nd ·v̇)2(nd ·σ̇)nd×v̇ − 51

8
rd(nd ·v̇)2(v̇ ·σ)nd×v̇

+
129

8
rd(nd ·v̇)3(nd ·σ)nd×v̇ +

21

4
rd(nd ·v̈)(nd ·σ)nd×v̈

+
21

2
rd(nd ·v̈)(nd ·σ̇)nd×v̇ − 19

6
rd(nd ·v̈)(v̇ ·σ)nd×v̇

+
15

4
rd(nd ·...v)(nd ·σ)nd×v̇ +

1

2
rd(nd ·σ)(v̇ ·v̈)nd×v̇

+
27

2
rdv̇

2(nd ·v̇)(nd ·σ)nd×v̇ + 23rd(nd ·v̇)(nd ·v̈)(nd ·σ)nd×v̇

+
3

4
rs(ns ·v̇)nd× ...

σ +
3

2
rs(ns ·v̇)v̇×σ̈ +

7

4
rs(ns ·v̇)v̈×σ̇

+
3

4
rs(ns ·v̇)

...
v×σ +

3

4
rs(ns ·v̈)nd×σ̈ +

13

12
rs(ns ·v̈)v̇×σ̇

+
3

4
rs(ns ·v̈)v̈×σ +

1

4
rs(ns ·...v)nd×σ̇ +

1

4
rs(ns ·...v)v̇×σ

+
15

16
rsv̇

2(ns ·v̇)nd×σ̇ +
21

8
rsv̇

2(ns ·v̇)v̇×σ

+
3

2
rs(nd ·v̇)(ns ·v̇)nd×σ̈ +

27

8
rs(nd ·v̇)(ns ·v̇)v̇×σ̇

+
3

2
rs(nd ·v̇)(ns ·v̇)v̈×σ +

3

4
rs(nd ·v̇)(ns ·v̈)nd×σ̇

+
13

12
rs(nd ·v̇)(ns ·v̈)v̇×σ +

15

16
rs(nd ·v̇)2(ns ·v̇)nd×σ̇

+
15

8
rs(nd ·v̇)2(ns ·v̇)v̇×σ +

3

4
rs(nd ·v̈)(ns ·v̇)nd×σ̇

+
7

4
rs(nd ·v̈)(ns ·v̇)v̇×σ +

9

4
rs(nd ·σ)(ns ·v̇)nd×...

v
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+
3

4
rs(nd ·σ)(ns ·v̇)v̇×v̈ +

9

4
rs(nd ·σ)(ns ·v̈)nd×v̈

+
3

4
rs(nd ·σ)(ns ·...v)nd×v̇ +

27

4
rs(nd ·σ̇)(ns ·v̇)nd×v̈

+
9

2
rs(nd ·σ̇)(ns ·v̈)nd×v̇ +

27

4
rs(nd ·σ̈)(ns ·v̇)nd×v̇

− 21

8
rs(ns ·v̇)(v̇ ·σ)nd×v̈ − 21

4
rs(ns ·v̇)(v̇ ·σ̇)nd×v̇

− 27

8
rs(ns ·v̇)(v̈ ·σ)nd×v̇ − 2rs(ns ·v̈)(v̇ ·σ)nd×v̇

+
9

2
rsv̇

2(nd ·σ)(ns ·v̇)nd×v̇ +
45

4
rs(nd ·v̇)(nd ·σ)(ns ·v̇)nd×v̈

+ 8rs(nd ·v̇)(nd ·σ)(ns ·v̈)nd×v̇ +
45

2
rs(nd ·v̇)(nd ·σ̇)(ns ·v̇)nd×v̇

− 33

4
rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)nd×v̇

+
189

8
rs(nd ·v̇)2(nd ·σ)(ns ·v̇)nd×v̇

+
51

4
rs(nd ·v̈)(nd ·σ)(ns ·v̇)nd×v̇ +

3

4
r−1
d r2

s (ns ·v̇)2nd×σ̈

+
9

8
r−1
d r2

s (ns ·v̇)2v̇×σ̇ +
3

4
r−1
d r2

s (ns ·v̇)2v̈×σ

+
3

4
r−1
d r2

s (nd ·v̇)(ns ·v̇)2nd×σ̇ +
9

8
r−1
d r2

s (nd ·v̇)(ns ·v̇)2v̇×σ

+
9

4
r−1
d r2

s (nd ·σ)(ns ·v̇)2nd×v̈ +
9

2
r−1
d r2

s (nd ·σ̇)(ns ·v̇)2nd×v̇

+
3

4
r−1
d r2

s (ns ·v̇)(ns ·v̈)nd×σ̇ +
3

4
r−1
d r2

s (ns ·v̇)(ns ·v̈)v̇×σ

− 15

8
r−1
d r2

s (ns ·v̇)2(v̇ ·σ)nd×v̇

+
63

8
r−1
d r2

s (nd ·v̇)(nd ·σ)(ns ·v̇)2nd×v̇

+
9

4
r−1
d r2

s (nd ·σ)(ns ·v̇)(ns ·v̈)nd×v̇ +
1

8
r−2
d r3

s (ns ·v̇)3nd×σ̇

+
1

8
r−2
d r3

s (ns ·v̇)3v̇×σ +
3

8
r−2
d r3

s (nd ·σ)(ns ·v̇)3nd×v̇ + O(ε2),
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Bd
3 = r−2

d v̇×σ + 3r−2
d (nd ·σ)nd×v̇ − r−1

d v̇×σ̇ − 1

2
r−1
d v̈×σ

− 3

2
r−1
d (nd ·v̇)v̇×σ − 3

2
r−1
d (nd ·σ)nd×v̈ − 3r−1

d (nd ·σ̇)nd×v̇

+
3

2
r−1
d (v̇ ·σ)nd×v̇ − 15

2
r−1
d (nd ·v̇)(nd ·σ)nd×v̇

− 1

2
r−2
d rs(ns ·v̇)v̇×σ − 3

2
r−2
d rs(nd ·σ)(ns ·v̇)nd×v̇ +

1

2
v̇×σ̈

+
1

2
v̈×σ̇ +

1

6

...
v×σ +

1

4
v̇2v̇×σ +

3

2
(nd ·v̇)v̇×σ̇ +

3

4
(nd ·v̇)v̈×σ

+
5

4
(nd ·v̇)2v̇×σ +

11

12
(nd ·v̈)v̇×σ +

1

2
(nd ·σ)nd×...

v

+
1

4
(nd ·σ)v̇×v̈ +

3

2
(nd ·σ̇)nd×v̈ +

3

2
(nd ·σ̈)nd×v̇

− 3

4
(v̇ ·σ)nd×v̈ − 3

2
(v̇ ·σ̇)nd×v̇ − (v̈ ·σ)nd×v̇

+
15

4
(nd ·v̇)(nd ·σ)nd×v̈ +

15

2
(nd ·v̇)(nd ·σ̇)nd×v̇

− 3(nd ·v̇)(v̇ ·σ)nd×v̇ +
39

4
(nd ·v̇)2(nd ·σ)nd×v̇

+
19

4
(nd ·v̈)(nd ·σ)nd×v̇ + r−1

d rs(ns ·v̇)v̇×σ̇ +
1

2
r−1
d rs(ns ·v̇)v̈×σ

+
1

4
r−1
d rs(ns ·v̈)v̇×σ +

3

2
r−1
d rs(nd ·v̇)(ns ·v̇)v̇×σ

+
3

2
r−1
d rs(nd ·σ)(ns ·v̇)nd×v̈ +

3

4
r−1
d rs(nd ·σ)(ns ·v̈)nd×v̇

+ 3r−1
d rs(nd ·σ̇)(ns ·v̇)nd×v̇ − 3

2
r−1
d rs(ns ·v̇)(v̇ ·σ)nd×v̇

+
15

2
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)nd×v̇ +

1

4
r−2
d r2

s (ns ·v̇)2v̇×σ

+
3

4
r−2
d r2

s (nd ·σ)(ns ·v̇)2nd×v̇ − 1

6
rdv̇× ...

σ − 1

4
rdv̈×σ̈ − 1

6
rd

...
v×σ̇

− 1

24
rd

....
v×σ − 3

8
rdv̇

2v̇×σ̇ − 3

16
rdv̇

2v̈×σ − 3

4
rd(nd ·v̇)v̇×σ̈

− 3

4
rd(nd ·v̇)v̈×σ̇ − 1

4
rd(nd ·v̇)

...
v×σ − 11

8
rd(nd ·v̇)2v̇×σ̇

− 11

16
rd(nd ·v̇)2v̈×σ − 7

8
rd(nd ·v̇)3v̇×σ − 5

6
rd(nd ·v̈)v̇×σ̇
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− 5

12
rd(nd ·v̈)v̈×σ − 1

3
rd(nd ·...v)v̇×σ − 1

8
rd(nd ·σ)nd×....

v

− 1

8
rd(nd ·σ)v̇×...

v − 1

2
rd(nd ·σ̇)nd×...

v − 1

4
rd(nd ·σ̇)v̇×v̈

− 3

4
rd(nd ·σ̈)nd×v̈ − 1

2
rd(nd · ...σ)nd×v̇ − 1

12
rd(v̇ ·v̈)v̇×σ

+
1

4
rd(v̇ ·σ)nd×...

v +
1

8
rd(v̇ ·σ)v̇×v̈ +

3

4
rd(v̇ ·σ̇)nd×v̈

+
3

4
rd(v̇ ·σ̈)nd×v̇ +

1

2
rd(v̈ ·σ)nd×v̈ + rd(v̈ ·σ̇)nd×v̇

+
3

8
rd(

...
v ·σ)nd×v̇ − 11

8
rdv̇

2(nd ·v̇)v̇×σ − 3

16
rdv̇

2(nd ·σ)nd×v̈

− 3

8
rdv̇

2(nd ·σ̇)nd×v̇ +
9

8
rdv̇

2(v̇ ·σ)nd×v̇

− 3

2
rd(nd ·v̇)(nd ·v̈)v̇×σ − 5

4
rd(nd ·v̇)(nd ·σ)nd×...

v

− 3

4
rd(nd ·v̇)(nd ·σ)v̇×v̈ − 15

4
rd(nd ·v̇)(nd ·σ̇)nd×v̈

− 15

4
rd(nd ·v̇)(nd ·σ̈)nd×v̇ +

3

2
rd(nd ·v̇)(v̇ ·σ)nd×v̈

+ 3rd(nd ·v̇)(v̇ ·σ̇)nd×v̇ +
9

4
rd(nd ·v̇)(v̈ ·σ)nd×v̇

− 81

16
rd(nd ·v̇)2(nd ·σ)nd×v̈ − 81

8
rd(nd ·v̇)2(nd ·σ̇)nd×v̇

+
27

8
rd(nd ·v̇)2(v̇ ·σ)nd×v̇ − 75

8
rd(nd ·v̇)3(nd ·σ)nd×v̇

− 9

4
rd(nd ·v̈)(nd ·σ)nd×v̈ − 9

2
rd(nd ·v̈)(nd ·σ̇)nd×v̇

+
13

8
rd(nd ·v̈)(v̇ ·σ)nd×v̇ − 7

4
rd(nd ·...v)(nd ·σ)nd×v̇

+
3

4
rd(nd ·σ)(v̇ ·v̈)nd×v̇ − 21

4
rdv̇

2(nd ·v̇)(nd ·σ)nd×v̇

− 49

4
rd(nd ·v̇)(nd ·v̈)(nd ·σ)nd×v̇ − 3

4
rs(ns ·v̇)v̇×σ̈

− 3

4
rs(ns ·v̇)v̈×σ̇ − 1

4
rs(ns ·v̇)

...
v×σ − 1

2
rs(ns ·v̈)v̇×σ̇

− 1

4
rs(ns ·v̈)v̈×σ − 1

12
rs(ns ·...v)v̇×σ − 5

8
rsv̇

2(ns ·v̇)v̇×σ
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− 9

4
rs(nd ·v̇)(ns ·v̇)v̇×σ̇ − 9

8
rs(nd ·v̇)(ns ·v̇)v̈×σ

− 5

6
rs(nd ·v̇)(ns ·v̈)v̇×σ − 15

8
rs(nd ·v̇)2(ns ·v̇)v̇×σ

− 11

8
rs(nd ·v̈)(ns ·v̇)v̇×σ − 3

4
rs(nd ·σ)(ns ·v̇)nd×...

v

− 3

8
rs(nd ·σ)(ns ·v̇)v̇×v̈ − 3

4
rs(nd ·σ)(ns ·v̈)nd×v̈

− 1

4
rs(nd ·σ)(ns ·...v)nd×v̇ − 9

4
rs(nd ·σ̇)(ns ·v̇)nd×v̈

− 3

2
rs(nd ·σ̇)(ns ·v̈)nd×v̇ − 9

4
rs(nd ·σ̈)(ns ·v̇)nd×v̇

+
9

8
rs(ns ·v̇)(v̇ ·σ)nd×v̈ +

9

4
rs(ns ·v̇)(v̇ ·σ̇)nd×v̇

+
3

2
rs(ns ·v̇)(v̈ ·σ)nd×v̇ +

7

8
rs(ns ·v̈)(v̇ ·σ)nd×v̇

− 3

4
rsv̇

2(nd ·σ)(ns ·v̇)nd×v̇ − 45

8
rs(nd ·v̇)(nd ·σ)(ns ·v̇)nd×v̈

− 17

4
rs(nd ·v̇)(nd ·σ)(ns ·v̈)nd×v̇

− 45

4
rs(nd ·v̇)(nd ·σ̇)(ns ·v̇)nd×v̇ +

9

2
rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)nd×v̇

− 117

8
rs(nd ·v̇)2(nd ·σ)(ns ·v̇)nd×v̇

− 57

8
rs(nd ·v̈)(nd ·σ)(ns ·v̇)nd×v̇ − 3

4
r−1
d r2

s (ns ·v̇)2v̇×σ̇

− 3

8
r−1
d r2

s (ns ·v̇)2v̈×σ − 9

8
r−1
d r2

s (nd ·v̇)(ns ·v̇)2v̇×σ

− 9

8
r−1
d r2

s (nd ·σ)(ns ·v̇)2nd×v̈ − 9

4
r−1
d r2

s (nd ·σ̇)(ns ·v̇)2nd×v̇

− 3

8
r−1
d r2

s (ns ·v̇)(ns ·v̈)v̇×σ +
9

8
r−1
d r2

s (ns ·v̇)2(v̇ ·σ)nd×v̇

− 45

8
r−1
d r2

s (nd ·v̇)(nd ·σ)(ns ·v̇)2nd×v̇

− 9

8
r−1
d r2

s (nd ·σ)(ns ·v̇)(ns ·v̈)nd×v̇ − 1

8
r−2
d r3

s (ns ·v̇)3v̇×σ

− 3

8
r−2
d r3

s (nd ·σ)(ns ·v̇)3nd×v̇ + O(ε2).
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If we add the various Ea
n and Ba

n for n = 1, 2 or n = 1, 2, 3 as appropriate,

we find

4πEq = r−2
d nd − 1

2
r−1
d v̇ − 1

2
r−1
d (nd ·v̇)nd +

2

3
v̈ − 3

8
v̇2nd +

1

2
(nd ·v̇)v̇

+
1

8
(nd ·v̇)2nd +

1

4
r−1
d rs(ns ·v̇)v̇ +

1

4
r−1
d rs(nd ·v̇)(ns ·v̇)nd

− 3

8
rd

...
v − 15

16
rdv̇

2v̇ − 2

3
rd(nd ·v̇)v̈ − 5

16
rd(nd ·v̇)2v̇

− 1

16
rd(nd ·v̇)3nd − 1

3
rd(nd ·v̈)v̇ +

1

8
rd(nd ·...v)nd +

2

3
rd(v̇ ·v̈)nd

+
9

16
rdv̇

2(nd ·v̇)nd − 2

3
rs(ns ·v̇)v̈ − 1

3
rs(ns ·v̈)v̇

+
3

8
rsv̇

2(ns ·v̇)nd − 1

2
rs(nd ·v̇)(ns ·v̇)v̇ − 1

8
rs(nd ·v̇)2(ns ·v̇)nd

− 1

8
r−1
d r2

s (ns ·v̇)2v̇ − 1

8
r−1
d r2

s (nd ·v̇)(ns ·v̇)2nd + O(ε2),

4πEd = −r−3
d σ + 3r−3

d (nd ·σ)nd +
1

2
r−2
d (nd ·v̇)σ − 1

2
r−2
d (nd ·σ)v̇

+
1

2
r−2
d (v̇ ·σ)nd − 3

2
r−2
d (nd ·v̇)(nd ·σ)nd − 1

2
r−1
d σ̈ +

3

8
r−1
d v̇2σ

− 1

8
r−1
d (nd ·v̇)2σ − 1

2
r−1
d (nd ·σ̈)nd − 1

4
r−1
d (v̇ ·σ)v̇

− 3

8
r−1
d v̇2(nd ·σ)nd +

1

2
r−1
d (nd ·v̇)(nd ·σ)v̇

+
3

8
r−1
d (nd ·v̇)2(nd ·σ)nd − 1

4
r−2
d rs(nd ·v̇)(ns ·v̇)σ

+
1

4
r−2
d rs(nd ·σ)(ns ·v̇)v̇ − 1

4
r−2
d rs(ns ·v̇)(v̇ ·σ)nd

+
3

4
r−2
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)nd +

2

3

...
σ +

1

4
(nd ·v̇)σ̈

+
1

16
(nd ·v̇)3σ − 1

4
(nd ·v̈)σ̇ − 1

8
(nd ·...v)σ +

3

8
(nd ·σ)

...
v

+ (nd ·σ̇)v̈ +
3

4
(nd ·σ̈)v̇ − 2

3
(v̇ ·v̈)σ +

1

3
(v̇ ·σ)v̈ − 3

4
(v̇ ·σ̈)nd

− 1

3
(v̈ ·σ)v̇ − 1

2
(v̈ ·σ̇)nd − 1

8
(
...
v ·σ)nd − 9

16
v̇2(nd ·v̇)σ
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+
15

16
v̇2(nd ·σ)v̇ − 3

16
v̇2(v̇ ·σ)nd +

1

4
(nd ·v̇)(nd ·σ̈)nd

+
1

8
(nd ·v̇)(v̇ ·σ)v̇ − 5

16
(nd ·v̇)2(nd ·σ)v̇ +

1

16
(nd ·v̇)2(v̇ ·σ)nd

− 3

16
(nd ·v̇)3(nd ·σ)nd +

1

4
(nd ·v̈)(nd ·σ̇)nd

+
1

8
(nd ·...v)(nd ·σ)nd +

9

16
v̇2(nd ·v̇)(nd ·σ)nd +

1

2
r−1
d rs(ns ·v̇)σ̈

+
1

4
r−1
d rs(ns ·v̈)σ̇ − 3

8
r−1
d rsv̇

2(ns ·v̇)σ +
1

8
r−1
d rs(nd ·v̇)2(ns ·v̇)σ

+
1

4
r−1
d rs(nd ·σ̇)(ns ·v̈)nd +

1

2
r−1
d rs(nd ·σ̈)(ns ·v̇)nd

+
1

4
r−1
d rs(ns ·v̇)(v̇ ·σ)v̇ +

3

8
r−1
d rsv̇

2(nd ·σ)(ns ·v̇)nd

− 1

2
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)v̇

− 3

8
r−1
d rs(nd ·v̇)2(nd ·σ)(ns ·v̇)nd +

1

8
r−2
d r2

s (nd ·v̇)(ns ·v̇)2σ

− 1

8
r−2
d r2

s (nd ·σ)(ns ·v̇)2v̇ +
1

8
r−2
d r2

s (ns ·v̇)2(v̇ ·σ)nd

− 3

8
r−2
d r2

s (nd ·v̇)(nd ·σ)(ns ·v̇)2nd − 3

8
rd

....
σ− 15

16
rdv̇

2σ̈

+
105

128
rdv̇

4σ +
5

24
rdv̈

2σ − 1

3
rd(nd ·v̇)

...
σ − 3

16
rd(nd ·v̇)2σ̈

− 3

128
rd(nd ·v̇)4σ +

1

3
rd(nd ·v̈)σ̈ +

1

48
rd(nd ·v̈)2σ +

1

3
rd(nd ·...v)σ̇

+
1

15
rd(nd ·....v)σ − 4

15
rd(nd ·σ)

....
v − rd(nd ·σ̇)

...
v − 4

3
rd(nd ·σ̈)v̈

− 2

3
rd(nd · ...σ)v̇ +

1

8
rd(nd ·....σ)nd +

5

16
rd(v̇ ·...v)σ − 3

16
rd(v̇ ·σ)

...
v

− 1

4
rd(v̇ ·σ̇)v̈ +

3

8
rd(v̇ ·σ̈)v̇ +

2

3
rd(v̇ · ...σ)nd +

7

24
rd(v̈ ·σ)v̈

+ rd(v̈ ·σ̇)v̇ +
2

3
rd(v̈ ·σ̈)nd +

7

16
rd(

...
v ·σ)v̇ +

1

3
rd(

...
v ·σ̇)nd

+
1

15
rd(

....
v ·σ)nd + rdv̇

2(nd ·v̇)σ̇ +
21

64
rdv̇

2(nd ·v̇)2σ

+
2

3
rdv̇

2(nd ·v̈)σ − 2rdv̇
2(nd ·σ)v̈ − 3rdv̇

2(nd ·σ̇)v̇
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+
15

16
rdv̇

2(nd ·σ̈)nd +
21

32
rdv̇

2(v̇ ·σ)v̇ + rdv̇
2(v̇ ·σ̇)nd

+
105

128
rdv̇

4(nd ·σ)nd +
5

24
rdv̈

2(nd ·σ)nd +
1

16
rd(nd ·v̇)(nd ·...v)σ

− 3

8
rd(nd ·v̇)(nd ·σ)

...
v − rd(nd ·v̇)(nd ·σ̇)v̈ − 3

4
rd(nd ·v̇)(nd ·σ̈)v̇

+ rd(nd ·v̇)(v̇ ·v̈)σ − 1

6
rd(nd ·v̇)(v̇ ·σ)v̈ +

1

2
rd(nd ·v̇)(v̈ ·σ)v̇

− 1

4
rd(nd ·v̇)(v̈ ·σ̇)nd − 1

8
rd(nd ·v̇)(

...
v ·σ)nd

− 3

16
rd(nd ·v̇)2(nd ·σ̈)nd − 3

32
rd(nd ·v̇)2(v̇ ·σ)v̇

+
3

16
rd(nd ·v̇)3(nd ·σ)v̇ +

9

128
rd(nd ·v̇)4(nd ·σ)nd

− 13

48
rd(nd ·v̈)(nd ·σ)v̈ − 3

8
rd(nd ·v̈)(nd ·σ̇)v̇ − 1

3
rd(nd ·v̈)(v̇ ·σ)v̇

− 1

8
rd(nd ·v̈)(v̇ ·σ̇)nd − 7

48
rd(nd ·v̈)(v̈ ·σ)nd

− 1

48
rd(nd ·v̈)2(nd ·σ)nd − 1

8
rd(nd ·...v)(nd ·σ)v̇

− 2rd(nd ·σ)(v̇ ·v̈)v̇ +
5

16
rd(nd ·σ)(v̇ ·...v)nd +

5

4
rd(nd ·σ̇)(v̇ ·v̈)nd

+
1

3
rd(v̇ ·v̈)(v̇ ·σ)nd − 21

16
rdv̇

2(nd ·v̇)(nd ·σ)v̇

− 3

8
rdv̇

2(nd ·v̇)(v̇ ·σ)nd − 21

64
rdv̇

2(nd ·v̇)2(nd ·σ)nd

− 1

4
rd(nd ·v̇)(nd ·v̈)(nd ·σ̇)nd − 1

16
rd(nd ·v̇)(nd ·...v)(nd ·σ)nd

− rs(ns ·v̇)
...
σ − rs(ns ·v̈)σ̈ − 1

3
rs(ns ·...v)σ̇ − rsv̇

2(ns ·v̇)σ̇

+
1

3
rsv̇

2(ns ·v̈)σ − 3

8
rs(nd ·v̇)(ns ·v̇)σ̈ +

1

16
rs(nd ·v̇)(ns ·...v)σ

− 3

32
rs(nd ·v̇)3(ns ·v̇)σ +

3

8
rs(nd ·v̈)(ns ·v̇)σ̇

+
3

16
rs(nd ·v̈)(ns ·v̈)σ +

3

16
rs(nd ·...v)(ns ·v̇)σ

− 9

16
rs(nd ·σ)(ns ·v̇)

...
v − 9

16
rs(nd ·σ)(ns ·v̈)v̈
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− 3

16
rs(nd ·σ)(ns ·...v)v̇ − 3

2
rs(nd ·σ̇)(ns ·v̇)v̈ − 7

8
rs(nd ·σ̇)(ns ·v̈)v̇

− 9

8
rs(nd ·σ̈)(ns ·v̇)v̇ + rs(ns ·v̇)(v̇ ·v̈)σ − 1

2
rs(ns ·v̇)(v̇ ·σ)v̈

+
9

8
rs(ns ·v̇)(v̇ ·σ̈)nd +

1

2
rs(ns ·v̇)(v̈ ·σ)v̇ +

3

4
rs(ns ·v̇)(v̈ ·σ̇)nd

+
3

16
rs(ns ·v̇)(

...
v ·σ)nd +

5

8
rs(ns ·v̈)(v̇ ·σ̇)nd

+
3

16
rs(ns ·v̈)(v̈ ·σ)nd +

1

16
rs(ns ·...v)(v̇ ·σ)nd

+
33

32
rsv̇

2(nd ·v̇)(ns ·v̇)σ − 63

32
rsv̇

2(nd ·σ)(ns ·v̇)v̇

+
15

32
rsv̇

2(ns ·v̇)(v̇ ·σ)nd − 1

16
rs(nd ·v̇)(nd ·σ)(ns ·...v)nd

− 1

4
rs(nd ·v̇)(nd ·σ̇)(ns ·v̈)nd − 3

8
rs(nd ·v̇)(nd ·σ̈)(ns ·v̇)nd

− 3

16
rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)v̇ +

15

32
rs(nd ·v̇)2(nd ·σ)(ns ·v̇)v̇

− 3

32
rs(nd ·v̇)2(ns ·v̇)(v̇ ·σ)nd +

9

32
rs(nd ·v̇)3(nd ·σ)(ns ·v̇)nd

− 3

16
rs(nd ·v̈)(nd ·σ)(ns ·v̈)nd − 3

8
rs(nd ·v̈)(nd ·σ̇)(ns ·v̇)nd

− 3

16
rs(nd ·...v)(nd ·σ)(ns ·v̇)nd − 33

32
rsv̇

2(nd ·v̇)(nd ·σ)(ns ·v̇)nd

− 3

8
r−1
d r2

s (ns ·v̇)2σ̈ +
9

32
r−1
d r2

s v̇2(ns ·v̇)2σ

− 3

32
r−1
d r2

s (nd ·v̇)2(ns ·v̇)2σ − 3

8
r−1
d r2

s (nd ·σ̈)(ns ·v̇)2nd

− 3

8
r−1
d r2

s (ns ·v̇)(ns ·v̈)σ̇ − 3

16
r−1
d r2

s (ns ·v̇)2(v̇ ·σ)v̇

− 9

32
r−1
d r2

s v̇2(nd ·σ)(ns ·v̇)2nd +
3

8
r−1
d r2

s (nd ·v̇)(nd ·σ)(ns ·v̇)2v̇

+
9

32
r−1
d r2

s (nd ·v̇)2(nd ·σ)(ns ·v̇)2nd

− 3

8
r−1
d r2

s (nd ·σ̇)(ns ·v̇)(ns ·v̈)nd − 1

16
r−2
d r3

s (nd ·v̇)(ns ·v̇)3σ

+
1

16
r−2
d r3

s (nd ·σ)(ns ·v̇)3v̇ − 1

16
r−2
d r3

s (ns ·v̇)3(v̇ ·σ)nd
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+
3

16
r−2
d r3

s (nd ·v̇)(nd ·σ)(ns ·v̇)3nd + O(ε2),

4πBq =
1

2
nd×v̈ − 1

3
rdnd×...

v − 1

4
rdv̇×v̈ − rdv̇

2nd×v̇ − 1

4
rd(nd ·v̇)nd×v̈

− 1

4
rd(nd ·v̈)nd×v̇ − 1

2
rs(ns ·v̇)nd×v̈ − 1

4
rs(ns ·v̈)nd×v̇ + O(ε2),

4πBd = −r−2
d nd×σ̇ +

1

2
r−1
d v̇×σ̇ +

1

2
r−1
d v̈×σ +

1

2
r−1
d (nd ·σ)nd×v̈

+ r−1
d (nd ·σ̇)nd×v̇ +

1

2
r−2
d rs(ns ·v̇)nd×σ̇ +

1

2
nd× ...

σ − 2

3
v̈×σ̇

− 1

3

...
v×σ +

3

8
v̇2nd×σ̇ − v̇2v̇×σ − 1

4
(nd ·v̇)v̇×σ̇

− 1

4
(nd ·v̇)v̈×σ − 1

8
(nd ·v̇)2nd×σ̇ − 1

4
(nd ·v̈)v̇×σ

+
1

4
(nd ·σ)v̇×v̈ − 1

4
(v̈ ·σ)nd×v̇ − 1

4
(nd ·v̇)(nd ·σ)nd×v̈

− 1

2
(nd ·v̇)(nd ·σ̇)nd×v̇ − 1

4
(nd ·v̈)(nd ·σ)nd×v̇

− 1

2
r−1
d rs(ns ·v̇)v̇×σ̇ − 1

2
r−1
d rs(ns ·v̇)v̈×σ − 1

4
r−1
d rs(ns ·v̈)v̇×σ

− 1

2
r−1
d rs(nd ·σ)(ns ·v̇)nd×v̈ − 1

4
r−1
d rs(nd ·σ)(ns ·v̈)nd×v̇

− r−1
d rs(nd ·σ̇)(ns ·v̇)nd×v̇ − 1

4
r−2
d r2

s (ns ·v̇)2nd×σ̇

− 1

3
rdnd×....

σ− 1

4
rdv̇× ...

σ +
1

4
rdv̈×σ̈ +

3

8
rd

...
v×σ̇ +

1

8
rd

....
v×σ

− rdv̇
2nd×σ̈ +

15

16
rdv̇

2v̇×σ̇ +
15

16
rdv̇

2v̈×σ +
1

3
rd(nd ·v̇)v̈×σ̇

+
1

6
rd(nd ·v̇)

...
v×σ +

3

16
rd(nd ·v̇)2v̇×σ̇ +

3

16
rd(nd ·v̇)2v̈×σ

+
1

4
rd(nd ·v̈)nd×σ̈ +

1

3
rd(nd ·v̈)v̇×σ̇ +

1

6
rd(nd ·v̈)v̈×σ

+
1

8
rd(nd ·...v)nd×σ̇ +

1

6
rd(nd ·...v)v̇×σ − 1

8
rd(nd ·σ)nd×....

v

− 1

3
rd(nd ·σ)v̇×...

v − 1

2
rd(nd ·σ̇)nd×...

v − 2

3
rd(nd ·σ̇)v̇×v̈
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− 3

4
rd(nd ·σ̈)nd×v̈ − 1

2
rd(nd · ...σ)nd×v̇ − 2

3
rd(v̇ ·v̈)nd×σ̇

+
5

4
rd(v̇ ·v̈)v̇×σ +

1

3
rd(v̈ ·σ)nd×v̈ +

2

3
rd(v̈ ·σ̇)nd×v̇

+
1

3
rd(

...
v ·σ)nd×v̇ +

3

8
rdv̇

2(nd ·v̇)nd×σ̇ + rdv̇
2(nd ·v̇)v̇×σ

− 15

16
rdv̇

2(nd ·σ)nd×v̈ − 15

8
rdv̇

2(nd ·σ̇)nd×v̇

+ rdv̇
2(v̇ ·σ)nd×v̇ +

1

4
rd(nd ·v̇)(nd ·v̈)v̇×σ

− 1

4
rd(nd ·v̇)(nd ·σ)v̇×v̈ +

1

4
rd(nd ·v̇)(v̈ ·σ)nd×v̇

+
3

16
rd(nd ·v̇)2(nd ·σ)nd×v̈ +

3

8
rd(nd ·v̇)2(nd ·σ̇)nd×v̇

− 1

8
rd(nd ·v̈)(v̇ ·σ)nd×v̇ − 5

4
rd(nd ·σ)(v̇ ·v̈)nd×v̇

+
1

4
rd(nd ·v̇)(nd ·v̈)(nd ·σ)nd×v̇ − 3

4
rs(ns ·v̇)nd× ...

σ

+ rs(ns ·v̇)v̈×σ̇ +
1

2
rs(ns ·v̇)

...
v×σ − 3

4
rs(ns ·v̈)nd×σ̈

+
1

3
rs(ns ·v̈)v̇×σ̇ +

1

2
rs(ns ·v̈)v̈×σ − 1

4
rs(ns ·...v)nd×σ̇

+
1

6
rs(ns ·...v)v̇×σ − 21

16
rsv̇

2(ns ·v̇)nd×σ̇ + 2rsv̇
2(ns ·v̇)v̇×σ

+
3

8
rs(nd ·v̇)(ns ·v̇)v̇×σ̇ +

3

8
rs(nd ·v̇)(ns ·v̇)v̈×σ

+
1

4
rs(nd ·v̇)(ns ·v̈)v̇×σ +

3

16
rs(nd ·v̇)2(ns ·v̇)nd×σ̇

+
3

8
rs(nd ·v̈)(ns ·v̇)v̇×σ − 3

8
rs(nd ·σ)(ns ·v̇)v̇×v̈

+
3

8
rs(ns ·v̇)(v̈ ·σ)nd×v̇ +

1

8
rs(ns ·v̈)(v̇ ·σ)nd×v̇

+
3

8
rs(nd ·v̇)(nd ·σ)(ns ·v̇)nd×v̈

+
1

4
rs(nd ·v̇)(nd ·σ)(ns ·v̈)nd×v̇

+
3

4
rs(nd ·v̇)(nd ·σ̇)(ns ·v̇)nd×v̇
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+
3

8
rs(nd ·v̈)(nd ·σ)(ns ·v̇)nd×v̇ +

3

8
r−1
d r2

s (ns ·v̇)2v̇×σ̇

+
3

8
r−1
d r2

s (ns ·v̇)2v̈×σ +
3

8
r−1
d r2

s (nd ·σ)(ns ·v̇)2nd×v̈

+
3

4
r−1
d r2

s (nd ·σ̇)(ns ·v̇)2nd×v̇ +
3

8
r−1
d r2

s (ns ·v̇)(ns ·v̈)v̇×σ

+
3

8
r−1
d r2

s (nd ·σ)(ns ·v̇)(ns ·v̈)nd×v̇ +
1

8
r−2
d r3

s (ns ·v̇)3nd×σ̇

+ O(ε2).

G.6.20 Point particle self-fields

If we evaluate the fields of Section G.6.19 for r′ = 0, we obtain the generated

fields for a point particle in arbitrary motion:

4πEq
point = r−2n− 1

2
r−1v̇ − 1

2
r−1(n·v̇)n +

2

3
v̈ − 3

8
v̇2n +

3

4
(n·v̇)v̇

+
3

8
(n·v̇)2n− 3

8
r
...
v − 15

16
rv̇2v̇ − 4

3
r(n·v̇)v̈ − 15

16
r(n·v̇)2v̇

− 5

16
r(n·v̇)3n− 2

3
r(n·v̈)v̇ +

1

8
r(n·...v)n +

2

3
r(v̇ ·v̈)n

+
15

16
rv̇2(n·v̇)n + O(r2),

4πEd
point = −r−3σ + 3r−3(n·σ)n +

1

2
r−2(n·v̇)σ − 1

2
r−2(n·σ)v̇

+
1

2
r−2(v̇ ·σ)n− 3

2
r−2(n·v̇)(n·σ)n− 1

2
r−1σ̈ +

3

8
r−1v̇2σ

− 3

8
r−1(n·v̇)2σ − 1

2
r−1(n·σ̈)n− 1

4
r−1(v̇ ·σ)v̇

− 3

8
r−1v̇2(n·σ)n +

3

4
r−1(n·v̇)(n·σ)v̇ − 1

4
r−1(n·v̇)(v̇ ·σ)n

+
9

8
r−1(n·v̇)2(n·σ)n +

2

3

...
σ +

3

4
(n·v̇)σ̈ +

5

16
(n·v̇)3σ

− 1

8
(n·...v)σ +

3

8
(n·σ)

...
v + (n·σ̇)v̈ +

3

4
(n·σ̈)v̇ − 2

3
(v̇ ·v̈)σ

+
1

3
(v̇ ·σ)v̈ − 3

4
(v̇ ·σ̈)n− 1

3
(v̈ ·σ)v̇ − 1

2
(v̈ ·σ̇)n− 1

8
(
...
v ·σ)n
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− 15

16
v̇2(n·v̇)σ +

15

16
v̇2(n·σ)v̇ − 3

16
v̇2(v̇ ·σ)n

+
3

4
(n·v̇)(n·σ̈)n +

3

8
(n·v̇)(v̇ ·σ)v̇ − 15

16
(n·v̇)2(n·σ)v̇

+
3

16
(n·v̇)2(v̇ ·σ)n− 15

16
(n·v̇)3(n·σ)n +

1

2
(n·v̈)(n·σ̇)n

+
1

8
(n·...v)(n·σ)n +

15

16
v̇2(n·v̇)(n·σ)n− 3

8
r
....
σ− 15

16
rv̇2σ̈

+
105

128
rv̇4σ +

5

24
rv̈2σ − 4

3
r(n·v̇)

...
σ − 15

16
r(n·v̇)2σ̈

− 35

128
r(n·v̇)4σ − 2

3
r(n·v̈)σ̈ +

5

24
r(n·v̈)2σ +

1

15
r(n·....v)σ

− 4

15
r(n·σ)

....
v − r(n·σ̇)

...
v − 4

3
r(n·σ̈)v̈ − 2

3
r(n· ...σ)v̇

+
1

8
r(n·....σ)n +

5

16
r(v̇ ·...v)σ − 3

16
r(v̇ ·σ)

...
v − 1

4
r(v̇ ·σ̇)v̈

+
3

8
r(v̇ ·σ̈)v̇ +

2

3
r(v̇ · ...σ)n +

7

24
r(v̈ ·σ)v̈ + r(v̈ ·σ̇)v̇

+
2

3
r(v̈ ·σ̈)n +

7

16
r(

...
v ·σ)v̇ +

1

3
r(

...
v ·σ̇)n +

1

15
r(

....
v ·σ)n

+
105

64
rv̇2(n·v̇)2σ + rv̇2(n·v̈)σ − 2rv̇2(n·σ)v̈ − 3rv̇2(n·σ̇)v̇

+
15

16
rv̇2(n·σ̈)n +

21

32
rv̇2(v̇ ·σ)v̇ + rv̇2(v̇ ·σ̇)n

+
105

128
rv̇4(n·σ)n +

5

24
rv̈2(n·σ)n +

5

16
r(n·v̇)(n·...v)σ

− 15

16
r(n·v̇)(n·σ)

...
v − 5

2
r(n·v̇)(n·σ̇)v̈ − 15

8
r(n·v̇)(n·σ̈)v̇

+ 2r(n·v̇)(v̇ ·v̈)σ − 2

3
r(n·v̇)(v̇ ·σ)v̈ +

9

8
r(n·v̇)(v̇ ·σ̈)n

+ r(n·v̇)(v̈ ·σ)v̇ +
1

2
r(n·v̇)(v̈ ·σ̇)n +

1

16
r(n·v̇)(

...
v ·σ)n

− 15

16
r(n·v̇)2(n·σ̈)n− 15

32
r(n·v̇)2(v̇ ·σ)v̇ +

35

32
r(n·v̇)3(n·σ)v̇

− 5

32
r(n·v̇)3(v̇ ·σ)n +

105

128
r(n·v̇)4(n·σ)n− 5

6
r(n·v̈)(n·σ)v̈

− 5

4
r(n·v̈)(n·σ̇)v̇ − 1

3
r(n·v̈)(v̇ ·σ)v̇ +

1

2
r(n·v̈)(v̇ ·σ̇)n
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+
1

24
r(n·v̈)(v̈ ·σ)n− 5

24
r(n·v̈)2(n·σ)n− 5

16
r(n·...v)(n·σ)v̇

+
1

16
r(n·...v)(v̇ ·σ)n− 2r(n·σ)(v̇ ·v̈)v̇ +

5

16
r(n·σ)(v̇ ·...v)n

+
5

4
r(n·σ̇)(v̇ ·v̈)n +

1

3
r(v̇ ·v̈)(v̇ ·σ)n− 105

32
rv̇2(n·v̇)(n·σ)v̇

+
3

32
rv̇2(n·v̇)(v̇ ·σ)n− 105

64
rv̇2(n·v̇)2(n·σ)n

− 5

4
r(n·v̇)(n·v̈)(n·σ̇)n− 5

16
r(n·v̇)(n·...v)(n·σ)n + O(r2),

4πBq
point =

1

2
n×v̈ − 1

3
rn×...

v − 1

4
rv̇×v̈ − rv̇2n×v̇ − 3

4
r(n·v̇)n×v̈

− 1

2
r(n·v̈)n×v̇ + O(r2),

4πBd
point = −r−2n×σ̇ +

1

2
r−1v̇×σ̇ +

1

2
r−1v̈×σ +

1

2
r−1(n·v̇)n×σ̇

+
1

2
r−1(n·σ)n×v̈ + r−1(n·σ̇)n×v̇ +

1

2
n× ...

σ − 2

3
v̈×σ̇

− 1

3

...
v×σ +

3

8
v̇2n×σ̇ − v̇2v̇×σ − 3

4
(n·v̇)v̇×σ̇

− 3

4
(n·v̇)v̈×σ − 3

8
(n·v̇)2n×σ̇ − 1

2
(n·v̈)v̇×σ

+
1

4
(n·σ)v̇×v̈ − 1

4
(v̈ ·σ)n×v̇ − 3

4
(n·v̇)(n·σ)n×v̈

− 3

2
(n·v̇)(n·σ̇)n×v̇ − 1

2
(n·v̈)(n·σ)n×v̇ − 1

3
rn×....

σ

− 1

4
rv̇× ...

σ +
1

4
rv̈×σ̈ +

3

8
r
...
v×σ̇ +

1

8
r
....
v×σ − rv̇2n×σ̈

+
15

16
rv̇2v̇×σ̇ +

15

16
rv̇2v̈×σ − 3

4
r(n·v̇)n× ...

σ

+
4

3
r(n·v̇)v̈×σ̇ +

2

3
r(n·v̇)

...
v×σ +

15

16
r(n·v̇)2v̇×σ̇

+
15

16
r(n·v̇)2v̈×σ +

5

16
r(n·v̇)3n×σ̇ − 1

2
r(n·v̈)n×σ̈

+
2

3
r(n·v̈)v̇×σ̇ +

2

3
r(n·v̈)v̈×σ − 1

8
r(n·...v)n×σ̇
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+
1

3
r(n·...v)v̇×σ − 1

8
r(n·σ)n×....

v − 1

3
r(n·σ)v̇×...

v

− 1

2
r(n·σ̇)n×...

v − 2

3
r(n·σ̇)v̇×v̈ − 3

4
r(n·σ̈)n×v̈

− 1

2
r(n· ...σ)n×v̇ − 2

3
r(v̇ ·v̈)n×σ̇ +

5

4
r(v̇ ·v̈)v̇×σ

+
1

3
r(v̈ ·σ)n×v̈ +

2

3
r(v̈ ·σ̇)n×v̇ +

1

3
r(

...
v ·σ)n×v̇

− 15

16
rv̇2(n·v̇)n×σ̇ + 3rv̇2(n·v̇)v̇×σ − 15

16
rv̇2(n·σ)n×v̈

− 15

8
rv̇2(n·σ̇)n×v̇ + rv̇2(v̇ ·σ)n×v̇ +

5

4
r(n·v̇)(n·v̈)v̇×σ

− 5

8
r(n·v̇)(n·σ)v̇×v̈ +

5

8
r(n·v̇)(v̈ ·σ)n×v̇

+
15

16
r(n·v̇)2(n·σ)n×v̈ +

15

8
r(n·v̇)2(n·σ̇)n×v̇

− 5

4
r(n·σ)(v̇ ·v̈)n×v̇ +

5

4
r(n·v̇)(n·v̈)(n·σ)n×v̇ + O(r2).

Computing the three-divergences of these expressions, we find

∇·Eq
point = δ(r),

∇·Ed
point = −(σ ·∇)δ(r),

∇·Bq
point = 0,

∇·Bd
point = 0.

G.6.21 Redshift-weighted self-fields

Multiplying the field expressions of Section G.6.19 by the redshift factor λ,

we find

λEq
1 = −r−1

d v̇ + r−1
d (nd ·v̇)nd + v̈ − 1

2
v̇2nd + (nd ·v̇)v̇ − 1

2
(nd ·v̇)2nd

− (nd ·v̈)nd + O(ε),
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λEq
2 = r−2

d nd +
1

2
r−1
d v̇ − r−1

d (nd ·v̇)nd +
1

2
r−2
d rs(ns ·v̇)nd − 1

3
v̈

+
1

8
v̇2nd − 3

4
(nd ·v̇)v̇ +

3

8
(nd ·v̇)2nd + (nd ·v̈)nd + O(ε),

λEd
1 = −r−1

d σ̈ − r−1
d (nd ·v̇)σ̇ − r−1

d (nd ·σ)v̈ − 2r−1
d (nd ·σ̇)v̇

+ r−1
d (nd ·σ̈)nd + r−1

d (v̇ ·σ)v̇ − 3r−1
d (nd ·v̇)(nd ·σ)v̇

+ 3r−1
d (nd ·v̇)(nd ·σ̇)nd − r−1

d (nd ·v̇)(v̇ ·σ)nd

+ 3r−1
d (nd ·v̇)2(nd ·σ)nd + r−1

d (nd ·v̈)(nd ·σ)nd +
...
σ +

1

2
v̇2σ̇

+ (nd ·v̇)σ̈ +
1

2
(nd ·v̇)2σ̇ +

1

2
(nd ·v̈)σ̇ + (nd ·σ)

...
v + 3(nd ·σ̇)v̈

+
5

2
(nd ·σ̈)v̇ − (nd · ...σ)nd − (v̇ ·σ)v̈ − 2(v̇ ·σ̇)v̇ − 1

2
(v̇ ·σ̈)nd

− 3

2
(v̈ ·σ)v̇ +

3

2
v̇2(nd ·σ)v̇ − 3

2
v̇2(nd ·σ̇)nd +

1

2
v̇2(v̇ ·σ)nd

+
7

2
(nd ·v̇)(nd ·σ)v̈ +

11

2
(nd ·v̇)(nd ·σ̇)v̇ − 3(nd ·v̇)(nd ·σ̈)nd

− 2(nd ·v̇)(v̇ ·σ)v̇ +
3

2
(nd ·v̇)(v̇ ·σ̇)nd +

3

2
(nd ·v̇)(v̈ ·σ)nd

+
9

2
(nd ·v̇)2(nd ·σ)v̇ − 9

2
(nd ·v̇)2(nd ·σ̇)nd +

3

2
(nd ·v̇)2(v̇ ·σ)nd

− 3(nd ·v̇)3(nd ·σ)nd + 3(nd ·v̈)(nd ·σ)v̇ − 7

2
(nd ·v̈)(nd ·σ̇)nd

+ (nd ·v̈)(v̇ ·σ)nd − (nd ·...v)(nd ·σ)nd − 1

2
(nd ·σ)(v̇ ·v̈)nd

− 3v̇2(nd ·v̇)(nd ·σ)nd − 6(nd ·v̇)(nd ·v̈)(nd ·σ)nd

+
1

2
r−1
d rs(ns ·v̇)σ̈ +

1

2
r−1
d rs(ns ·v̈)σ̇ +

1

2
r−1
d rs(nd ·v̇)(ns ·v̇)σ̇

+
1

2
r−1
d rs(nd ·σ)(ns ·v̇)v̈ +

1

2
r−1
d rs(nd ·σ)(ns ·v̈)v̇

+ r−1
d rs(nd ·σ̇)(ns ·v̇)v̇ − 1

2
r−1
d rs(nd ·σ̇)(ns ·v̈)nd

− 1

2
r−1
d rs(nd ·σ̈)(ns ·v̇)nd − 1

2
r−1
d rs(ns ·v̇)(v̇ ·σ)v̇
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+
3

2
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)v̇ − 1

2
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̈)nd

− 3

2
r−1
d rs(nd ·v̇)(nd ·σ̇)(ns ·v̇)nd +

1

2
r−1
d rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)nd

− 3

2
r−1
d rs(nd ·v̇)2(nd ·σ)(ns ·v̇)nd

− 1

2
r−1
d rs(nd ·v̈)(nd ·σ)(ns ·v̇)nd + O(ε),

λEd
2 = −r−2

d σ̇ − r−2
d (nd ·v̇)σ − 2r−2

d (nd ·σ)v̇ + 3r−2
d (nd ·σ̇)nd

− r−2
d (v̇ ·σ)nd + 6r−2

d (nd ·v̇)(nd ·σ)nd + r−1
d σ̈ +

1

2
r−1
d v̇2σ

+ 2r−1
d (nd ·v̇)σ̇ +

1

2
r−1
d (nd ·v̇)2σ + r−1

d (nd ·v̈)σ + 2r−1
d (nd ·σ)v̈

+
7

2
r−1
d (nd ·σ̇)v̇ − 3r−1

d (nd ·σ̈)nd − 5

2
r−1
d (v̇ ·σ)v̇

+
3

2
r−1
d (v̇ ·σ̇)nd + r−1

d (v̈ ·σ)nd + 7r−1
d (nd ·v̇)(nd ·σ)v̇

− 9r−1
d (nd ·v̇)(nd ·σ̇)nd +

7

2
r−1
d (nd ·v̇)(v̇ ·σ)nd

− 9r−1
d (nd ·v̇)2(nd ·σ)nd − 6r−1

d (nd ·v̈)(nd ·σ)nd − 1

2

...
σ − 3

4
v̇2σ̇

− 3

2
(nd ·v̇)σ̈ − (nd ·v̇)2σ̇ − 1

8
(nd ·v̇)3σ − 5

3
(nd ·v̈)σ̇ − 1

2
(nd ·...v)σ

− (nd ·σ)
...
v − 3(nd ·σ̇)v̈ − 5

2
(nd ·σ̈)v̇ +

3

2
(nd · ...σ)nd − 2

3
(v̇ ·v̈)σ

+
25

12
(v̇ ·σ)v̈ +

13

4
(v̇ ·σ̇)v̇ − (v̇ ·σ̈)nd +

23

12
(v̈ ·σ)v̇ − 3

2
(v̈ ·σ̇)nd

− 1

2
(
...
v ·σ)nd − 13

8
v̇2(nd ·v̇)σ − 3

4
v̇2(nd ·σ)v̇ +

3

2
v̇2(nd ·σ̇)nd

− 13

8
v̇2(v̇ ·σ)nd − (nd ·v̇)(nd ·v̈)σ − 6(nd ·v̇)(nd ·σ)v̈

− 37

4
(nd ·v̇)(nd ·σ̇)v̇ + 6(nd ·v̇)(nd ·σ̈)nd + 4(nd ·v̇)(v̇ ·σ)v̇

− 15

4
(nd ·v̇)(v̇ ·σ̇)nd − 13

4
(nd ·v̇)(v̈ ·σ)nd − 37

4
(nd ·v̇)2(nd ·σ)v̇

+
21

2
(nd ·v̇)2(nd ·σ̇)nd − 25

8
(nd ·v̇)2(v̇ ·σ)nd
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+
27

4
(nd ·v̇)3(nd ·σ)nd − 11

2
(nd ·v̈)(nd ·σ)v̇

+
17

2
(nd ·v̈)(nd ·σ̇)nd − 11

4
(nd ·v̈)(v̇ ·σ)nd + 3(nd ·...v)(nd ·σ)nd

− 1

2
(nd ·σ)(v̇ ·v̈)nd +

33

4
v̇2(nd ·v̇)(nd ·σ)nd

+ 16(nd ·v̇)(nd ·v̈)(nd ·σ)nd − 1

2
r−1
d rs(ns ·v̇)σ̈ − 1

2
r−1
d rs(ns ·v̈)σ̇

− 1

4
r−1
d rsv̇

2(ns ·v̇)σ − r−1
d rs(nd ·v̇)(ns ·v̇)σ̇

− 1

2
r−1
d rs(nd ·v̇)(ns ·v̈)σ − 1

4
r−1
d rs(nd ·v̇)2(ns ·v̇)σ

− 1

2
r−1
d rs(nd ·v̈)(ns ·v̇)σ − r−1

d rs(nd ·σ)(ns ·v̇)v̈

− r−1
d rs(nd ·σ)(ns ·v̈)v̇ − 7

4
r−1
d rs(nd ·σ̇)(ns ·v̇)v̇

+
3

2
r−1
d rs(nd ·σ̇)(ns ·v̈)nd +

3

2
r−1
d rs(nd ·σ̈)(ns ·v̇)nd

+
5

4
r−1
d rs(ns ·v̇)(v̇ ·σ)v̇ − 3

4
r−1
d rs(ns ·v̇)(v̇ ·σ̇)nd

− 1

2
r−1
d rs(ns ·v̇)(v̈ ·σ)nd − 1

2
r−1
d rs(ns ·v̈)(v̇ ·σ)nd

− 7

2
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)v̇ + 3r−1

d rs(nd ·v̇)(nd ·σ)(ns ·v̈)nd

+
9

2
r−1
d rs(nd ·v̇)(nd ·σ̇)(ns ·v̇)nd − 7

4
r−1
d rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)nd

+
9

2
r−1
d rs(nd ·v̇)2(nd ·σ)(ns ·v̇)nd + 3r−1

d rs(nd ·v̈)(nd ·σ)(ns ·v̇)nd

+ O(ε),

λEd
3 = −r−3

d σ + 3r−3
d (nd ·σ)nd + r−2

d σ̇ + r−2
d (nd ·v̇)σ +

3

2
r−2
d (nd ·σ)v̇

− 3r−2
d (nd ·σ̇)nd +

3

2
r−2
d (v̇ ·σ)nd − 6r−2

d (nd ·v̇)(nd ·σ)nd

− 1

2
r−3
d rs(ns ·v̇)σ +

3

2
r−3
d rs(nd ·σ)(ns ·v̇)nd − 1

2
r−1
d σ̈

− 1

8
r−1
d v̇2σ − r−1

d (nd ·v̇)σ̇ − 3

8
r−1
d (nd ·v̇)2σ − r−1

d (nd ·v̈)σ
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− r−1
d (nd ·σ)v̈ − 3

2
r−1
d (nd ·σ̇)v̇ +

3

2
r−1
d (nd ·σ̈)nd +

5

4
r−1
d (v̇ ·σ)v̇

− 3

2
r−1
d (v̇ ·σ̇)nd − r−1

d (v̈ ·σ)nd − 3

8
r−1
d v̇2(nd ·σ)nd

− 15

4
r−1
d (nd ·v̇)(nd ·σ)v̇ + 6r−1

d (nd ·v̇)(nd ·σ̇)nd

− 9

4
r−1
d (nd ·v̇)(v̇ ·σ)nd +

45

8
r−1
d (nd ·v̇)2(nd ·σ)nd

+ 5r−1
d (nd ·v̈)(nd ·σ)nd +

1

6

...
σ +

1

4
v̇2σ̇ +

1

2
(nd ·v̇)σ̈

+
1

2
(nd ·v̇)2σ̇ +

1

8
(nd ·v̇)3σ +

11

12
(nd ·v̈)σ̇ +

3

8
(nd ·...v)σ

+
3

8
(nd ·σ)

...
v + (nd ·σ̇)v̈ +

3

4
(nd ·σ̈)v̇ − 1

2
(nd · ...σ)nd − 3

4
(v̇ ·σ)v̈

− 5

4
(v̇ ·σ̇)v̇ +

3

4
(v̇ ·σ̈)nd − 3

4
(v̈ ·σ)v̇ + (v̈ ·σ̇)nd +

3

8
(
...
v ·σ)nd

+
5

4
v̇2(nd ·v̇)σ +

3

16
v̇2(nd ·σ)v̇ +

15

16
v̇2(v̇ ·σ)nd

+ (nd ·v̇)(nd ·v̈)σ +
5

2
(nd ·v̇)(nd ·σ)v̈ +

15

4
(nd ·v̇)(nd ·σ̇)v̇

− 3(nd ·v̇)(nd ·σ̈)nd − 2(nd ·v̇)(v̇ ·σ)v̇ +
9

4
(nd ·v̇)(v̇ ·σ̇)nd

+
7

4
(nd ·v̇)(v̈ ·σ)nd +

75

16
(nd ·v̇)2(nd ·σ)v̇ − 6(nd ·v̇)2(nd ·σ̇)nd

+
27

16
(nd ·v̇)2(v̇ ·σ)nd − 15

4
(nd ·v̇)3(nd ·σ)nd +

5

2
(nd ·v̈)(nd ·σ)v̇

− 19

4
(nd ·v̈)(nd ·σ̇)nd +

7

4
(nd ·v̈)(v̇ ·σ)nd − 15

8
(nd ·...v)(nd ·σ)nd

+ (nd ·σ)(v̇ ·v̈)nd − 39

8
v̇2(nd ·v̇)(nd ·σ)nd

− 10(nd ·v̇)(nd ·v̈)(nd ·σ)nd +
1

4
r−1
d rs(ns ·v̇)σ̈ +

1

4
r−1
d rs(ns ·v̈)σ̇

+
1

16
r−1
d rsv̇

2(ns ·v̇)σ +
1

2
r−1
d rs(nd ·v̇)(ns ·v̇)σ̇

+
1

2
r−1
d rs(nd ·v̇)(ns ·v̈)σ +

3

16
r−1
d rs(nd ·v̇)2(ns ·v̇)σ

+
1

2
r−1
d rs(nd ·v̈)(ns ·v̇)σ +

1

2
r−1
d rs(nd ·σ)(ns ·v̇)v̈
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+
1

2
r−1
d rs(nd ·σ)(ns ·v̈)v̇ +

3

4
r−1
d rs(nd ·σ̇)(ns ·v̇)v̇

− 3

4
r−1
d rs(nd ·σ̇)(ns ·v̈)nd − 3

4
r−1
d rs(nd ·σ̈)(ns ·v̇)nd

− 5

8
r−1
d rs(ns ·v̇)(v̇ ·σ)v̇ +

3

4
r−1
d rs(ns ·v̇)(v̇ ·σ̇)nd

+
1

2
r−1
d rs(ns ·v̇)(v̈ ·σ)nd +

1

2
r−1
d rs(ns ·v̈)(v̇ ·σ)nd

+
3

16
r−1
d rsv̇

2(nd ·σ)(ns ·v̇)nd +
15

8
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)v̇

− 5

2
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̈)nd − 3r−1

d rs(nd ·v̇)(nd ·σ̇)(ns ·v̇)nd

+
9

8
r−1
d rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)nd

− 45

16
r−1
d rs(nd ·v̇)2(nd ·σ)(ns ·v̇)nd

− 5

2
r−1
d rs(nd ·v̈)(nd ·σ)(ns ·v̇)nd + O(ε),

λBq
1 = −r−1

d nd×v̇ + nd×v̈ + (nd ·v̇)nd×v̇ + O(ε),

λBq
2 = r−1

d nd×v̇ − 1

2
nd×v̈ − (nd ·v̇)nd×v̇ + O(ε),

λBd
1 = −r−1

d nd×σ̈ − r−1
d (nd ·v̇)nd×σ̇ − r−1

d (nd ·σ)nd×v̈

− 2r−1
d (nd ·σ̇)nd×v̇ + r−1

d (v̇ ·σ)nd×v̇

− 3r−1
d (nd ·v̇)(nd ·σ)nd×v̇ + nd× ...

σ +
1

2
v̇×σ̈ +

1

2
v̇2nd×σ̇

+
1

2
(nd ·v̇)nd×σ̈ +

1

2
(nd ·v̇)v̇×σ̇ +

1

2
(nd ·v̈)nd×σ̇

+ (nd ·σ)nd×...
v +

1

2
(nd ·σ)v̇×v̈ + 3(nd ·σ̇)nd×v̈

+ 3(nd ·σ̈)nd×v̇ − (v̇ ·σ)nd×v̈ − 2(v̇ ·σ̇)nd×v̇ − 3

2
(v̈ ·σ)nd×v̇

+
3

2
v̇2(nd ·σ)nd×v̇ + 3(nd ·v̇)(nd ·σ)nd×v̈
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+ 6(nd ·v̇)(nd ·σ̇)nd×v̇ − 2(nd ·v̇)(v̇ ·σ)nd×v̇

+
9

2
(nd ·v̇)2(nd ·σ)nd×v̇ +

7

2
(nd ·v̈)(nd ·σ)nd×v̇

+
1

2
r−1
d rs(ns ·v̇)nd×σ̈ +

1

2
r−1
d rs(ns ·v̈)nd×σ̇

+
1

2
r−1
d rs(nd ·v̇)(ns ·v̇)nd×σ̇ +

1

2
r−1
d rs(nd ·σ)(ns ·v̇)nd×v̈

+
1

2
r−1
d rs(nd ·σ)(ns ·v̈)nd×v̇ + r−1

d rs(nd ·σ̇)(ns ·v̇)nd×v̇

− 1

2
r−1
d rs(ns ·v̇)(v̇ ·σ)nd×v̇ +

3

2
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)nd×v̇

+ O(ε),

λBd
2 = −r−2

d nd×σ̇ − r−2
d v̇×σ − 3r−2

d (nd ·σ)nd×v̇ + r−1
d nd×σ̈

+
3

2
r−1
d v̇×σ̇ + r−1

d v̈×σ +
1

2
r−1
d (nd ·v̇)nd×σ̇ + r−1

d (nd ·v̇)v̇×σ

+ 3r−1
d (nd ·σ)nd×v̈ + 6r−1

d (nd ·σ̇)nd×v̇ − 5

2
r−1
d (v̇ ·σ)nd×v̇

+ 9r−1
d (nd ·v̇)(nd ·σ)nd×v̇ − 1

2
nd× ...

σ − v̇×σ̈ − 7

6
v̈×σ̇

− 1

2

...
v×σ − 1

8
v̇2nd×σ̇ − 5

4
v̇2v̇×σ − 1

2
(nd ·v̇)nd×σ̈

− 3

2
(nd ·v̇)v̇×σ̇ − 1

2
(nd ·v̇)v̈×σ − 1

8
(nd ·v̇)2nd×σ̇

− 1

2
(nd ·v̇)2v̇×σ − 1

2
(nd ·v̈)nd×σ̇ − 7

6
(nd ·v̈)v̇×σ

− 3

2
(nd ·σ)nd×...

v − 1

2
(nd ·σ)v̇×v̈ − 9

2
(nd ·σ̇)nd×v̈

− 9

2
(nd ·σ̈)nd×v̇ +

7

4
(v̇ ·σ)nd×v̈ +

7

2
(v̇ ·σ̇)nd×v̇

+
9

4
(v̈ ·σ)nd×v̇ − 3

2
v̇2(nd ·σ)nd×v̇ − 6(nd ·v̇)(nd ·σ)nd×v̈

− 12(nd ·v̇)(nd ·σ̇)nd×v̇ +
17

4
(nd ·v̇)(v̇ ·σ)nd×v̇

− 21

2
(nd ·v̇)2(nd ·σ)nd×v̇ − 17

2
(nd ·v̈)(nd ·σ)nd×v̇
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− 1

2
r−1
d rs(ns ·v̇)nd×σ̈ − 3

4
r−1
d rs(ns ·v̇)v̇×σ̇ − 1

2
r−1
d rs(ns ·v̇)v̈×σ

− 1

2
r−1
d rs(ns ·v̈)nd×σ̇ − 1

2
r−1
d rs(ns ·v̈)v̇×σ

− 1

4
r−1
d rs(nd ·v̇)(ns ·v̇)nd×σ̇ − 1

2
r−1
d rs(nd ·v̇)(ns ·v̇)v̇×σ

− 3

2
r−1
d rs(nd ·σ)(ns ·v̇)nd×v̈ − 3

2
r−1
d rs(nd ·σ)(ns ·v̈)nd×v̇

− 3r−1
d rs(nd ·σ̇)(ns ·v̇)nd×v̇ +

5

4
r−1
d rs(ns ·v̇)(v̇ ·σ)nd×v̇

− 9

2
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)nd×v̇ + O(ε),

λBd
3 = r−2

d v̇×σ + 3r−2
d (nd ·σ)nd×v̇ − r−1

d v̇×σ̇ − 1

2
r−1
d v̈×σ

− r−1
d (nd ·v̇)v̇×σ − 3

2
r−1
d (nd ·σ)nd×v̈ − 3r−1

d (nd ·σ̇)nd×v̇

+
3

2
r−1
d (v̇ ·σ)nd×v̇ − 6r−1

d (nd ·v̇)(nd ·σ)nd×v̇ +
1

2
v̇×σ̈

+
1

2
v̈×σ̇ +

1

6

...
v×σ +

1

4
v̇2v̇×σ + (nd ·v̇)v̇×σ̇ +

1

2
(nd ·v̇)v̈×σ

+
1

2
(nd ·v̇)2v̇×σ +

11

12
(nd ·v̈)v̇×σ +

1

2
(nd ·σ)nd×...

v

+
1

4
(nd ·σ)v̇×v̈ +

3

2
(nd ·σ̇)nd×v̈ +

3

2
(nd ·σ̈)nd×v̇

− 3

4
(v̇ ·σ)nd×v̈ − 3

2
(v̇ ·σ̇)nd×v̇ − (v̈ ·σ)nd×v̇

+ 3(nd ·v̇)(nd ·σ)nd×v̈ + 6(nd ·v̇)(nd ·σ̇)nd×v̇

− 9

4
(nd ·v̇)(v̇ ·σ)nd×v̇ + 6(nd ·v̇)2(nd ·σ)nd×v̇

+
19

4
(nd ·v̈)(nd ·σ)nd×v̇ +

1

2
r−1
d rs(ns ·v̇)v̇×σ̇

+
1

4
r−1
d rs(ns ·v̇)v̈×σ +

1

4
r−1
d rs(ns ·v̈)v̇×σ

+
1

2
r−1
d rs(nd ·v̇)(ns ·v̇)v̇×σ +

3

4
r−1
d rs(nd ·σ)(ns ·v̇)nd×v̈

+
3

4
r−1
d rs(nd ·σ)(ns ·v̈)nd×v̇ +

3

2
r−1
d rs(nd ·σ̇)(ns ·v̇)nd×v̇
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− 3

4
r−1
d rs(ns ·v̇)(v̇ ·σ)nd×v̇ + 3r−1

d rs(nd ·v̇)(nd ·σ)(ns ·v̇)nd×v̇

+ O(ε).

Adding these results together, we find

4πλEq = r−2
d nd − 1

2
r−1
d v̇ +

1

2
r−2
d rs(ns ·v̇)nd +

2

3
v̈ − 3

8
v̇2nd +

1

4
(nd ·v̇)v̇

− 1

8
(nd ·v̇)2nd + O(ε),

4πλEd = −r−3
d σ + 3r−3

d (nd ·σ)nd − 1

2
r−2
d (nd ·σ)v̇ +

1

2
r−2
d (v̇ ·σ)nd

− 1

2
r−3
d rs(ns ·v̇)σ +

3

2
r−3
d rs(nd ·σ)(ns ·v̇)nd − 1

2
r−1
d σ̈

+
3

8
r−1
d v̇2σ +

1

8
r−1
d (nd ·v̇)2σ − 1

2
r−1
d (nd ·σ̈)nd − 1

4
r−1
d (v̇ ·σ)v̇

− 3

8
r−1
d v̇2(nd ·σ)nd +

1

4
r−1
d (nd ·v̇)(nd ·σ)v̇

+
1

4
r−1
d (nd ·v̇)(v̇ ·σ)nd − 3

8
r−1
d (nd ·v̇)2(nd ·σ)nd +

2

3

...
σ

− 1

4
(nd ·v̈)σ̇ − 1

8
(nd ·...v)σ +

3

8
(nd ·σ)

...
v + (nd ·σ̇)v̈

+
3

4
(nd ·σ̈)v̇ − 2

3
(v̇ ·v̈)σ +

1

3
(v̇ ·σ)v̈ − 3

4
(v̇ ·σ̈)nd − 1

3
(v̈ ·σ)v̇

− 1

2
(v̈ ·σ̇)nd − 1

8
(
...
v ·σ)nd − 3

8
v̇2(nd ·v̇)σ +

15

16
v̇2(nd ·σ)v̇

− 3

16
v̇2(v̇ ·σ)nd − 1

16
(nd ·v̇)2(nd ·σ)v̇ +

1

16
(nd ·v̇)2(v̇ ·σ)nd

+
1

4
(nd ·v̈)(nd ·σ̇)nd +

1

8
(nd ·...v)(nd ·σ)nd

+
3

8
v̇2(nd ·v̇)(nd ·σ)nd +

1

4
r−1
d rs(ns ·v̇)σ̈ +

1

4
r−1
d rs(ns ·v̈)σ̇

− 3

16
r−1
d rsv̇

2(ns ·v̇)σ − 1

16
r−1
d rs(nd ·v̇)2(ns ·v̇)σ

+
1

4
r−1
d rs(nd ·σ̇)(ns ·v̈)nd +

1

4
r−1
d rs(nd ·σ̈)(ns ·v̇)nd
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+
1

8
r−1
d rs(ns ·v̇)(v̇ ·σ)v̇ +

3

16
r−1
d rsv̇

2(nd ·σ)(ns ·v̇)nd

− 1

8
r−1
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)v̇ − 1

8
r−1
d rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)nd

+
3

16
r−1
d rs(nd ·v̇)2(nd ·σ)(ns ·v̇)nd + O(ε),

4πλBq =
1

2
nd×v̈,

4πλBd = −r−2
d nd×σ̇ +

1

2
r−1
d v̇×σ̇ +

1

2
r−1
d v̈×σ − 1

2
r−1
d (nd ·v̇)nd×σ̇

+
1

2
r−1
d (nd ·σ)nd×v̈ + r−1

d (nd ·σ̇)nd×v̇ +
1

2
nd× ...

σ − 2

3
v̈×σ̇

− 1

3

...
v×σ +

3

8
v̇2nd×σ̇ − v̇2v̇×σ − 1

8
(nd ·v̇)2nd×σ̇

− 1

4
(nd ·v̈)v̇×σ +

1

4
(nd ·σ)v̇×v̈ − 1

4
(v̈ ·σ)nd×v̇

− 1

4
(nd ·v̈)(nd ·σ)nd×v̇ − 1

4
r−1
d rs(ns ·v̇)v̇×σ̇

− 1

4
r−1
d rs(ns ·v̇)v̈×σ − 1

4
r−1
d rs(ns ·v̈)v̇×σ

+
1

4
r−1
d rs(nd ·v̇)(ns ·v̇)nd×σ̇ − 1

4
r−1
d rs(nd ·σ)(ns ·v̇)nd×v̈

− 1

4
r−1
d rs(nd ·σ)(ns ·v̈)nd×v̇ − 1

2
r−1
d rs(nd ·σ̇)(ns ·v̇)nd×v̇

+ O(ε).

G.6.22 Gradients of the self-fields

We now compute the spatial gradients of the self-fields of Section G.6.19 in

the direction of σ, and multiplied by λ. (Only those expressions actually

required for the radiation reaction calculations are computed.) Because of

the excessive length of the resulting expressions (on the order of 14 gpages

each), we omit terms of order ε0 that are odd in either nd or ns, since they
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do not contribute to the final equations of motion. (Odd terms of lower

order in ε may, however, contribute to the NF calculations, through their

cross-product with r.) We find

λ(σ ·∇)Eq
1 = r−2

d (nd ·v̇)σ + r−2
d (nd ·σ)v̇ + r−2

d (v̇ ·σ)nd

− 3r−2
d (nd ·v̇)(nd ·σ)nd − 1

2
r−1
d v̇2σ − 1

2
r−1
d (nd ·v̇)2σ

− r−1
d (nd ·v̈)σ + 2r−1

d (v̇ ·σ)v̇ − r−1
d (v̈ ·σ)nd

+
1

2
r−1
d v̇2(nd ·σ)nd − r−1

d (nd ·v̇)(nd ·σ)v̇

− 2r−1
d (nd ·v̇)(v̇ ·σ)nd +

3

2
r−1
d (nd ·v̇)2(nd ·σ)nd

+ 2r−1
d (nd ·v̈)(nd ·σ)nd +

2

3
(v̇ ·v̈)σ − 7

3
(v̇ ·σ)v̈ − 4

3
(v̈ ·σ)v̇

+ (nd ·v̇)(nd ·v̈)σ +
3

2
(nd ·v̇)(v̈ ·σ)nd +

5

2
(nd ·v̈)(v̇ ·σ)nd

− 2(nd ·v̇)(nd ·v̈)(nd ·σ)nd + O(ε),

λ(σ ·∇)Eq
2 = r−3

d σ − 3r−3
d (nd ·σ)nd − r−2

d (nd ·v̇)σ − 1

2
r−2
d (nd ·σ)v̇

− 3

2
r−2
d (v̇ ·σ)nd + 3r−2

d (nd ·v̇)(nd ·σ)nd +
1

2
r−3
d rs(ns ·v̇)σ

− 3

2
r−3
d rs(nd ·σ)(ns ·v̇)nd +

1

8
r−1
d v̇2σ +

3

8
r−1
d (nd ·v̇)2σ

+ r−1
d (nd ·v̈)σ − 5

4
r−1
d (v̇ ·σ)v̇ + r−1

d (v̈ ·σ)nd

− 1

8
r−1
d v̇2(nd ·σ)nd +

3

4
r−1
d (nd ·v̇)(nd ·σ)v̇

+
9

4
r−1
d (nd ·v̇)(v̇ ·σ)nd − 9

8
r−1
d (nd ·v̇)2(nd ·σ)nd

− 2r−1
d (nd ·v̈)(nd ·σ)nd + (v̇ ·σ)v̈ +

2

3
(v̈ ·σ)v̇

− (nd ·v̇)(nd ·v̈)σ − 3

2
(nd ·v̇)(v̈ ·σ)nd − 5

2
(nd ·v̈)(v̇ ·σ)nd

+ 2(nd ·v̇)(nd ·v̈)(nd ·σ)nd + O(ε),
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λ(σ ·∇)Ed
1 = −r−2

d v̈ − r−2
d σ̇2nd − 3r−2

d (nd ·v̇)v̇ + 3r−2
d (nd ·v̇)2nd

+ r−2
d (nd ·v̈)nd + r−2

d (nd ·σ)σ̈ + 2r−2
d (nd ·σ)2v̈

+ r−2
d (nd ·σ̈)σ − r−2

d (v̇ ·σ)σ̇ − r−2
d (v̇ ·σ)2nd

+ 2r−2
d (nd ·v̇)(nd ·σ)σ̇ + 9r−2

d (nd ·v̇)(nd ·σ)2v̇

+ 3r−2
d (nd ·v̇)(nd ·σ̇)σ − r−2

d (nd ·v̇)(v̇ ·σ)σ

+ 3r−2
d (nd ·v̇)2(nd ·σ)σ − 15r−2

d (nd ·v̇)2(nd ·σ)2nd

+ r−2
d (nd ·v̈)(nd ·σ)σ − 4r−2

d (nd ·v̈)(nd ·σ)2nd

+ 4r−2
d (nd ·σ)(nd ·σ̇)v̇ − 3r−2

d (nd ·σ)(nd ·σ̈)nd

− 4r−2
d (nd ·σ)(v̇ ·σ)v̇ + r−2

d (nd ·σ)(v̈ ·σ)nd

+ 3r−2
d (nd ·σ̇)(v̇ ·σ)nd − 12r−2

d (nd ·v̇)(nd ·σ)(nd ·σ̇)nd

+ 9r−2
d (nd ·v̇)(nd ·σ)(v̇ ·σ)nd + r−1

d

...
v +

3

2
r−1
d v̇2v̇

− 5

2
r−1
d σ̇2v̇ +

7

2
r−1
d (nd ·v̇)v̈ +

9

2
r−1
d (nd ·v̇)2v̇

− 3r−1
d (nd ·v̇)3nd + 3r−1

d (nd ·v̈)v̇ − r−1
d (nd ·...v)nd

− r−1
d (nd ·σ)2...v − r−1

d (nd · ...σ)σ − 1

2
r−1
d (v̇ ·v̈)nd

+
5

2
r−1
d (v̇ ·σ)σ̈ − 7

2
r−1
d (v̇ ·σ)2v̇ − 1

2
r−1
d (v̇ ·σ̈)σ

+ r−1
d (v̈ ·σ)σ̇ + 3r−1

d (σ̇ ·σ̈)nd − 3r−1
d v̇2(nd ·v̇)nd

− 3

2
r−1
d v̇2(nd ·σ)2v̇ − 3

2
r−1
d v̇2(nd ·σ̇)σ +

1

2
r−1
d v̇2(v̇ ·σ)σ

+ 3r−1
d σ̇2(nd ·v̇)nd − 6r−1

d (nd ·v̇)(nd ·v̈)nd

− r−1
d (nd ·v̇)(nd ·σ)σ̈ − 7r−1

d (nd ·v̇)(nd ·σ)2v̈
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− 3r−1
d (nd ·v̇)(nd ·σ̈)σ +

5

2
r−1
d (nd ·v̇)(v̇ ·σ)σ̇

+
9

2
r−1
d (nd ·v̇)(v̇ ·σ)2nd +

3

2
r−1
d (nd ·v̇)(v̇ ·σ̇)σ

+
3

2
r−1
d (nd ·v̇)(v̈ ·σ)σ − r−1

d (nd ·v̇)2(nd ·σ)σ̇

− 27

2
r−1
d (nd ·v̇)2(nd ·σ)2v̇ − 9

2
r−1
d (nd ·v̇)2(nd ·σ̇)σ

+
3

2
r−1
d (nd ·v̇)2(v̇ ·σ)σ − 3r−1

d (nd ·v̇)3(nd ·σ)σ

+ 15r−1
d (nd ·v̇)3(nd ·σ)2nd − 1

2
r−1
d (nd ·v̈)(nd ·σ)σ̇

− 6r−1
d (nd ·v̈)(nd ·σ)2v̇ − 7

2
r−1
d (nd ·v̈)(nd ·σ̇)σ

+ r−1
d (nd ·v̈)(v̇ ·σ)σ − r−1

d (nd ·...v)(nd ·σ)σ

+ 3r−1
d (nd ·...v)(nd ·σ)2nd − 3r−1

d (nd ·σ)(nd ·σ̇)v̈

− 5

2
r−1
d (nd ·σ)(nd ·σ̈)v̇ + 2r−1

d (nd ·σ)(nd · ...σ)nd

− 1

2
r−1
d (nd ·σ)(v̇ ·v̈)σ + 5r−1

d (nd ·σ)(v̇ ·σ)v̈

+
1

2
r−1
d (nd ·σ)(v̇ ·σ̈)nd +

7

2
r−1
d (nd ·σ)(v̈ ·σ)v̇

− r−1
d (nd ·σ)(

...
v ·σ)nd + r−1

d (nd ·σ)2(v̇ ·v̈)nd

+
17

2
r−1
d (nd ·σ̇)(v̇ ·σ)v̇ − 4r−1

d (nd ·σ̇)(v̈ ·σ)nd

− 9

2
r−1
d (nd ·σ̈)(v̇ ·σ)nd +

3

2
r−1
d (v̇ ·σ)(v̇ ·σ̇)nd

+
5

2
r−1
d (v̇ ·σ)(v̈ ·σ)nd − 3r−1

d v̇2(nd ·v̇)(nd ·σ)σ

+ 9r−1
d v̇2(nd ·v̇)(nd ·σ)2nd + 3r−1

d v̇2(nd ·σ)(nd ·σ̇)nd

− 7

2
r−1
d v̇2(nd ·σ)(v̇ ·σ)nd − 6r−1

d (nd ·v̇)(nd ·v̈)(nd ·σ)σ

+ 24r−1
d (nd ·v̇)(nd ·v̈)(nd ·σ)2nd
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− 11r−1
d (nd ·v̇)(nd ·σ)(nd ·σ̇)v̇

+ 9r−1
d (nd ·v̇)(nd ·σ)(nd ·σ̈)nd

+
31

2
r−1
d (nd ·v̇)(nd ·σ)(v̇ ·σ)v̇

− 3r−1
d (nd ·v̇)(nd ·σ)(v̇ ·σ̇)nd

− 19

2
r−1
d (nd ·v̇)(nd ·σ)(v̈ ·σ)nd

− 27

2
r−1
d (nd ·v̇)(nd ·σ̇)(v̇ ·σ)nd

+ 18r−1
d (nd ·v̇)2(nd ·σ)(nd ·σ̇)nd

− 18r−1
d (nd ·v̇)2(nd ·σ)(v̇ ·σ)nd

+
21

2
r−1
d (nd ·v̈)(nd ·σ)(nd ·σ̇)nd

− 19

2
r−1
d (nd ·v̈)(nd ·σ)(v̇ ·σ)nd +

1

2
r−2
d rs(ns ·v̇)v̈

+
1

2
r−2
d rs(ns ·v̈)v̇ +

1

2
r−2
d rsσ̇

2(ns ·v̇)nd

+
3

2
r−2
d rs(nd ·v̇)(ns ·v̇)v̇ − 1

2
r−2
d rs(nd ·v̇)(ns ·v̈)nd

− 3

2
r−2
d rs(nd ·v̇)2(ns ·v̇)nd − 1

2
r−2
d rs(nd ·v̈)(ns ·v̇)nd

− 1

2
r−2
d rs(nd ·σ)(ns ·v̇)σ̈ − 1

2
r−2
d rs(nd ·σ)(ns ·v̈)σ̇

− r−2
d rs(nd ·σ)2(ns ·v̇)v̈ − r−2

d rs(nd ·σ)2(ns ·v̈)v̇

− 1

2
r−2
d rs(nd ·σ̇)(ns ·v̈)σ − 1

2
r−2
d rs(nd ·σ̈)(ns ·v̇)σ

+
1

2
r−2
d rs(ns ·v̇)(v̇ ·σ)σ̇ +

1

2
r−2
d rs(ns ·v̇)(v̇ ·σ)2nd

− r−2
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)σ̇

− 1

2
r−2
d rs(nd ·v̇)(nd ·σ)(ns ·v̈)σ
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− 9

2
r−2
d rs(nd ·v̇)(nd ·σ)2(ns ·v̇)v̇

+ 2r−2
d rs(nd ·v̇)(nd ·σ)2(ns ·v̈)nd

− 3

2
r−2
d rs(nd ·v̇)(nd ·σ̇)(ns ·v̇)σ

+
1

2
r−2
d rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)σ

− 3

2
r−2
d rs(nd ·v̇)2(nd ·σ)(ns ·v̇)σ

+
15

2
r−2
d rs(nd ·v̇)2(nd ·σ)2(ns ·v̇)nd

− 1

2
r−2
d rs(nd ·v̈)(nd ·σ)(ns ·v̇)σ

+ 2r−2
d rs(nd ·v̈)(nd ·σ)2(ns ·v̇)nd

− 2r−2
d rs(nd ·σ)(nd ·σ̇)(ns ·v̇)v̇

+
3

2
r−2
d rs(nd ·σ)(nd ·σ̇)(ns ·v̈)nd

+
3

2
r−2
d rs(nd ·σ)(nd ·σ̈)(ns ·v̇)nd

+ 2r−2
d rs(nd ·σ)(ns ·v̇)(v̇ ·σ)v̇

− 1

2
r−2
d rs(nd ·σ)(ns ·v̇)(v̈ ·σ)nd

− 1

2
r−2
d rs(nd ·σ)(ns ·v̈)(v̇ ·σ)nd

− 3

2
r−2
d rs(nd ·σ̇)(ns ·v̇)(v̇ ·σ)nd

+ 6r−2
d rs(nd ·v̇)(nd ·σ)(nd ·σ̇)(ns ·v̇)nd

− 9

2
r−2
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)(v̇ ·σ)nd − 1

2

....
v − 11

4
v̇2v̈

+
17

6
σ̇2v̈ − 17

4
(nd ·v̇)2v̈ +

1

2
(nd ·....v)nd − 9

4
(v̇ ·v̈)v̇

− 5

2
(v̇ ·σ)

...
σ +

43

12
(v̇ ·σ)2v̈ +

1

2
(v̇ · ...σ)σ − 11

6
(v̈ ·σ)σ̈
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+
1

6
(v̈ ·σ̈)σ − 1

2
(
...
v ·σ)σ̇ +

9

2
(σ̇ ·σ̈)v̇ +

17

4
v̇2(nd ·v̈)nd

− 11

4
v̇2(v̇ ·σ)σ̇ − 3

4
v̇2(v̇ ·σ̇)σ − 3

4
v̇2(v̈ ·σ)σ

− 3σ̇2(nd ·v̈)nd − 31

4
(nd ·v̇)(nd ·v̈)v̇ +

3

2
(nd ·v̇)(nd · ...σ)σ

+
9

2
(nd ·v̇)(v̇ ·v̈)nd − 9

2
(nd ·v̇)(σ̇ ·σ̈)nd

+
33

4
(nd ·v̇)2(nd ·v̈)nd +

17

2
(nd ·v̇)2(nd ·σ)2v̈

− 9

4
(nd ·v̇)2(v̇ ·σ)σ̇ − 3

2
(nd ·v̇)2(v̇ ·σ̇)σ − 7

4
(nd ·v̇)2(v̈ ·σ)σ

+
1

2
(nd ·v̇)3(nd ·σ)σ̇ +

15

4
(nd ·v̇)3(nd ·σ̇)σ

+ 3(nd ·v̈)(nd ·σ̈)σ − 4(nd ·v̈)(v̇ ·σ)2nd + 2(nd ·...v)(nd ·σ̇)σ

+
1

2
(nd ·....v)(nd ·σ)σ − (nd ·....v)(nd ·σ)2nd

+
1

2
(nd ·σ)(

....
v ·σ)nd +

5

2
(nd ·σ̇)(

...
v ·σ)nd

+
9

2
(nd ·σ̈)(v̈ ·σ)nd +

7

2
(nd · ...σ)(v̇ ·σ)nd − 2

3
(v̇ ·v̈)(v̇ ·σ)σ

+
27

4
(v̇ ·σ)(v̇ ·σ̇)v̇ +

47

6
(v̇ ·σ)(v̈ ·σ)v̇

+
15

2
v̇2(nd ·v̇)(nd ·σ̇)σ +

17

4
v̇2(nd ·v̈)(nd ·σ)σ

− 17

2
v̇2(nd ·v̈)(nd ·σ)2nd +

9

2
v̇2(nd ·σ)(v̈ ·σ)nd

+ 12v̇2(nd ·σ̇)(v̇ ·σ)nd +
31

2
(nd ·v̇)(nd ·v̈)(nd ·σ)2v̇

− 2(nd ·v̇)(nd ·v̈)(v̇ ·σ)σ − 3(nd ·v̇)(nd ·σ)(nd · ...σ)nd

+
9

2
(nd ·v̇)(nd ·σ)(v̇ ·v̈)σ − 16(nd ·v̇)(nd ·σ)(v̇ ·σ)v̈

− 11(nd ·v̇)(nd ·σ)(v̈ ·σ)v̇ − 9(nd ·v̇)(nd ·σ)2(v̇ ·v̈)nd

− 25(nd ·v̇)(nd ·σ̇)(v̇ ·σ)v̇ − 6(nd ·v̇)(v̇ ·σ)(v̇ ·σ̇)nd
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− 39

4
(nd ·v̇)(v̇ ·σ)(v̈ ·σ)nd +

33

4
(nd ·v̇)2(nd ·v̈)(nd ·σ)σ

− 33(nd ·v̇)2(nd ·v̈)(nd ·σ)2nd + 13(nd ·v̇)2(nd ·σ)(nd ·σ̇)v̇

+ 3(nd ·v̇)2(nd ·σ)(v̇ ·σ̇)nd +
59

4
(nd ·v̇)2(nd ·σ)(v̈ ·σ)nd

+
87

4
(nd ·v̇)2(nd ·σ̇)(v̇ ·σ)nd − 15(nd ·v̇)3(nd ·σ)(nd ·σ̇)nd

− 6(nd ·v̈)(nd ·σ)(nd ·σ̈)nd − 55

4
(nd ·v̈)(nd ·σ)(v̇ ·σ)v̇

− 4(nd ·...v)(nd ·σ)(nd ·σ̇)nd +
11

2
(nd ·σ)(v̇ ·v̈)(v̇ ·σ)nd

− 15v̇2(nd ·v̇)(nd ·σ)(nd ·σ̇)nd

+ 33(nd ·v̇)(nd ·v̈)(nd ·σ)(v̇ ·σ)nd − 1

4
r−2
d r2

s (ns ·v̇)2v̈

+
1

4
r−2
d r2

s (nd ·v̈)(ns ·v̇)2nd +
1

2
r−2
d r2

s (nd ·σ)2(ns ·v̇)2v̈

− 1

2
r−2
d r2

s (ns ·v̇)(ns ·v̈)v̇ − 1

4
r−2
d r2

s (ns ·v̇)2(v̇ ·σ)σ̇

+
1

2
r−2
d r2

s (nd ·v̇)(nd ·σ)(ns ·v̇)2σ̇

+
3

4
r−2
d r2

s (nd ·v̇)(nd ·σ̇)(ns ·v̇)2σ

+
1

2
r−2
d r2

s (nd ·v̇)(ns ·v̇)(ns ·v̈)nd

+
1

4
r−2
d r2

s (nd ·v̈)(nd ·σ)(ns ·v̇)2σ

− r−2
d r2

s (nd ·v̈)(nd ·σ)2(ns ·v̇)2nd

+ r−2
d r2

s (nd ·σ)(nd ·σ̇)(ns ·v̇)2v̇

+
1

4
r−2
d r2

s (nd ·σ)(ns ·v̇)2(v̈ ·σ)nd

+ r−2
d r2

s (nd ·σ)2(ns ·v̇)(ns ·v̈)v̇

+
3

4
r−2
d r2

s (nd ·σ̇)(ns ·v̇)2(v̇ ·σ)nd
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− 3r−2
d r2

s (nd ·v̇)(nd ·σ)(nd ·σ̇)(ns ·v̇)2nd

+
1

2
r−2
d r2

s (nd ·v̇)(nd ·σ)(ns ·v̇)(ns ·v̈)σ

− 2r−2
d r2

s (nd ·v̇)(nd ·σ)2(ns ·v̇)(ns ·v̈)nd

+
1

2
r−2
d r2

s (nd ·σ)(ns ·v̇)(ns ·v̈)(v̇ ·σ)nd + O(ε),

λ(σ ·∇)Ed
2 = −2r−3

d v̇ + 6r−3
d (nd ·v̇)nd + 2r−3

d (nd ·σ)σ̇ + 6r−3
d (nd ·σ)2v̇

+ 3r−3
d (nd ·σ̇)σ − 2r−3

d (v̇ ·σ)σ + 9r−3
d (nd ·v̇)(nd ·σ)σ

− 30r−3
d (nd ·v̇)(nd ·σ)2nd − 12r−3

d (nd ·σ)(nd ·σ̇)nd

+ 9r−3
d (nd ·σ)(v̇ ·σ)nd + 2r−2

d v̈ + 3r−2
d σ̇2nd

+ 7r−2
d (nd ·v̇)v̇ − 9r−2

d (nd ·v̇)2nd − 6r−2
d (nd ·v̈)nd

− r−2
d (nd ·σ)σ̈ − 4r−2

d (nd ·σ)2v̈ − 3r−2
d (nd ·σ̈)σ

+ 3r−2
d (v̇ ·σ)σ̇ +

9

2
r−2
d (v̇ ·σ)2nd +

3

2
r−2
d (v̇ ·σ̇)σ

+ 2r−2
d (v̈ ·σ)σ − 1

2
r−2
d v̇2(nd ·σ)σ − 4r−2

d (nd ·v̇)(nd ·σ)σ̇

− 21r−2
d (nd ·v̇)(nd ·σ)2v̇ − 9r−2

d (nd ·v̇)(nd ·σ̇)σ

+
11

2
r−2
d (nd ·v̇)(v̇ ·σ)σ − 21

2
r−2
d (nd ·v̇)2(nd ·σ)σ

+ 45r−2
d (nd ·v̇)2(nd ·σ)2nd − 8r−2

d (nd ·v̈)(nd ·σ)σ

+ 24r−2
d (nd ·v̈)(nd ·σ)2nd − 7r−2

d (nd ·σ)(nd ·σ̇)v̇

+ 9r−2
d (nd ·σ)(nd ·σ̈)nd +

23

2
r−2
d (nd ·σ)(v̇ ·σ)v̇

− 3r−2
d (nd ·σ)(v̇ ·σ̇)nd − 8r−2

d (nd ·σ)(v̈ ·σ)nd

− 12r−2
d (nd ·σ̇)(v̇ ·σ)nd + 36r−2

d (nd ·v̇)(nd ·σ)(nd ·σ̇)nd
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− 69

2
r−2
d (nd ·v̇)(nd ·σ)(v̇ ·σ)nd − r−1

d

...
v − 3

4
r−1
d v̇2v̇

+
5

2
r−1
d σ̇2v̇ − 6r−1

d (nd ·v̇)v̈ − 37

4
r−1
d (nd ·v̇)2v̇

+
27

4
r−1
d (nd ·v̇)3nd − 11

2
r−1
d (nd ·v̈)v̇ + 3r−1

d (nd ·...v)nd

+ r−1
d (nd ·σ)2...v +

3

2
r−1
d (nd · ...σ)σ − 1

2
r−1
d (v̇ ·v̈)nd

− 3r−1
d (v̇ ·σ)σ̈ +

31

4
r−1
d (v̇ ·σ)2v̇ − r−1

d (v̇ ·σ̈)σ

− 13

6
r−1
d (v̈ ·σ)σ̇ − 3

2
r−1
d (v̈ ·σ̇)σ − r−1

d (
...
v ·σ)σ

− 9

2
r−1
d (σ̇ ·σ̈)nd +

33

4
r−1
d v̇2(nd ·v̇)nd +

3

4
r−1
d v̇2(nd ·σ)2v̇

+
3

2
r−1
d v̇2(nd ·σ̇)σ − 4r−1

d v̇2(v̇ ·σ)σ − 6r−1
d σ̇2(nd ·v̇)nd

+ 16r−1
d (nd ·v̇)(nd ·v̈)nd +

3

2
r−1
d (nd ·v̇)(nd ·σ)σ̈

+ 12r−1
d (nd ·v̇)(nd ·σ)2v̈ + 6r−1

d (nd ·v̇)(nd ·σ̈)σ

− 11

2
r−1
d (nd ·v̇)(v̇ ·σ)σ̇ − 12r−1

d (nd ·v̇)(v̇ ·σ)2nd

− 15

4
r−1
d (nd ·v̇)(v̇ ·σ̇)σ − 19

4
r−1
d (nd ·v̇)(v̈ ·σ)σ

+ 2r−1
d (nd ·v̇)2(nd ·σ)σ̇ +

111

4
r−1
d (nd ·v̇)2(nd ·σ)2v̇

+
21

2
r−1
d (nd ·v̇)2(nd ·σ̇)σ − 19

4
r−1
d (nd ·v̇)2(v̇ ·σ)σ

+
57

8
r−1
d (nd ·v̇)3(nd ·σ)σ − 135

4
r−1
d (nd ·v̇)3(nd ·σ)2nd

+
5

3
r−1
d (nd ·v̈)(nd ·σ)σ̇ + 11r−1

d (nd ·v̈)(nd ·σ)2v̇

+
17

2
r−1
d (nd ·v̈)(nd ·σ̇)σ − 21

4
r−1
d (nd ·v̈)(v̇ ·σ)σ

+
7

2
r−1
d (nd ·...v)(nd ·σ)σ − 9r−1

d (nd ·...v)(nd ·σ)2nd

+ 3r−1
d (nd ·σ)(nd ·σ̇)v̈ +

5

2
r−1
d (nd ·σ)(nd ·σ̈)v̇
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− 3r−1
d (nd ·σ)(nd · ...σ)nd − 1

2
r−1
d (nd ·σ)(v̇ ·v̈)σ

− 9r−1
d (nd ·σ)(v̇ ·σ)v̈ + r−1

d (nd ·σ)(v̇ ·σ̈)nd

− 13

2
r−1
d (nd ·σ)(v̈ ·σ)v̇ +

3

2
r−1
d (nd ·σ)(v̈ ·σ̇)nd

+
7

2
r−1
d (nd ·σ)(

...
v ·σ)nd + r−1

d (nd ·σ)2(v̇ ·v̈)nd

− 29

2
r−1
d (nd ·σ̇)(v̇ ·σ)v̇ + 10r−1

d (nd ·σ̇)(v̈ ·σ)nd

+
21

2
r−1
d (nd ·σ̈)(v̇ ·σ)nd − 6r−1

d (v̇ ·σ)(v̇ ·σ̇)nd

− 8r−1
d (v̇ ·σ)(v̈ ·σ)nd +

79

8
r−1
d v̇2(nd ·v̇)(nd ·σ)σ

− 99

4
r−1
d v̇2(nd ·v̇)(nd ·σ)2nd − 3r−1

d v̇2(nd ·σ)(nd ·σ̇)nd

+
79

8
r−1
d v̇2(nd ·σ)(v̇ ·σ)nd + 18r−1

d (nd ·v̇)(nd ·v̈)(nd ·σ)σ

− 64r−1
d (nd ·v̇)(nd ·v̈)(nd ·σ)2nd

+
37

2
r−1
d (nd ·v̇)(nd ·σ)(nd ·σ̇)v̇

− 18r−1
d (nd ·v̇)(nd ·σ)(nd ·σ̈)nd

− 34r−1
d (nd ·v̇)(nd ·σ)(v̇ ·σ)v̇

+
15

2
r−1
d (nd ·v̇)(nd ·σ)(v̇ ·σ̇)nd

+
51

2
r−1
d (nd ·v̇)(nd ·σ)(v̈ ·σ)nd

+ 36r−1
d (nd ·v̇)(nd ·σ̇)(v̇ ·σ)nd

− 42r−1
d (nd ·v̇)2(nd ·σ)(nd ·σ̇)nd

+
369

8
r−1
d (nd ·v̇)2(nd ·σ)(v̇ ·σ)nd

− 51

2
r−1
d (nd ·v̈)(nd ·σ)(nd ·σ̇)nd
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+
61

2
r−1
d (nd ·v̈)(nd ·σ)(v̇ ·σ)nd − r−2

d rs(ns ·v̇)v̈

− r−2
d rs(ns ·v̈)v̇ − 3

2
r−2
d rsσ̇

2(ns ·v̇)nd

− 7

2
r−2
d rs(nd ·v̇)(ns ·v̇)v̇ + 3r−2

d rs(nd ·v̇)(ns ·v̈)nd

+
9

2
r−2
d rs(nd ·v̇)2(ns ·v̇)nd + 3r−2

d rs(nd ·v̈)(ns ·v̇)nd

+
1

2
r−2
d rs(nd ·σ)(ns ·v̇)σ̈ +

1

2
r−2
d rs(nd ·σ)(ns ·v̈)σ̇

+ 2r−2
d rs(nd ·σ)2(ns ·v̇)v̈ + 2r−2

d rs(nd ·σ)2(ns ·v̈)v̇

+
3

2
r−2
d rs(nd ·σ̇)(ns ·v̈)σ +

3

2
r−2
d rs(nd ·σ̈)(ns ·v̇)σ

− 3

2
r−2
d rs(ns ·v̇)(v̇ ·σ)σ̇ − 9

4
r−2
d rs(ns ·v̇)(v̇ ·σ)2nd

− 3

4
r−2
d rs(ns ·v̇)(v̇ ·σ̇)σ − r−2

d rs(ns ·v̇)(v̈ ·σ)σ

− r−2
d rs(ns ·v̈)(v̇ ·σ)σ +

1

4
r−2
d rsv̇

2(nd ·σ)(ns ·v̇)σ

+ 2r−2
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)σ̇

+ 4r−2
d rs(nd ·v̇)(nd ·σ)(ns ·v̈)σ

+
21

2
r−2
d rs(nd ·v̇)(nd ·σ)2(ns ·v̇)v̇

− 12r−2
d rs(nd ·v̇)(nd ·σ)2(ns ·v̈)nd

+
9

2
r−2
d rs(nd ·v̇)(nd ·σ̇)(ns ·v̇)σ

− 11

4
r−2
d rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)σ

+
21

4
r−2
d rs(nd ·v̇)2(nd ·σ)(ns ·v̇)σ

− 45

2
r−2
d rs(nd ·v̇)2(nd ·σ)2(ns ·v̇)nd

+ 4r−2
d rs(nd ·v̈)(nd ·σ)(ns ·v̇)σ
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− 12r−2
d rs(nd ·v̈)(nd ·σ)2(ns ·v̇)nd

+
7

2
r−2
d rs(nd ·σ)(nd ·σ̇)(ns ·v̇)v̇

− 9

2
r−2
d rs(nd ·σ)(nd ·σ̇)(ns ·v̈)nd

− 9

2
r−2
d rs(nd ·σ)(nd ·σ̈)(ns ·v̇)nd

− 23

4
r−2
d rs(nd ·σ)(ns ·v̇)(v̇ ·σ)v̇

+
3

2
r−2
d rs(nd ·σ)(ns ·v̇)(v̇ ·σ̇)nd

+ 4r−2
d rs(nd ·σ)(ns ·v̇)(v̈ ·σ)nd

+ 4r−2
d rs(nd ·σ)(ns ·v̈)(v̇ ·σ)nd

+ 6r−2
d rs(nd ·σ̇)(ns ·v̇)(v̇ ·σ)nd

− 18r−2
d rs(nd ·v̇)(nd ·σ)(nd ·σ̇)(ns ·v̇)nd

+
69

4
r−2
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)(v̇ ·σ)nd +

1

3

....
v + v̇2v̈

− 2σ̇2v̈ +
15

2
(nd ·v̇)2v̈ − (nd ·....v)nd +

5

3
(v̇ ·σ)

...
σ

− 7(v̇ ·σ)2v̈ +
5

12
(v̇ · ...σ)σ +

11

6
(v̈ ·σ)σ̈ + (v̈ ·σ̈)σ

+
11

12
(
...
v ·σ)σ̇ +

17

24
(
...
v ·σ̇)σ +

1

3
(
....
v ·σ)σ − 13

4
(σ̇ ·σ̈)v̇

− 31

4
v̇2(nd ·v̈)nd +

19

4
v̇2(v̇ ·σ)σ̇ +

23

8
v̇2(v̇ ·σ̇)σ

+
79

24
v̇2(v̈ ·σ)σ +

21

4
σ̇2(nd ·v̈)nd +

57

4
(nd ·v̇)(nd ·v̈)v̇

− 5

2
(nd ·v̇)(nd · ...σ)σ − 15

2
(nd ·v̇)(v̇ ·v̈)nd

+
15

2
(nd ·v̇)(σ̇ ·σ̈)nd − 39

2
(nd ·v̇)2(nd ·v̈)nd

− 15(nd ·v̇)2(nd ·σ)2v̈ +
19

4
(nd ·v̇)2(v̇ ·σ)σ̇
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+
27

8
(nd ·v̇)2(v̇ ·σ̇)σ +

19

4
(nd ·v̇)2(v̈ ·σ)σ

− (nd ·v̇)3(nd ·σ)σ̇ − 33

4
(nd ·v̇)3(nd ·σ̇)σ

− 21

4
(nd ·v̈)(nd ·σ̈)σ +

41

4
(nd ·v̈)(v̇ ·σ)2nd

− 15

4
(nd ·...v)(nd ·σ̇)σ − (nd ·....v)(nd ·σ)σ

+ 2(nd ·....v)(nd ·σ)2nd − (nd ·σ)(
....
v ·σ)nd

− 9

2
(nd ·σ̇)(

...
v ·σ)nd − 15

2
(nd ·σ̈)(v̈ ·σ)nd

− 11

2
(nd · ...σ)(v̇ ·σ)nd +

37

8
(v̇ ·v̈)(v̇ ·σ)σ − 45

4
(v̇ ·σ)(v̇ ·σ̇)v̇

− 145

12
(v̇ ·σ)(v̈ ·σ)v̇ − 51

4
v̇2(nd ·v̇)(nd ·σ̇)σ

− 31

4
v̇2(nd ·v̈)(nd ·σ)σ +

31

2
v̇2(nd ·v̈)(nd ·σ)2nd

− 15

2
v̇2(nd ·σ)(v̈ ·σ)nd − 18v̇2(nd ·σ̇)(v̇ ·σ)nd

− 57

2
(nd ·v̇)(nd ·v̈)(nd ·σ)2v̇ +

35

4
(nd ·v̇)(nd ·v̈)(v̇ ·σ)σ

+ 5(nd ·v̇)(nd ·σ)(nd · ...σ)nd − 15

2
(nd ·v̇)(nd ·σ)(v̇ ·v̈)σ

+ 28(nd ·v̇)(nd ·σ)(v̇ ·σ)v̈ + 20(nd ·v̇)(nd ·σ)(v̈ ·σ)v̇

+ 15(nd ·v̇)(nd ·σ)2(v̇ ·v̈)nd + 43(nd ·v̇)(nd ·σ̇)(v̇ ·σ)v̇

+ 15(nd ·v̇)(v̇ ·σ)(v̇ ·σ̇)nd +
87

4
(nd ·v̇)(v̇ ·σ)(v̈ ·σ)nd

− 21(nd ·v̇)2(nd ·v̈)(nd ·σ)σ + 78(nd ·v̇)2(nd ·v̈)(nd ·σ)2nd

− 91

4
(nd ·v̇)2(nd ·σ)(nd ·σ̇)v̇ − 27

4
(nd ·v̇)2(nd ·σ)(v̇ ·σ̇)nd

− 69

2
(nd ·v̇)2(nd ·σ)(v̈ ·σ)nd − 51(nd ·v̇)2(nd ·σ̇)(v̇ ·σ)nd

+ 33(nd ·v̇)3(nd ·σ)(nd ·σ̇)nd +
21

2
(nd ·v̈)(nd ·σ)(nd ·σ̈)nd
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+
101

4
(nd ·v̈)(nd ·σ)(v̇ ·σ)v̇ +

15

2
(nd ·...v)(nd ·σ)(nd ·σ̇)nd

− 13

2
(nd ·σ)(v̇ ·v̈)(v̇ ·σ)nd +

51

2
v̇2(nd ·v̇)(nd ·σ)(nd ·σ̇)nd

− 167

2
(nd ·v̇)(nd ·v̈)(nd ·σ)(v̇ ·σ)nd +

1

2
r−2
d r2

s (ns ·v̇)2v̈

− 3

2
r−2
d r2

s (nd ·v̈)(ns ·v̇)2nd − r−2
d r2

s (nd ·σ)2(ns ·v̇)2v̈

+ r−2
d r2

s (ns ·v̇)(ns ·v̈)v̇ +
3

4
r−2
d r2

s (ns ·v̇)2(v̇ ·σ)σ̇

+
3

8
r−2
d r2

s (ns ·v̇)2(v̇ ·σ̇)σ +
1

2
r−2
d r2

s (ns ·v̇)2(v̈ ·σ)σ

− r−2
d r2

s (nd ·v̇)(nd ·σ)(ns ·v̇)2σ̇

− 9

4
r−2
d r2

s (nd ·v̇)(nd ·σ̇)(ns ·v̇)2σ

− 3r−2
d r2

s (nd ·v̇)(ns ·v̇)(ns ·v̈)nd

− 2r−2
d r2

s (nd ·v̈)(nd ·σ)(ns ·v̇)2σ

+ 6r−2
d r2

s (nd ·v̈)(nd ·σ)2(ns ·v̇)2nd

− 7

4
r−2
d r2

s (nd ·σ)(nd ·σ̇)(ns ·v̇)2v̇

− 3

4
r−2
d r2

s (nd ·σ)(ns ·v̇)2(v̇ ·σ̇)nd

− 2r−2
d r2

s (nd ·σ)(ns ·v̇)2(v̈ ·σ)nd

− 2r−2
d r2

s (nd ·σ)2(ns ·v̇)(ns ·v̈)v̇

− 3r−2
d r2

s (nd ·σ̇)(ns ·v̇)2(v̇ ·σ)nd

+ r−2
d r2

s (ns ·v̇)(ns ·v̈)(v̇ ·σ)σ

+ 9r−2
d r2

s (nd ·v̇)(nd ·σ)(nd ·σ̇)(ns ·v̇)2nd

− 4r−2
d r2

s (nd ·v̇)(nd ·σ)(ns ·v̇)(ns ·v̈)σ
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+ 12r−2
d r2

s (nd ·v̇)(nd ·σ)2(ns ·v̇)(ns ·v̈)nd

− 4r−2
d r2

s (nd ·σ)(ns ·v̇)(ns ·v̈)(v̇ ·σ)nd + O(ε),

λ(σ ·∇)Ed
3 = 3r−4

d nd + 6r−4
d (nd ·σ)σ − 15r−4

d (nd ·σ)2nd +
3

2
r−3
d v̇

− 6r−3
d (nd ·v̇)nd − 2r−3

d (nd ·σ)σ̇ − 9

2
r−3
d (nd ·σ)2v̇

− 3r−3
d (nd ·σ̇)σ + 3r−3

d (v̇ ·σ)σ − 9r−3
d (nd ·v̇)(nd ·σ)σ

+ 30r−3
d (nd ·v̇)(nd ·σ)2nd + 12r−3

d (nd ·σ)(nd ·σ̇)nd

− 12r−3
d (nd ·σ)(v̇ ·σ)nd +

3

2
r−4
d rs(ns ·v̇)nd

+ 3r−4
d rs(nd ·σ)(ns ·v̇)σ − 15

2
r−4
d rs(nd ·σ)2(ns ·v̇)nd

− r−2
d v̈ − 3

8
r−2
d v̇2nd − 3

2
r−2
d σ̇2nd − 15

4
r−2
d (nd ·v̇)v̇

+
45

8
r−2
d (nd ·v̇)2nd + 5r−2

d (nd ·v̈)nd +
1

2
r−2
d (nd ·σ)σ̈

+ 2r−2
d (nd ·σ)2v̈ +

3

2
r−2
d (nd ·σ̈)σ − 2r−2

d (v̇ ·σ)σ̇

− 15

4
r−2
d (v̇ ·σ)2nd − 3

2
r−2
d (v̇ ·σ̇)σ − 2r−2

d (v̈ ·σ)σ

− 1

4
r−2
d v̇2(nd ·σ)σ +

9

8
r−2
d v̇2(nd ·σ)2nd

+ 2r−2
d (nd ·v̇)(nd ·σ)σ̇ +

45

4
r−2
d (nd ·v̇)(nd ·σ)2v̇

+ 6r−2
d (nd ·v̇)(nd ·σ̇)σ − 9

2
r−2
d (nd ·v̇)(v̇ ·σ)σ

+
27

4
r−2
d (nd ·v̇)2(nd ·σ)σ − 225

8
r−2
d (nd ·v̇)2(nd ·σ)2nd

+ 7r−2
d (nd ·v̈)(nd ·σ)σ − 20r−2

d (nd ·v̈)(nd ·σ)2nd

+ 3r−2
d (nd ·σ)(nd ·σ̇)v̇ − 9

2
r−2
d (nd ·σ)(nd ·σ̈)nd

− 13

2
r−2
d (nd ·σ)(v̇ ·σ)v̇ + 3r−2

d (nd ·σ)(v̇ ·σ̇)nd
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+ 7r−2
d (nd ·σ)(v̈ ·σ)nd + 9r−2

d (nd ·σ̇)(v̇ ·σ)nd

− 24r−2
d (nd ·v̇)(nd ·σ)(nd ·σ̇)nd

+
51

2
r−2
d (nd ·v̇)(nd ·σ)(v̇ ·σ)nd +

3

8
r−1
d

...
v +

3

16
r−1
d v̇2v̇

− 3

4
r−1
d σ̇2v̇ +

5

2
r−1
d (nd ·v̇)v̈ +

75

16
r−1
d (nd ·v̇)2v̇

− 15

4
r−1
d (nd ·v̇)3nd +

5

2
r−1
d (nd ·v̈)v̇ − 15

8
r−1
d (nd ·...v)nd

− 3

8
r−1
d (nd ·σ)2...v − 1

2
r−1
d (nd · ...σ)σ + r−1

d (v̇ ·v̈)nd

+
5

4
r−1
d (v̇ ·σ)σ̈ − 31

8
r−1
d (v̇ ·σ)2v̇ +

3

4
r−1
d (v̇ ·σ̈)σ

+
7

6
r−1
d (v̈ ·σ)σ̇ + r−1

d (v̈ ·σ̇)σ +
3

4
r−1
d (

...
v ·σ)σ

+
3

2
r−1
d (σ̇ ·σ̈)nd − 39

8
r−1
d v̇2(nd ·v̇)nd − 3

16
r−1
d v̇2(nd ·σ)2v̇

+
19

8
r−1
d v̇2(v̇ ·σ)σ + 3r−1

d σ̇2(nd ·v̇)nd

− 10r−1
d (nd ·v̇)(nd ·v̈)nd − 1

2
r−1
d (nd ·v̇)(nd ·σ)σ̈

− 5r−1
d (nd ·v̇)(nd ·σ)2v̈ − 3r−1

d (nd ·v̇)(nd ·σ̈)σ

+ 3r−1
d (nd ·v̇)(v̇ ·σ)σ̇ +

15

2
r−1
d (nd ·v̇)(v̇ ·σ)2nd

+
9

4
r−1
d (nd ·v̇)(v̇ ·σ̇)σ +

13

4
r−1
d (nd ·v̇)(v̈ ·σ)σ

− r−1
d (nd ·v̇)2(nd ·σ)σ̇ − 225

16
r−1
d (nd ·v̇)2(nd ·σ)2v̇

− 6r−1
d (nd ·v̇)2(nd ·σ̇)σ +

27

8
r−1
d (nd ·v̇)2(v̇ ·σ)σ

− 33

8
r−1
d (nd ·v̇)3(nd ·σ)σ +

75

4
r−1
d (nd ·v̇)3(nd ·σ)2nd

− 11

12
r−1
d (nd ·v̈)(nd ·σ)σ̇ − 5r−1

d (nd ·v̈)(nd ·σ)2v̇

− 19

4
r−1
d (nd ·v̈)(nd ·σ̇)σ +

17

4
r−1
d (nd ·v̈)(v̇ ·σ)σ
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− 9

4
r−1
d (nd ·...v)(nd ·σ)σ +

45

8
r−1
d (nd ·...v)(nd ·σ)2nd

− r−1
d (nd ·σ)(nd ·σ̇)v̈ − 3

4
r−1
d (nd ·σ)(nd ·σ̈)v̇

+ r−1
d (nd ·σ)(nd · ...σ)nd + r−1

d (nd ·σ)(v̇ ·v̈)σ

+ 4r−1
d (nd ·σ)(v̇ ·σ)v̈ − 3

4
r−1
d (nd ·σ)(v̇ ·σ̈)nd

+ 3r−1
d (nd ·σ)(v̈ ·σ)v̇ − r−1

d (nd ·σ)(v̈ ·σ̇)nd

− 9

4
r−1
d (nd ·σ)(

...
v ·σ)nd − 2r−1

d (nd ·σ)2(v̇ ·v̈)nd

+ 6r−1
d (nd ·σ̇)(v̇ ·σ)v̇ − 11

2
r−1
d (nd ·σ̇)(v̈ ·σ)nd

− 21

4
r−1
d (nd ·σ̈)(v̇ ·σ)nd +

9

2
r−1
d (v̇ ·σ)(v̇ ·σ̇)nd

+
11

2
r−1
d (v̇ ·σ)(v̈ ·σ)nd − 49

8
r−1
d v̇2(nd ·v̇)(nd ·σ)σ

+
117

8
r−1
d v̇2(nd ·v̇)(nd ·σ)2nd − 21

4
r−1
d v̇2(nd ·σ)(v̇ ·σ)nd

− 12r−1
d (nd ·v̇)(nd ·v̈)(nd ·σ)σ

+ 40r−1
d (nd ·v̇)(nd ·v̈)(nd ·σ)2nd

− 15

2
r−1
d (nd ·v̇)(nd ·σ)(nd ·σ̇)v̇

+ 9r−1
d (nd ·v̇)(nd ·σ)(nd ·σ̈)nd

+
71

4
r−1
d (nd ·v̇)(nd ·σ)(v̇ ·σ)v̇

− 9

2
r−1
d (nd ·v̇)(nd ·σ)(v̇ ·σ̇)nd

− 16r−1
d (nd ·v̇)(nd ·σ)(v̈ ·σ)nd

− 45

2
r−1
d (nd ·v̇)(nd ·σ̇)(v̇ ·σ)nd

+ 24r−1
d (nd ·v̇)2(nd ·σ)(nd ·σ̇)nd
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− 57

2
r−1
d (nd ·v̇)2(nd ·σ)(v̇ ·σ)nd

+
57

4
r−1
d (nd ·v̈)(nd ·σ)(nd ·σ̇)nd

− 21r−1
d (nd ·v̈)(nd ·σ)(v̇ ·σ)nd +

1

2
r−2
d rs(ns ·v̇)v̈

+
1

2
r−2
d rs(ns ·v̈)v̇ +

3

16
r−2
d rsv̇

2(ns ·v̇)nd

+
3

4
r−2
d rsσ̇

2(ns ·v̇)nd +
15

8
r−2
d rs(nd ·v̇)(ns ·v̇)v̇

− 5

2
r−2
d rs(nd ·v̇)(ns ·v̈)nd − 45

16
r−2
d rs(nd ·v̇)2(ns ·v̇)nd

− 5

2
r−2
d rs(nd ·v̈)(ns ·v̇)nd − 1

4
r−2
d rs(nd ·σ)(ns ·v̇)σ̈

− 1

4
r−2
d rs(nd ·σ)(ns ·v̈)σ̇ − r−2

d rs(nd ·σ)2(ns ·v̇)v̈

− r−2
d rs(nd ·σ)2(ns ·v̈)v̇ − 3

4
r−2
d rs(nd ·σ̇)(ns ·v̈)σ

− 3

4
r−2
d rs(nd ·σ̈)(ns ·v̇)σ + r−2

d rs(ns ·v̇)(v̇ ·σ)σ̇

+
15

8
r−2
d rs(ns ·v̇)(v̇ ·σ)2nd +

3

4
r−2
d rs(ns ·v̇)(v̇ ·σ̇)σ

+ r−2
d rs(ns ·v̇)(v̈ ·σ)σ + r−2

d rs(ns ·v̈)(v̇ ·σ)σ

+
1

8
r−2
d rsv̇

2(nd ·σ)(ns ·v̇)σ − 9

16
r−2
d rsv̇

2(nd ·σ)2(ns ·v̇)nd

− r−2
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)σ̇

− 7

2
r−2
d rs(nd ·v̇)(nd ·σ)(ns ·v̈)σ

− 45

8
r−2
d rs(nd ·v̇)(nd ·σ)2(ns ·v̇)v̇

+ 10r−2
d rs(nd ·v̇)(nd ·σ)2(ns ·v̈)nd

− 3r−2
d rs(nd ·v̇)(nd ·σ̇)(ns ·v̇)σ

+
9

4
r−2
d rs(nd ·v̇)(ns ·v̇)(v̇ ·σ)σ
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− 27

8
r−2
d rs(nd ·v̇)2(nd ·σ)(ns ·v̇)σ

+
225

16
r−2
d rs(nd ·v̇)2(nd ·σ)2(ns ·v̇)nd

− 7

2
r−2
d rs(nd ·v̈)(nd ·σ)(ns ·v̇)σ

+ 10r−2
d rs(nd ·v̈)(nd ·σ)2(ns ·v̇)nd

− 3

2
r−2
d rs(nd ·σ)(nd ·σ̇)(ns ·v̇)v̇

+
9

4
r−2
d rs(nd ·σ)(nd ·σ̇)(ns ·v̈)nd

+
9

4
r−2
d rs(nd ·σ)(nd ·σ̈)(ns ·v̇)nd

+
13

4
r−2
d rs(nd ·σ)(ns ·v̇)(v̇ ·σ)v̇

− 3

2
r−2
d rs(nd ·σ)(ns ·v̇)(v̇ ·σ̇)nd

− 7

2
r−2
d rs(nd ·σ)(ns ·v̇)(v̈ ·σ)nd

− 7

2
r−2
d rs(nd ·σ)(ns ·v̈)(v̇ ·σ)nd

− 9

2
r−2
d rs(nd ·σ̇)(ns ·v̇)(v̇ ·σ)nd

+ 12r−2
d rs(nd ·v̇)(nd ·σ)(nd ·σ̇)(ns ·v̇)nd

− 51

4
r−2
d rs(nd ·v̇)(nd ·σ)(ns ·v̇)(v̇ ·σ)nd − 1

10

....
v − 1

4
v̇2v̈

+
1

2
σ̇2v̈ − 13

4
(nd ·v̇)2v̈ +

1

2
(nd ·....v)nd +

1

4
(v̇ ·v̈)v̇

− 1

2
(v̇ ·σ)

...
σ +

11

4
(v̇ ·σ)2v̈ − 1

4
(v̇ · ...σ)σ − 2

3
(v̈ ·σ)σ̈

− 1

2
(v̈ ·σ̈)σ − 5

12
(
...
v ·σ)σ̇ − 3

8
(
...
v ·σ̇)σ − 1

5
(
....
v ·σ)σ

+
3

4
(σ̇ ·σ̈)v̇ +

7

2
v̇2(nd ·v̈)nd − 2v̇2(v̇ ·σ)σ̇ − 9

8
v̇2(v̇ ·σ̇)σ

− 37

24
v̇2(v̈ ·σ)σ − 9

4
σ̇2(nd ·v̈)nd − 13

2
(nd ·v̇)(nd ·v̈)v̇
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+ (nd ·v̇)(nd · ...σ)σ + 3(nd ·v̇)(v̇ ·v̈)nd − 3(nd ·v̇)(σ̇ ·σ̈)nd

+
45

4
(nd ·v̇)2(nd ·v̈)nd +

13

2
(nd ·v̇)2(nd ·σ)2v̈

− 5

2
(nd ·v̇)2(v̇ ·σ)σ̇ − 15

8
(nd ·v̇)2(v̇ ·σ̇)σ

− 3(nd ·v̇)2(v̈ ·σ)σ +
1

2
(nd ·v̇)3(nd ·σ)σ̇

+
9

2
(nd ·v̇)3(nd ·σ̇)σ +

9

4
(nd ·v̈)(nd ·σ̈)σ

− 25

4
(nd ·v̈)(v̇ ·σ)2nd +

7

4
(nd ·...v)(nd ·σ̇)σ

+
1

2
(nd ·....v)(nd ·σ)σ − (nd ·....v)(nd ·σ)2nd

+
1

2
(nd ·σ)(

....
v ·σ)nd + 2(nd ·σ̇)(

...
v ·σ)nd

+ 3(nd ·σ̈)(v̈ ·σ)nd + 2(nd · ...σ)(v̇ ·σ)nd − 13

8
(v̇ ·v̈)(v̇ ·σ)σ

+
9

2
(v̇ ·σ)(v̇ ·σ̇)v̇ +

59

12
(v̇ ·σ)(v̈ ·σ)v̇

+
21

4
v̇2(nd ·v̇)(nd ·σ̇)σ +

7

2
v̇2(nd ·v̈)(nd ·σ)σ

− 7v̇2(nd ·v̈)(nd ·σ)2nd + 3v̇2(nd ·σ)(v̈ ·σ)nd

+ 6v̇2(nd ·σ̇)(v̇ ·σ)nd + 13(nd ·v̇)(nd ·v̈)(nd ·σ)2v̇

− 27

4
(nd ·v̇)(nd ·v̈)(v̇ ·σ)σ − 2(nd ·v̇)(nd ·σ)(nd · ...σ)nd

+ 3(nd ·v̇)(nd ·σ)(v̇ ·v̈)σ − 12(nd ·v̇)(nd ·σ)(v̇ ·σ)v̈

− 9(nd ·v̇)(nd ·σ)(v̈ ·σ)v̇ − 6(nd ·v̇)(nd ·σ)2(v̇ ·v̈)nd

− 18(nd ·v̇)(nd ·σ̇)(v̇ ·σ)v̇ − 9(nd ·v̇)(v̇ ·σ)(v̇ ·σ̇)nd

− 12(nd ·v̇)(v̇ ·σ)(v̈ ·σ)nd +
51

4
(nd ·v̇)2(nd ·v̈)(nd ·σ)σ

− 45(nd ·v̇)2(nd ·v̈)(nd ·σ)2nd +
39

4
(nd ·v̇)2(nd ·σ)(nd ·σ̇)v̇
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+
15

4
(nd ·v̇)2(nd ·σ)(v̇ ·σ̇)nd +

79

4
(nd ·v̇)2(nd ·σ)(v̈ ·σ)nd

+
117

4
(nd ·v̇)2(nd ·σ̇)(v̇ ·σ)nd

− 18(nd ·v̇)3(nd ·σ)(nd ·σ̇)nd − 9

2
(nd ·v̈)(nd ·σ)(nd ·σ̈)nd

− 23

2
(nd ·v̈)(nd ·σ)(v̇ ·σ)v̇ − 7

2
(nd ·...v)(nd ·σ)(nd ·σ̇)nd

+ (nd ·σ)(v̇ ·v̈)(v̇ ·σ)nd − 21

2
v̇2(nd ·v̇)(nd ·σ)(nd ·σ̇)nd

+
101

2
(nd ·v̇)(nd ·v̈)(nd ·σ)(v̇ ·σ)nd − 1

4
r−2
d r2

s (ns ·v̇)2v̈

+
5

4
r−2
d r2

s (nd ·v̈)(ns ·v̇)2nd +
1

2
r−2
d r2

s (nd ·σ)2(ns ·v̇)2v̈

− 1

2
r−2
d r2

s (ns ·v̇)(ns ·v̈)v̇ − 1

2
r−2
d r2

s (ns ·v̇)2(v̇ ·σ)σ̇

− 3

8
r−2
d r2

s (ns ·v̇)2(v̇ ·σ̇)σ − 1

2
r−2
d r2

s (ns ·v̇)2(v̈ ·σ)σ

+
1

2
r−2
d r2

s (nd ·v̇)(nd ·σ)(ns ·v̇)2σ̇

+
3

2
r−2
d r2

s (nd ·v̇)(nd ·σ̇)(ns ·v̇)2σ

+
5

2
r−2
d r2

s (nd ·v̇)(ns ·v̇)(ns ·v̈)nd

+
7

4
r−2
d r2

s (nd ·v̈)(nd ·σ)(ns ·v̇)2σ

− 5r−2
d r2

s (nd ·v̈)(nd ·σ)2(ns ·v̇)2nd

+
3

4
r−2
d r2

s (nd ·σ)(nd ·σ̇)(ns ·v̇)2v̇

+
3

4
r−2
d r2

s (nd ·σ)(ns ·v̇)2(v̇ ·σ̇)nd

+
7

4
r−2
d r2

s (nd ·σ)(ns ·v̇)2(v̈ ·σ)nd

+ r−2
d r2

s (nd ·σ)2(ns ·v̇)(ns ·v̈)v̇

+
9

4
r−2
d r2

s (nd ·σ̇)(ns ·v̇)2(v̇ ·σ)nd
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− r−2
d r2

s (ns ·v̇)(ns ·v̈)(v̇ ·σ)σ

− 6r−2
d r2

s (nd ·v̇)(nd ·σ)(nd ·σ̇)(ns ·v̇)2nd

+
7

2
r−2
d r2

s (nd ·v̇)(nd ·σ)(ns ·v̇)(ns ·v̈)σ

− 10r−2
d r2

s (nd ·v̇)(nd ·σ)2(ns ·v̇)(ns ·v̈)nd

+
7

2
r−2
d r2

s (nd ·σ)(ns ·v̇)(ns ·v̈)(v̇ ·σ)nd + O(ε),

λ(σ ·∇)Bq
1 = r−2

d v̇×σ + 2r−2
d (nd ·σ)nd×v̇ − r−1

d v̈×σ

− r−1
d (nd ·v̇)v̇×σ − r−1

d (nd ·σ)nd×v̈ + 2r−1
d (v̇ ·σ)nd×v̇

− 2r−1
d (nd ·v̇)(nd ·σ)nd×v̇ +

1

2

...
v×σ +

5

4
v̇2v̇×σ

+
1

2
(nd ·v̇)2v̇×σ − 3(nd ·v̇)(v̇ ·σ)nd×v̇

+ (nd ·v̇)2(nd ·σ)nd×v̇ + O(ε),

λ(σ ·∇)Bq
2 = −r−2

d v̇×σ − 2r−2
d (nd ·σ)nd×v̇ +

1

2
r−1
d v̈×σ

+ r−1
d (nd ·v̇)v̇×σ +

1

2
r−1
d (nd ·σ)nd×v̈ − 2r−1

d (v̇ ·σ)nd×v̇

+ 2r−1
d (nd ·v̇)(nd ·σ)nd×v̇ − 1

6

...
v×σ − 1

4
v̇2v̇×σ

− 1

2
(nd ·v̇)2v̇×σ + 3(nd ·v̇)(v̇ ·σ)nd×v̇

− (nd ·v̇)2(nd ·σ)nd×v̇ + O(ε).

Adding these results together, we find

4πλ(σ ·∇)Eq = r−3
d σ − 3r−3

d (nd ·σ)nd +
1

2
r−2
d (nd ·σ)v̇ − 1

2
r−2
d (v̇ ·σ)nd

+
1

2
r−3
d rs(ns ·v̇)σ − 3

2
r−3
d rs(nd ·σ)(ns ·v̇)nd − 3

8
r−1
d v̇2σ
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− 1

8
r−1
d (nd ·v̇)2σ +

3

4
r−1
d (v̇ ·σ)v̇ +

3

8
r−1
d v̇2(nd ·σ)nd

− 1

4
r−1
d (nd ·v̇)(nd ·σ)v̇ +

1

4
r−1
d (nd ·v̇)(v̇ ·σ)nd

+
3

8
r−1
d (nd ·v̇)2(nd ·σ)nd +

2

3
(v̇ ·v̈)σ − 4

3
(v̇ ·σ)v̈

− 2

3
(v̈ ·σ)v̇ + O(ε),

4πλ(σ ·∇)Ed = 3r−4
d nd + 6r−4

d (nd ·σ)σ − 15r−4
d (nd ·σ)2nd − 1

2
r−3
d v̇

+
3

2
r−3
d (nd ·σ)2v̇ + r−3

d (v̇ ·σ)σ − 3r−3
d (nd ·σ)(v̇ ·σ)nd

+
3

2
r−4
d rs(ns ·v̇)nd + 3r−4

d rs(nd ·σ)(ns ·v̇)σ

− 15

2
r−4
d rs(nd ·σ)2(ns ·v̇)nd − 3

8
r−2
d v̇2nd +

1

2
r−2
d σ̇2nd

+
1

4
r−2
d (nd ·v̇)v̇ − 3

8
r−2
d (nd ·v̇)2nd +

1

2
r−2
d (nd ·σ)σ̈

− 1

2
r−2
d (nd ·σ̈)σ − 1

4
r−2
d (v̇ ·σ)2nd − 3

4
r−2
d v̇2(nd ·σ)σ

+
9

8
r−2
d v̇2(nd ·σ)2nd − 3

4
r−2
d (nd ·v̇)(nd ·σ)2v̇

− 3

4
r−2
d (nd ·v̇)2(nd ·σ)σ +

15

8
r−2
d (nd ·v̇)2(nd ·σ)2nd

+
3

2
r−2
d (nd ·σ)(nd ·σ̈)nd + r−2

d (nd ·σ)(v̇ ·σ)v̇ +
3

8
r−1
d

...
v

+
15

16
r−1
d v̇2v̇ − 3

4
r−1
d σ̇2v̇ − 1

16
r−1
d (nd ·v̇)2v̇

+
1

8
r−1
d (nd ·...v)nd − 3

8
r−1
d (nd ·σ)2...v +

3

4
r−1
d (v̇ ·σ)σ̈

+
3

8
r−1
d (v̇ ·σ)2v̇ − 3

4
r−1
d (v̇ ·σ̈)σ − 1

2
r−1
d (v̈ ·σ̇)σ

− 1

4
r−1
d (

...
v ·σ)σ +

3

8
r−1
d v̇2(nd ·v̇)nd − 15

16
r−1
d v̇2(nd ·σ)2v̇

− 9

8
r−1
d v̇2(v̇ ·σ)σ +

3

16
r−1
d (nd ·v̇)2(nd ·σ)2v̇
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+
1

8
r−1
d (nd ·v̇)2(v̇ ·σ)σ +

1

4
r−1
d (nd ·v̈)(nd ·σ)σ̇

+
1

4
r−1
d (nd ·v̈)(nd ·σ̇)σ +

1

4
r−1
d (nd ·...v)(nd ·σ)σ

− 3

8
r−1
d (nd ·...v)(nd ·σ)2nd − r−1

d (nd ·σ)(nd ·σ̇)v̈

− 3

4
r−1
d (nd ·σ)(nd ·σ̈)v̇ +

3

4
r−1
d (nd ·σ)(v̇ ·σ̈)nd

+
1

2
r−1
d (nd ·σ)(v̈ ·σ̇)nd +

1

4
r−1
d (nd ·σ)(

...
v ·σ)nd

+
1

2
r−1
d (nd ·σ̇)(v̈ ·σ)nd +

3

4
r−1
d (nd ·σ̈)(v̇ ·σ)nd

+
3

4
r−1
d v̇2(nd ·v̇)(nd ·σ)σ − 9

8
r−1
d v̇2(nd ·v̇)(nd ·σ)2nd

+
9

8
r−1
d v̇2(nd ·σ)(v̇ ·σ)nd − 3

4
r−1
d (nd ·v̇)(nd ·σ)(v̇ ·σ)v̇

− 3

8
r−1
d (nd ·v̇)2(nd ·σ)(v̇ ·σ)nd

− 3

4
r−1
d (nd ·v̈)(nd ·σ)(nd ·σ̇)nd +

3

16
r−2
d rsv̇

2(ns ·v̇)nd

− 1

4
r−2
d rsσ̇

2(ns ·v̇)nd − 1

8
r−2
d rs(nd ·v̇)(ns ·v̇)v̇

+
3

16
r−2
d rs(nd ·v̇)2(ns ·v̇)nd − 1

4
r−2
d rs(nd ·σ)(ns ·v̇)σ̈

− 1

4
r−2
d rs(nd ·σ)(ns ·v̈)σ̇ +

1

4
r−2
d rs(nd ·σ̇)(ns ·v̈)σ

+
1

4
r−2
d rs(nd ·σ̈)(ns ·v̇)σ +

1

8
r−2
d rs(ns ·v̇)(v̇ ·σ)2nd

+
3

8
r−2
d rsv̇

2(nd ·σ)(ns ·v̇)σ

− 9

16
r−2
d rsv̇

2(nd ·σ)2(ns ·v̇)nd

+
3

8
r−2
d rs(nd ·v̇)(nd ·σ)2(ns ·v̇)v̇

+
3

8
r−2
d rs(nd ·v̇)2(nd ·σ)(ns ·v̇)σ

− 15

16
r−2
d rs(nd ·v̇)2(nd ·σ)2(ns ·v̇)nd
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− 3

4
r−2
d rs(nd ·σ)(nd ·σ̇)(ns ·v̈)nd

− 3

4
r−2
d rs(nd ·σ)(nd ·σ̈)(ns ·v̇)nd

− 1

2
r−2
d rs(nd ·σ)(ns ·v̇)(v̇ ·σ)v̇ − 4

15

....
v − 2v̇2v̈ +

4

3
σ̇2v̈

− 2(v̇ ·v̈)v̇ − 4

3
(v̇ ·σ)

...
σ − 2

3
(v̇ ·σ)2v̈ +

2

3
(v̇ · ...σ)σ

− 2

3
(v̈ ·σ)σ̈ +

2

3
(v̈ ·σ̈)σ +

1

3
(
...
v ·σ̇)σ +

2

15
(
....
v ·σ)σ

+ 2(σ̇ ·σ̈)v̇ + v̇2(v̇ ·σ̇)σ + v̇2(v̈ ·σ)σ +
7

3
(v̇ ·v̈)(v̇ ·σ)σ

+
2

3
(v̇ ·σ)(v̈ ·σ)v̇ + O(ε),

4πλ(σ ·∇)Bq = −1

2
r−1
d v̈×σ − 1

2
r−1
d (nd ·σ)nd×v̈ +

1

3

...
v×σ + v̇2v̇×σ

+ O(ε).

G.6.23 Radiation reaction self-interactions

Finally, we compute the self-interaction expressions themselves. These are

obtained by means of the relations

P
(n)

ab =
∫

Vd

d 3rd

∫

Vs

d 3rs P
(n)

ab (rd, rs),

F
(n)

ab =
∫

Vd

d 3rd

∫

Vs

d 3rs F
(n)

ab (rd, rs),

N
(n)
ab = N

N(n)
ab + N

F (n)
ab ,

N
N(n)
ab =

∫

Vd

d 3rd

∫

Vs

d 3rs N
N(n)
ab (rd, rs),

N
F (n)
ab =

∫

Vd

d 3rd

∫

Vs

d 3rs r(rd, rs)×F
(n)

ab (rd, rs),

where

P (n)
aq (rd, rs) = 0,
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P
(n)

ad (rd, rs) = σ̇ ·Ea
n(rd, rs),

P (n)
aµ (rd, rs) = σ̇ ·Ba

n(rd, rs),

F (n)
aq (rd, rs) = λEq

n(rd, rs),

F
(n)

ad (rd, rs) = λ(σ ·∇)Ea
n(rd, rs) + (σ ·v̇)Ea

n(rd, rs) + σ̇×Ba
n(rd, rs),

F (n)
aµ (rd, rs) = λ(σ ·∇)Ba

n(rd, rs) + (σ ·v̇)Ba
n(rd, rs)− σ̇×Ea

n(rd, rs)

+ λσ×Ja
n ,

NN(n)
aq (rd, rs) = 0,

N
N(n)
ad (rd, rs) = λσ×Ea

n(rd, rs),

NN(n)
aµ (rd, rs) = λσ×Ba

n(rd, rs),

where n is the inverse power of R of the retarded fields in question (or M for

the Maxwell field of the magnetic dipole), and a and b = q, d or µ.

Note that the cross-interaction terms between µ and d, excepting those

due to the Maxwell magnetic dipole field term, cancel by duality symmetry,

and are therefore not computed.

The non-trivial self-interactions are thus

P
(1)

qd = −2

3
η1(v̇ ·σ̇) +

2

3
η0(v̈ ·σ̇),

P
(2)

qd = 0,

P (1)
qµ = 0,

P (2)
qµ = 0,

P
(1)

dd = −2

3
η1(σ̇ ·σ̈) +

1

15
η1(v̇ ·σ)(v̇ ·σ̇)− 1

15
η0v̇

2σ̇2 − 2

15
η0(v̇ ·σ̇)2

+
2

3
η0(σ̇ · ...σ) +

7

30
η0(v̇ ·σ)(v̈ ·σ̇)− 13

30
η0(v̇ ·σ̇)(v̈ ·σ),

540



P
(2)

dd = − 1

10
η1(v̇ ·σ)(v̇ ·σ̇) +

1

15
η0v̇

2σ̇2 +
2

15
η0(v̇ ·σ̇)2 +

1

10
η0(v̇ ·σ)(v̈ ·σ̇)

+
1

10
η0(v̇ ·σ̇)(v̈ ·σ),

P
(3)

dd = 0,

P (M)
µµ = 0,

F (1)
qq = −2

3
η1v̇ +

2

3
η0v̈,

F (2)
qq =

1

6
η1v̇,

F
(1)

qd = −2

5
η1v̇

2σ +
8

15
η1(v̇ ·σ)v̇ +

13

15
η0(v̇ ·v̈)σ − 29

30
η0(v̇ ·σ)v̈

− 29

30
η0(v̈ ·σ)v̇,

F
(2)

qd = η′3σ +
2

15
η1v̇

2σ − 2

5
η1(v̇ ·σ)v̇ − 1

5
η0(v̇ ·v̈)σ +

3

10
η0(v̇ ·σ)v̈

+
3

10
η0(v̈ ·σ)v̇,

F (1)
qµ =

1

3
η2v̇×σ − 2

3
η1v̇×σ̇ − 2

3
η1v̈×σ +

2

3
η0v̈×σ̇ +

1

2
η0

...
v×σ

+
27

20
η0v̇

2v̇×σ,

F (2)
qµ = −1

3
η2v̇×σ +

1

3
η1v̈×σ − 1

6
η0

...
v×σ − 7

20
η0v̇

2v̇×σ,

F
(1)

dq = −2

3
η1σ̈ +

1

5
η1v̇

2σ +
1

15
η1(v̇ ·σ)v̇ +

2

3
η0

...
σ − 2

15
η0v̇

2σ̇

− 17

30
η0(v̇ ·v̈)σ +

1

10
η0(v̇ ·σ)v̈ − 4

15
η0(v̇ ·σ̇)v̇ − 2

5
η0(v̈ ·σ)v̇,
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F
(2)

dq =
1

15
η1v̇

2σ − 1

5
η1(v̇ ·σ)v̇ +

7

60
η0v̇

2σ̇ − 1

10
η0(v̇ ·v̈)σ +

7

30
η0(v̇ ·σ)v̈

+
19

60
η0(v̇ ·σ̇)v̇ +

1

15
η0(v̈ ·σ)v̇,

F
(3)

dq = −η′3σ +
1

60
η0v̇

2σ̇ − 1

20
η0(v̇ ·σ̇)v̇,

F (1)
µq = −1

3
η1v̇×σ̇ − 1

3
η1v̈×σ +

1

3
η0v̇×σ̈ +

5

6
η0v̈×σ̇ +

1

3
η0

...
v×σ

+
4

5
η0v̇

2v̇×σ,

F (2)
µq =

1

3
η1v̇×σ̇ − 1

3
η0v̇×σ̈ − 1

6
η0v̈×σ̇ +

13

60
η0v̇

2v̇×σ,

F (3)
µq = − 1

60
η0v̇

2v̇×σ,

F
(1)

dd = − 4

15
η2v̈ − 2

15
η2(v̇ ·σ)σ̇ +

1

5
η2(v̇ ·σ̇)σ +

2

15
η2(v̈ ·σ)σ +

8

15
η1

...
v

+
36

35
η1v̇

2v̇ − 14

15
η1σ̇

2v̇ +
3

5
η1(v̇ ·σ)σ̈ − 23

210
η1(v̇ ·σ)2v̇

− 1

3
η1(v̇ ·σ̇)σ̇ − 11

15
η1(v̇ ·σ̈)σ +

1

5
η1(v̈ ·σ)σ̇ − 4

5
η1(v̈ ·σ̇)σ

− 4

15
η1(

...
v ·σ)σ − 149

210
η1v̇

2(v̇ ·σ)σ − 2

5
η0

....
v − 13

5
η0v̇

2v̈ +
7

5
η0σ̇

2v̈

− 13

5
η0(v̇ ·v̈)v̇ − 13

15
η0(v̇ ·σ)

...
σ − 1

6
η0(v̇ ·σ)2v̈ +

1

6
η0(v̇ ·σ̇)σ̈

+
4

5
η0(v̇ · ...σ)σ − 11

15
η0(v̈ ·σ)σ̈ +

5

6
η0(v̈ ·σ̇)σ̇ +

23

30
η0(v̈ ·σ̈)σ

+
1

15
η0(

...
v ·σ)σ̇ +

11

15
η0(

...
v ·σ̇)σ +

1

5
η0(

....
v ·σ)σ +

103

30
η0(σ̇ ·σ̈)v̇

+
18

35
η0v̇

2(v̇ ·σ)σ̇ +
12

7
η0v̇

2(v̇ ·σ̇)σ +
7

5
η0v̇

2(v̈ ·σ)σ

+
7

3
η0(v̇ ·v̈)(v̇ ·σ)σ +

3

7
η0(v̇ ·σ)(v̇ ·σ̇)v̇ +

5

6
η0(v̇ ·σ)(v̈ ·σ)v̇,
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F
(2)

dd = −4

5
η′3v̇ +

2

5
η′3(v̇ ·σ)σ +

4

15
η2v̈ +

1

15
η2(v̇ ·σ)σ̇ − 1

10
η2(v̇ ·σ̇)σ

− 2

15
η2(v̈ ·σ)σ − 4

15
η1

...
v − 26

105
η1v̇

2v̇ +
7

10
η1σ̇

2v̇ − 1

5
η1(v̇ ·σ)σ̈

+
5

21
η1(v̇ ·σ)2v̇ +

1

6
η1(v̇ ·σ̇)σ̇ +

2

15
η1(v̇ ·σ̈)σ +

1

45
η1(v̈ ·σ)σ̇

+
2

15
η1(v̈ ·σ̇)σ +

2

15
η1(

...
v ·σ)σ +

32

105
η1v̇

2(v̇ ·σ)σ +
2

15
η0

....
v

+
71

140
η0v̇

2v̈ − 47

60
η0σ̇

2v̈ +
13

28
η0(v̇ ·v̈)v̇ +

1

6
η0(v̇ ·σ)

...
σ

− 17

84
η0(v̇ ·σ)2v̈ − 1

6
η0(v̇ ·σ̇)σ̈ − 1

12
η0(v̇ · ...σ)σ +

1

30
η0(v̈ ·σ)σ̈

− 1

6
η0(v̈ ·σ̇)σ̇ − 1

20
η0(v̈ ·σ̈)σ − 1

12
η0(

...
v ·σ)σ̇ − 1

24
η0(

...
v ·σ̇)σ

− 1

15
η0(

....
v ·σ)σ − 19

12
η0(σ̇ ·σ̈)v̇ − 41

70
η0v̇

2(v̇ ·σ)σ̇

+
29

70
η0v̇

2(v̇ ·σ̇)σ − 331

840
η0v̇

2(v̈ ·σ)σ − 557

840
η0(v̇ ·v̈)(v̇ ·σ)σ

− 73

140
η0(v̇ ·σ)(v̇ ·σ̇)v̇ − 247

420
η0(v̇ ·σ)(v̈ ·σ)v̇,

F
(3)

dd =
3

10
η′3v̇ −

2

5
η′3(v̇ ·σ)σ +

1

15
η2(v̇ ·σ)σ̇ − 1

10
η2(v̇ ·σ̇)σ − 4

35
η1v̇

2v̇

− 1

10
η1σ̇

2v̇ − 1

15
η1(v̇ ·σ)σ̈ − 13

210
η1(v̇ ·σ)2v̇ +

1

10
η1(v̇ ·σ̈)σ

− 1

45
η1(v̈ ·σ)σ̇ +

1

30
η1(v̈ ·σ̇)σ +

1

210
η1v̇

2(v̇ ·σ)σ +
13

140
η0v̇

2v̈

+
1

20
η0σ̇

2v̈ +
19

140
η0(v̇ ·v̈)v̇ +

1

30
η0(v̇ ·σ)

...
σ +

1

28
η0(v̇ ·σ)2v̈

− 1

20
η0(v̇ · ...σ)σ +

1

30
η0(v̈ ·σ)σ̈ − 1

20
η0(v̈ ·σ̈)σ +

1

60
η0(

...
v ·σ)σ̇

− 1

40
η0(

...
v ·σ̇)σ +

3

20
η0(σ̇ ·σ̈)v̇ +

1

14
η0v̇

2(v̇ ·σ)σ̇

− 9

70
η0v̇

2(v̇ ·σ̇)σ − 1

168
η0v̇

2(v̈ ·σ)σ − 1

280
η0(v̇ ·v̈)(v̇ ·σ)σ

+
13

140
η0(v̇ ·σ)(v̇ ·σ̇)v̇ +

37

420
η0(v̇ ·σ)(v̈ ·σ)v̇,
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F
(M)

µd = −3η′3σ×σ̇,

F (M)
µµ = −3

2
η′3v̇,

NF (1)
qq = 0,

NF (2)
qq = 0,

N
N(1)
qd =

2

3
η1v̇×σ − 2

3
η0v̈×σ,

N
N(2)
qd = −1

6
η1v̇×σ,

N
F (1)
qd = −1

6
η0v̇×σ̇ − 1

6
η0v̈×σ,

N
F (2)
qd = −1

6
η1v̇×σ +

1

6
η0v̇×σ̇ +

1

6
η0v̈×σ,

NN(1)
qµ = 0,

NN(2)
qµ = 0,

NF (1)
qµ =

1

10
η0v̇

2σ − 3

10
η0(v̇ ·σ)v̇,

NF (2)
qµ = −1

3
η1σ̇ − 1

10
η0v̇

2σ +
3

10
η0(v̇ ·σ)v̇,
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N
F (1)
dq =

1

6
η0v̇×σ̇ +

1

6
η0v̈×σ,

N
F (2)
dq =

1

6
η1v̇×σ − 1

4
η0v̇×σ̇ − 1

6
η0v̈×σ,

N
F (3)
dq =

1

12
η0v̇×σ̇,

NF (1)
µq = −1

3
η0σ̈ +

1

10
η0v̇

2σ +
1

30
η0(v̇ ·σ)v̇,

NF (2)
µq = −1

3
η1σ̇ +

1

3
η0σ̈ − 2

15
η0v̇

2σ − 1

10
η0(v̇ ·σ)v̇,

NF (3)
µq =

1

30
η0v̇

2σ +
1

15
η0(v̇ ·σ)v̇,

N
N(1)
dd = −2

3
η1σ×σ̈ − 1

15
η1(v̇ ·σ)v̇×σ +

2

3
η0σ× ...

σ − 2

15
η0v̇

2σ×σ̇

− 1

10
η0(v̇ ·σ)v̈×σ +

4

15
η0(v̇ ·σ̇)v̇×σ +

2

5
η0(v̈ ·σ)v̇×σ,

N
N(2)
dd =

1

5
η1(v̇ ·σ)v̇×σ +

7

60
η0v̇

2σ×σ̇ − 7

30
η0(v̇ ·σ)v̈×σ

− 19

60
η0(v̇ ·σ̇)v̇×σ − 1

15
η0(v̈ ·σ)v̇×σ,

N
N(3)
dd =

1

60
η0v̇

2σ×σ̇ +
1

20
η0(v̇ ·σ̇)v̇×σ,

NN(M)
µµ = 0,
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N
F (1)
dd =

1

10
η1(v̇ ·σ)v̇×σ +

1

20
η0v̇×v̈ +

1

6
η0σ× ...

σ +
1

6
η0σ̇×σ̈

+
43

120
η0v̇

2σ×σ̇ − 11

24
η0(v̇ ·σ)v̇×σ̇ − 3

10
η0(v̇ ·σ)v̈×σ

+
19

120
η0(v̇ ·σ̇)v̇×σ − 1

5
η0(v̈ ·σ)v̇×σ,

N
F (2)
dd = −1

6
η2σ×σ̇ +

1

3
η1σ×σ̈ − 2

15
η1(v̇ ·σ)v̇×σ − 1

20
η0v̇×v̈

− 1

4
η0σ× ...

σ − 1

6
η0σ̇×σ̈ − 59

120
η0v̇

2σ×σ̇ +
97

120
η0(v̇ ·σ)v̇×σ̇

+
13

40
η0(v̇ ·σ)v̈×σ − 5

12
η0(v̇ ·σ̇)v̇×σ +

9

40
η0(v̈ ·σ)v̇×σ,

N
F (3)
dd =

1

6
η2σ×σ̇ − 1

6
η1σ×σ̈ +

1

30
η1(v̇ ·σ)v̇×σ +

1

12
η0σ× ...

σ

+
2

15
η0v̇

2σ×σ̇ − 7

20
η0(v̇ ·σ)v̇×σ̇ − 1

40
η0(v̇ ·σ)v̈×σ

+
31

120
η0(v̇ ·σ̇)v̇×σ − 1

40
η0(v̈ ·σ)v̇×σ.

NF (M)
µµ = 0.

G.6.24 Final results

Adding the results of Section G.6.23 together, and defining

µ̃2 ≡ d 2 + µ2,

we finally find

Pself = −2

3
qdη1(v̇ ·σ̇)− 2

3
µ̃2η1(σ̇ ·σ̈)− 1

30
µ̃2η1(v̇ ·σ)(v̇ ·σ̇)

+
2

3
qdη0(v̈ ·σ̇) +

2

3
µ̃2η0(σ̇ · ...σ) +

1

3
µ̃2η0(v̇ ·σ)(v̈ ·σ̇)

− 1

3
µ̃2η0(v̇ ·σ̇)(v̈ ·σ), (G.64)
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Fself = −3

2
µ2η′3v̇ −

1

2
µ̃2η′3v̇ −

1

2
q2η1v̇ − 2

3
qdη1σ̈ +

4

15
µ̃2η1

...
v +

2

3
µ̃2η1v̇

2v̇

− 1

3
µ̃2η1σ̇

2v̇ +
1

3
µ̃2η1(v̇ ·σ)σ̈ +

1

15
µ̃2η1(v̇ ·σ)2v̇ − 1

6
µ̃2η1(v̇ ·σ̇)σ̇

− 1

2
µ̃2η1(v̇ ·σ̈)σ +

1

5
µ̃2η1(v̈ ·σ)σ̇ − 19

30
µ̃2η1(v̈ ·σ̇)σ

− 2

15
µ̃2η1(

...
v ·σ)σ − 2

5
µ̃2η1v̇

2(v̇ ·σ)σ +
2

3
q2η0v̈ +

2

3
qdη0

...
σ

− 1

3
qdη0(v̇ ·σ)v̈ − qdη0(v̈ ·σ)v̇ − 4

15
µ̃2η0

....
v − 2µ̃2η0v̇

2v̈

+
2

3
µ̃2η0σ̇

2v̈ − 2µ̃2η0(v̇ ·v̈)v̇ − 2

3
µ̃2η0(v̇ ·σ)

...
σ − 1

3
µ̃2η0(v̇ ·σ)2v̈

+
2

3
µ̃2η0(v̇ · ...σ)σ − 2

3
µ̃2η0(v̈ ·σ)σ̈ +

2

3
µ̃2η0(v̈ ·σ̇)σ̇

+
2

3
µ̃2η0(v̈ ·σ̈)σ +

2

3
µ̃2η0(

...
v ·σ̇)σ +

2

15
µ̃2η0(

....
v ·σ)σ

+ 2µ̃2η0(σ̇ ·σ̈)v̇ + 2µ̃2η0v̇
2(v̇ ·σ̇)σ + µ̃2η0v̇

2(v̈ ·σ)σ

+
5

3
µ̃2η0(v̇ ·v̈)(v̇ ·σ)σ +

1

3
µ̃2η0(v̇ ·σ)(v̈ ·σ)v̇

− 3dµη′3σ×σ̇ − 2

3
qµη1v̇×σ̇ − 2

3
qµη1v̈×σ +

4

3
qµη0v̈×σ̇

+
2

3
qµη0

...
v×σ + 2qµη0v̇

2v̇×σ, (G.65)

Nself = −2

3
qµη1σ̇

+
1

2
qdη1v̇×σ − 1

2
µ̃2η1σ×σ̈ +

2

15
µ̃2η1(v̇ ·σ)v̇×σ − 2

3
qdη0v̈×σ

+
2

3
µ̃2η0σ× ...

σ − 1

3
µ̃2η0(v̇ ·σ)v̈×σ +

1

3
µ̃2η0(v̈ ·σ)v̇×σ. (G.66)

G.7 test3int: Testing of 3-d integrations
% t3outth.txt

%

% (C) Copyright 1992, 1993, 1994 John P. Costella.

%

% LaTeX output from C program.
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% ID string: Test 3-d integrations.

This is a vector expression:

rd n

+rd^{-2}n

+\half rd^{-1}a

-\threehalves rd^{-1}(n.a)n.

This is (dummy.del) of the expression:

dummy

+rd^{-3}dummy

-3rd^{-3}(n.dummy)n

-\half rd^{-2}(n.dummy)a

-\threehalves rd^{-2}(n.a)dummy

-\threehalves rd^{-2}(a.dummy)n

+\ninehalves rd^{-2}(n.a)(n.dummy)n.

This is the divergence of the vector expression:

3

+3rd^{-3}

-3rd^{-3}n^2

-\half rd^{-2}(n.a)

-6rd^{-2}(n.a)

+\ninehalves rd^{-2}n^2(n.a).

This is an axial expression:

-rd^{-2}n*a

-\half rd^{-1}a*b

+\half rd^{-1}c*d

+\half rd^{-1}(n.b)n*a

+\half rd^{-1}(n.d)n*c

+rd^{-1}(n.a)n*b.

This is (dummy.del) of the expression:

rd^{-3}a*dummy

+3rd^{-3}(n.dummy)n*a

+\half rd^{-2}(n.dummy)a*b

-\half rd^{-2}(n.dummy)c*d

-\half rd^{-2}(n.b)a*dummy

+\half rd^{-2}(b.dummy)n*a

-\threehalves rd^{-2}(n.b)(n.dummy)n*a

-\half rd^{-2}(n.d)c*dummy

+\half rd^{-2}(d.dummy)n*c

-\threehalves rd^{-2}(n.d)(n.dummy)n*c

-rd^{-2}(n.a)b*dummy

+rd^{-2}(a.dummy)n*b

-3rd^{-2}(n.a)(n.dummy)n*b.

This is the divergence of the axial expression:

\half rd^{-2}n.a*b

-\half rd^{-2}n.c*d

+\half rd^{-2}n.a*b

+\half rd^{-2}n.c*d
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-rd^{-2}n.a*b.

This is the initial scalar expression:

1

+(n.a)

+(n.b)^2

+(n.c)^3

+(n.d)^{-1}

+(n.e)(n.f)

+(n.g)(n.h)(n.i)

+(n.j)(n.k)(n.l)(n.m)

+(n.o)^2(n.p)(n.q)

+(n.r)(n.s)^2(n.t)

+(n.u)(n.v)(n.w)^2

+(n.x)^2(n.y)^2

+(n.a)^2(n.b)(n.z)^2

+(n.c)^4

+(ns.a)

+rd^{-2}rs^2(ns.b)(ns.c)

+(ns.d)(ns.e)(ns.f)

+rd^{-2}rs^2(ns.g)^2

+rd^{-2}rs^2(n.j)(n.k)(ns.h)(ns.i)

+(n.a)^6

+(n.c)^3(n.d)^3

+(n.e)^2(n.f)(n.g)^2(n.h)

+(n.i)(n.j)(n.k)(n.l)(n.m)(n.o)

+rd^{-2}rs^2(n.p)(n.q)(n.r)(n.s)(ns.t)(ns.u)

+rd^{-3}rs^2(ns.v)(ns.w)

+rd^{-3}rs^2(n.a)(n.z)(ns.x)(ns.y)

+rd^{-3}

+rd^{-3}(n.a)(n.b)

+rd^{-3}(n.c)(n.d)(n.e)(n.f).

This is the scalar expression with odd terms deleted:

1

+(n.b)^2

+(n.e)(n.f)

+(n.j)(n.k)(n.l)(n.m)

+(n.o)^2(n.p)(n.q)

+(n.r)(n.s)^2(n.t)

+(n.u)(n.v)(n.w)^2

+(n.x)^2(n.y)^2

+(n.c)^4

+rd^{-2}rs^2(ns.b)(ns.c)

+rd^{-2}rs^2(ns.g)^2

+rd^{-2}rs^2(n.j)(n.k)(ns.h)(ns.i)

+(n.a)^6

+(n.c)^3(n.d)^3

+(n.e)^2(n.f)(n.g)^2(n.h)

+(n.i)(n.j)(n.k)(n.l)(n.m)(n.o)

+rd^{-2}rs^2(n.p)(n.q)(n.r)(n.s)(ns.t)(ns.u)

+rd^{-3}rs^2(ns.v)(ns.w)

+rd^{-3}rs^2(n.a)(n.z)(ns.x)(ns.y)

+rd^{-3}
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+rd^{-3}(n.a)(n.b)

+rd^{-3}(n.c)(n.d)(n.e)(n.f).

This is the integrated scalar expression:

1

+\third b^2

+\third(e.f)

+\fifteenth(j.k)(l.m)

+\fifteenth(j.l)(k.m)

+\fifteenth(j.m)(k.l)

+\fifteenth o^2(p.q)

+\twofifteenths(o.p)(o.q)

+\fifteenth s^2(r.t)

+\twofifteenths(r.s)(s.t)

+\fifteenth w^2(u.v)

+\twofifteenths(u.w)(v.w)

+\fifteenth x^2y^2

+\twofifteenths(x.y)^2

+\fifth c^4

+\fourthirds(b.c)

+\fourthirds g^2

+\sevenfifteenths(h.i)(j.k)

-\f{1}{30}(h.j)(i.k)

-\f{1}{30}(h.k)(i.j)

+\f{1}{7}a^6

+\f{2}{35}(c.d)^3

+\f{3}{35}c^2d^2(c.d)

+\f{1}{105}e^2g^2(f.h)

+\f{2}{105}(e.g)^2(f.h)

+\f{2}{105}e^2(f.g)(g.h)

+\f{2}{105}g^2(e.f)(e.h)

+\f{4}{105}(e.f)(e.g)(g.h)

+\f{4}{105}(e.g)(e.h)(f.g)

+\f{1}{105}(i.j)(k.l)(m.o)

+\f{1}{105}(i.j)(k.m)(l.o)

+\f{1}{105}(i.j)(k.o)(l.m)

+\f{1}{105}(i.k)(j.l)(m.o)

+\f{1}{105}(i.k)(j.m)(l.o)

+\f{1}{105}(i.k)(j.o)(l.m)

+\f{1}{105}(i.l)(j.k)(m.o)

+\f{1}{105}(i.l)(j.m)(k.o)

+\f{1}{105}(i.l)(j.o)(k.m)

+\f{1}{105}(i.m)(j.k)(l.o)

+\f{1}{105}(i.m)(j.l)(k.o)

+\f{1}{105}(i.m)(j.o)(k.l)

+\f{1}{105}(i.o)(j.k)(l.m)

+\f{1}{105}(i.o)(j.l)(k.m)

+\f{1}{105}(i.o)(j.m)(k.l)

+\f{2}{21}(p.q)(r.s)(t.u)

-\f{1}{210}(p.q)(r.t)(s.u)

-\f{1}{210}(p.q)(r.u)(s.t)

+\f{2}{21}(p.r)(q.s)(t.u)

-\f{1}{210}(p.r)(q.t)(s.u)

-\f{1}{210}(p.r)(q.u)(s.t)

+\f{2}{21}(p.s)(q.r)(t.u)
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-\f{1}{210}(p.s)(q.t)(r.u)

-\f{1}{210}(p.s)(q.u)(r.t)

-\f{1}{210}(p.t)(q.r)(s.u)

-\f{1}{210}(p.t)(q.s)(r.u)

-\f{1}{210}(p.t)(q.u)(r.s)

-\f{1}{210}(p.u)(q.r)(s.t)

-\f{1}{210}(p.u)(q.s)(r.t)

-\f{1}{210}(p.u)(q.t)(r.s)

+rd^{-11}(v.w)

-\third rd^{-1}(v.w)

+\third rd^{-11}(a.z)(x.y)

-\fifteenth rd^{-1}(a.x)(y.z)

-\fifteenth rd^{-1}(a.y)(x.z)

-\fifteenth rd^{-1}(a.z)(x.y)

-7eta’

+3eta’’

-\f{8}{3}eta’(a.b)

+eta’’(a.b)

-\f{43}{75}eta’(c.d)(e.f)

-\f{43}{75}eta’(c.e)(d.f)

-\f{43}{75}eta’(c.f)(d.e)

+\fifth eta’’(c.d)(e.f)

+\fifth eta’’(c.e)(d.f)

+\fifth eta’’(c.f)(d.e).

This is the initial vector expression:

a

+n

+(n.b)c

+(n.d)^2e

+(n.f)^3g

+(n.h)^{-1}i

+(n.j)(n.k)l

+(n.m)(n.o)(n.p)q

+(n.r)(n.s)(n.t)(n.u)v

+(n.w)^2(n.x)(n.y)z

+(n.a)(n.b)^2(n.c)d

+(n.e)(n.f)(n.g)^2h

+(n.i)^2(n.j)^2k

+(n.l)^2(n.m)(n.o)^2p

+(n.q)^4r

+(n.s)n

+(n.t)^2n

+(n.u)^3n

+(n.v)^4n

+(n.w)(n.x)n

+(n.a)(n.y)(n.z)n

+(n.b)(n.c)(n.d)(n.e)n

+(n.f)^2(n.g)n

+(n.h)(n.i)^2n

+ns

+rd^{-2}rs^2(ns.j)ns

+(ns.k)(ns.l)ns

+rd^{-2}rs^2(n.m)(n.o)(ns.p)ns
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+(n.q)(n.r)(ns.s)(ns.t)ns

+(ns.u)v

+rd^{-2}rs^2(ns.w)(ns.x)y

+(ns.a)(ns.b)(ns.z)c

+rd^{-2}rs^2(n.d)(n.e)(ns.f)(ns.g)h

+(n.b)^6a

+(n.c)^3(n.d)^3a

+(n.e)^2(n.f)(n.g)^2(n.h)a

+(n.i)(n.j)(n.k)(n.l)(n.m)(n.o)a

+rd^{-2}rs^2(n.p)(n.q)(n.r)(n.s)(ns.t)(ns.u)a

+(n.p)^5n

+(n.q)^3(n.r)^2n

+(n.s)^2(n.t)(n.u)(n.v)n

+(n.a)(n.w)(n.x)(n.y)(n.z)n

+rd^{-2}rs^2(n.b)(n.c)(n.d)(ns.e)(ns.f)n

+rd^{-3}rs^2(ns.v)(ns.w)b

+rd^{-3}rs^2(n.a)(n.z)(ns.x)(ns.y)b

+rd^{-3}rs^2(ns.b)ns

+rd^{-3}rs^2(n.d)(n.e)(ns.c)ns.

This is the vector expression with odd terms deleted:

a

+(n.d)^2e

+(n.j)(n.k)l

+(n.r)(n.s)(n.t)(n.u)v

+(n.w)^2(n.x)(n.y)z

+(n.a)(n.b)^2(n.c)d

+(n.e)(n.f)(n.g)^2h

+(n.i)^2(n.j)^2k

+(n.q)^4r

+(n.s)n

+(n.u)^3n

+(n.a)(n.y)(n.z)n

+(n.f)^2(n.g)n

+(n.h)(n.i)^2n

+rd^{-2}rs^2(ns.j)ns

+rd^{-2}rs^2(n.m)(n.o)(ns.p)ns

+rd^{-2}rs^2(ns.w)(ns.x)y

+rd^{-2}rs^2(n.d)(n.e)(ns.f)(ns.g)h

+(n.b)^6a

+(n.c)^3(n.d)^3a

+(n.e)^2(n.f)(n.g)^2(n.h)a

+(n.i)(n.j)(n.k)(n.l)(n.m)(n.o)a

+rd^{-2}rs^2(n.p)(n.q)(n.r)(n.s)(ns.t)(ns.u)a

+(n.p)^5n

+(n.q)^3(n.r)^2n

+(n.s)^2(n.t)(n.u)(n.v)n

+(n.a)(n.w)(n.x)(n.y)(n.z)n

+rd^{-2}rs^2(n.b)(n.c)(n.d)(ns.e)(ns.f)n

+rd^{-3}rs^2(ns.v)(ns.w)b

+rd^{-3}rs^2(n.a)(n.z)(ns.x)(ns.y)b

+rd^{-3}rs^2(ns.b)ns

+rd^{-3}rs^2(n.d)(n.e)(ns.c)ns.

This is the integrated vector expression:
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a

+\third d^2e

+\third(j.k)l

+\fifteenth(r.s)(t.u)v

+\fifteenth(r.t)(s.u)v

+\fifteenth(r.u)(s.t)v

+\fifteenth w^2(x.y)z

+\twofifteenths(w.x)(w.y)z

+\fifteenth b^2(a.c)d

+\twofifteenths(a.b)(b.c)d

+\fifteenth g^2(e.f)h

+\twofifteenths(e.g)(f.g)h

+\fifteenth i^2j^2k

+\twofifteenths(i.j)^2k

+\fifth q^4r

+\third s

+\fifth u^2u

+\fifteenth(a.y)z

+\fifteenth(a.z)y

+\fifteenth(y.z)a

+\fifteenth f^2g

+\twofifteenths(f.g)f

+\fifteenth i^2h

+\twofifteenths(h.i)i

+\fourthirds j

+\sevenfifteenths(m.o)p

-\f{1}{30}(m.p)o

-\f{1}{30}(o.p)m

+\fourthirds(w.x)y

+\sevenfifteenths(d.e)(f.g)h

-\f{1}{30}(d.f)(e.g)h

-\f{1}{30}(d.g)(e.f)h

+\f{1}{7}b^6a

+\f{2}{35}(c.d)^3a

+\f{3}{35}c^2d^2(c.d)a

+\f{1}{105}e^2g^2(f.h)a

+\f{2}{105}(e.g)^2(f.h)a

+\f{2}{105}e^2(f.g)(g.h)a

+\f{2}{105}g^2(e.f)(e.h)a

+\f{4}{105}(e.f)(e.g)(g.h)a

+\f{4}{105}(e.g)(e.h)(f.g)a

+\f{1}{105}(i.j)(k.l)(m.o)a

+\f{1}{105}(i.j)(k.m)(l.o)a

+\f{1}{105}(i.j)(k.o)(l.m)a

+\f{1}{105}(i.k)(j.l)(m.o)a

+\f{1}{105}(i.k)(j.m)(l.o)a

+\f{1}{105}(i.k)(j.o)(l.m)a

+\f{1}{105}(i.l)(j.k)(m.o)a

+\f{1}{105}(i.l)(j.m)(k.o)a

+\f{1}{105}(i.l)(j.o)(k.m)a

+\f{1}{105}(i.m)(j.k)(l.o)a

+\f{1}{105}(i.m)(j.l)(k.o)a

+\f{1}{105}(i.m)(j.o)(k.l)a

+\f{1}{105}(i.o)(j.k)(l.m)a

+\f{1}{105}(i.o)(j.l)(k.m)a
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+\f{1}{105}(i.o)(j.m)(k.l)a

+\f{2}{21}(p.q)(r.s)(t.u)a

-\f{1}{210}(p.q)(r.t)(s.u)a

-\f{1}{210}(p.q)(r.u)(s.t)a

+\f{2}{21}(p.r)(q.s)(t.u)a

-\f{1}{210}(p.r)(q.t)(s.u)a

-\f{1}{210}(p.r)(q.u)(s.t)a

+\f{2}{21}(p.s)(q.r)(t.u)a

-\f{1}{210}(p.s)(q.t)(r.u)a

-\f{1}{210}(p.s)(q.u)(r.t)a

-\f{1}{210}(p.t)(q.r)(s.u)a

-\f{1}{210}(p.t)(q.s)(r.u)a

-\f{1}{210}(p.t)(q.u)(r.s)a

-\f{1}{210}(p.u)(q.r)(s.t)a

-\f{1}{210}(p.u)(q.s)(r.t)a

-\f{1}{210}(p.u)(q.t)(r.s)a

+\f{1}{7}p^4p

+\f{1}{35}q^2r^2q

+\f{2}{35}(q.r)^2q

+\f{2}{35}q^2(q.r)r

+\f{1}{105}s^2(t.u)v

+\f{1}{105}s^2(t.v)u

+\f{1}{105}s^2(u.v)t

+\f{2}{105}(s.t)(s.u)v

+\f{2}{105}(s.t)(s.v)u

+\f{2}{105}(s.t)(u.v)s

+\f{2}{105}(s.u)(s.v)t

+\f{2}{105}(s.u)(t.v)s

+\f{2}{105}(s.v)(t.u)s

+\f{1}{105}(a.w)(x.y)z

+\f{1}{105}(a.w)(x.z)y

+\f{1}{105}(a.w)(y.z)x

+\f{1}{105}(a.x)(w.y)z

+\f{1}{105}(a.x)(w.z)y

+\f{1}{105}(a.x)(y.z)w

+\f{1}{105}(a.y)(w.x)z

+\f{1}{105}(a.y)(w.z)x

+\f{1}{105}(a.y)(x.z)w

+\f{1}{105}(a.z)(w.x)y

+\f{1}{105}(a.z)(w.y)x

+\f{1}{105}(a.z)(x.y)w

+\f{1}{105}(w.x)(y.z)a

+\f{1}{105}(w.y)(x.z)a

+\f{1}{105}(w.z)(x.y)a

-\f{1}{210}(b.c)(d.e)f

-\f{1}{210}(b.c)(d.f)e

+\f{2}{21}(b.c)(e.f)d

-\f{1}{210}(b.d)(c.e)f

-\f{1}{210}(b.d)(c.f)e

+\f{2}{21}(b.d)(e.f)c

-\f{1}{210}(b.e)(c.d)f

-\f{1}{210}(b.e)(c.f)d

-\f{1}{210}(b.e)(d.f)c

-\f{1}{210}(b.f)(c.d)e

-\f{1}{210}(b.f)(c.e)d
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-\f{1}{210}(b.f)(d.e)c

+\f{2}{21}(c.d)(e.f)b

-\f{1}{210}(c.e)(d.f)b

-\f{1}{210}(c.f)(d.e)b

+rd^{-11}(v.w)b

-\third rd^{-1}(v.w)b

+\third rd^{-11}(a.z)(x.y)b

-\fifteenth rd^{-1}(a.x)(y.z)b

-\fifteenth rd^{-1}(a.y)(x.z)b

-\fifteenth rd^{-1}(a.z)(x.y)b

+rd^{-11}b

-\third rd^{-1}b

+\third rd^{-11}(d.e)c

-\fifteenth rd^{-1}(c.d)e

-\fifteenth rd^{-1}(c.e)d

-\fifteenth rd^{-1}(d.e)c.

This is the initial axial expression:

a*b

+n*c

+(n.d)e*f

+(n.g)^2h*i

+(n.j)^3k*l

+(n.m)^{-1}o*p

+(n.q)(n.r)s*t

+(n.u)(n.v)(n.w)x*y

+(n.a)(n.b)(n.c)(n.z)d*e

+(n.f)^2(n.g)(n.h)i*j

+(n.k)(n.l)^2(n.m)o*p

+(n.q)(n.r)(n.s)^2t*u

+(n.v)^2(n.w)^2x*y

+(n.a)(n.b)^2(n.z)^2c*d

+(n.e)^4f*g

+(n.h)n*i

+(n.j)^2n*k

+(n.l)^3n*m

+(n.o)^4n*p

+(n.q)(n.r)n*s

+(n.t)(n.u)(n.v)n*w

+(n.a)(n.x)(n.y)(n.z)n*b

+(n.c)^2(n.d)n*e

+(n.f)(n.g)^2n*h

+(n.h)a’*n

+(n.j)^2a’*n

+(n.l)^3a’*n

+(n.o)^4a’*n

+(n.q)(n.r)a’*n

+(n.t)(n.u)(n.v)a’*n

+(n.a)(n.x)(n.y)(n.z)a’*n

+(n.c)^2(n.d)a’*n

+(n.f)(n.g)^2a’*n

+(ns.h)i*j

+rd^{-2}rs^2(ns.k)(ns.l)m*o

+(ns.p)(ns.q)(ns.r)s*t
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+rd^{-2}rs^2(n.u)(n.v)(ns.w)(ns.x)y*z

+ns*a

+rd^{-2}rs^2(ns.j)ns*a

+(ns.k)(ns.l)ns*a

+rd^{-2}rs^2(n.m)(n.o)(ns.p)ns*a

+(n.q)(n.r)(ns.s)(ns.t)ns*a

+a’*ns

+rd^{-2}rs^2(ns.j)a’*ns

+(ns.k)(ns.l)a’*ns

+rd^{-2}rs^2(n.m)(n.o)(ns.p)a’*ns

+(n.q)(n.r)(ns.s)(ns.t)a’*ns

+(n.b)^6a*b

+(n.c)^3(n.d)^3a*b

+(n.e)^2(n.f)(n.g)^2(n.h)a*b

+(n.i)(n.j)(n.k)(n.l)(n.m)(n.o)a*b

+rd^{-2}rs^2(n.p)(n.q)(n.r)(n.s)(ns.t)(ns.u)a*b

+(n.p)^5n*b

+(n.q)^3(n.r)^2n*b

+(n.s)^2(n.t)(n.u)(n.v)n*b

+(n.a)(n.w)(n.x)(n.y)(n.z)n*b

+rd^{-2}rs^2(n.b)(n.c)(n.d)(ns.e)(ns.f)n*b

+(n.p)^5a’*n

+(n.q)^3(n.r)^2a’*n

+(n.s)^2(n.t)(n.u)(n.v)a’*n

+(n.a)(n.w)(n.x)(n.y)(n.z)a’*n

+rd^{-2}rs^2(n.b)(n.c)(n.d)(ns.e)(ns.f)a’*n.

This is the axial expression with odd terms deleted:

a*b

+(n.g)^2h*i

+(n.q)(n.r)s*t

+(n.a)(n.b)(n.c)(n.z)d*e

+(n.f)^2(n.g)(n.h)i*j

+(n.k)(n.l)^2(n.m)o*p

+(n.q)(n.r)(n.s)^2t*u

+(n.v)^2(n.w)^2x*y

+(n.e)^4f*g

+(n.h)n*i

+(n.l)^3n*m

+(n.t)(n.u)(n.v)n*w

+(n.c)^2(n.d)n*e

+(n.f)(n.g)^2n*h

+(n.h)a’*n

+(n.l)^3a’*n

+(n.t)(n.u)(n.v)a’*n

+(n.c)^2(n.d)a’*n

+(n.f)(n.g)^2a’*n

+rd^{-2}rs^2(ns.k)(ns.l)m*o

+rd^{-2}rs^2(n.u)(n.v)(ns.w)(ns.x)y*z

+rd^{-2}rs^2(ns.j)ns*a

+rd^{-2}rs^2(n.m)(n.o)(ns.p)ns*a

+rd^{-2}rs^2(ns.j)a’*ns

+rd^{-2}rs^2(n.m)(n.o)(ns.p)a’*ns

+(n.b)^6a*b

+(n.c)^3(n.d)^3a*b

556



+(n.e)^2(n.f)(n.g)^2(n.h)a*b

+(n.i)(n.j)(n.k)(n.l)(n.m)(n.o)a*b

+rd^{-2}rs^2(n.p)(n.q)(n.r)(n.s)(ns.t)(ns.u)a*b

+(n.p)^5n*b

+(n.q)^3(n.r)^2n*b

+(n.s)^2(n.t)(n.u)(n.v)n*b

+(n.a)(n.w)(n.x)(n.y)(n.z)n*b

+rd^{-2}rs^2(n.b)(n.c)(n.d)(ns.e)(ns.f)n*b

+(n.p)^5a’*n

+(n.q)^3(n.r)^2a’*n

+(n.s)^2(n.t)(n.u)(n.v)a’*n

+(n.a)(n.w)(n.x)(n.y)(n.z)a’*n

+rd^{-2}rs^2(n.b)(n.c)(n.d)(ns.e)(ns.f)a’*n.

This is the integrated axial expression:

a*b

+\third g^2h*i

+\third(q.r)s*t

+\fifteenth(a.b)(c.z)d*e

+\fifteenth(a.c)(b.z)d*e

+\fifteenth(a.z)(b.c)d*e

+\fifteenth f^2(g.h)i*j

+\twofifteenths(f.g)(f.h)i*j

+\fifteenth l^2(k.m)o*p

+\twofifteenths(k.l)(l.m)o*p

+\fifteenth s^2(q.r)t*u

+\twofifteenths(q.s)(r.s)t*u

+\fifteenth v^2w^2x*y

+\twofifteenths(v.w)^2x*y

+\fifth e^4f*g

+\third h*i

+\fifth l^2l*m

+\fifteenth(t.u)v*w

+\fifteenth(t.v)u*w

+\fifteenth(u.v)t*w

+\fifteenth c^2d*e

+\twofifteenths(c.d)c*e

+\fifteenth g^2f*h

+\twofifteenths(f.g)g*h

+\third a’*h

+\fifth l^2a’*l

+\fifteenth(t.u)a’*v

+\fifteenth(t.v)a’*u

+\fifteenth(u.v)a’*t

+\fifteenth c^2a’*d

+\twofifteenths(c.d)a’*c

+\fifteenth g^2a’*f

+\twofifteenths(f.g)a’*g

+\fourthirds(k.l)m*o

+\sevenfifteenths(u.v)(w.x)y*z

-\f{1}{30}(u.w)(v.x)y*z

-\f{1}{30}(u.x)(v.w)y*z

-\fourthirds a*j

-\sevenfifteenths(m.o)a*p

+\f{1}{30}(m.p)a*o
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+\f{1}{30}(o.p)a*m

+\fourthirds a’*j

+\sevenfifteenths(m.o)a’*p

-\f{1}{30}(m.p)a’*o

-\f{1}{30}(o.p)a’*m

+\f{1}{7}b^6a*b

+\f{2}{35}(c.d)^3a*b

+\f{3}{35}c^2d^2(c.d)a*b

+\f{1}{105}e^2g^2(f.h)a*b

+\f{2}{105}(e.g)^2(f.h)a*b

+\f{2}{105}e^2(f.g)(g.h)a*b

+\f{2}{105}g^2(e.f)(e.h)a*b

+\f{4}{105}(e.f)(e.g)(g.h)a*b

+\f{4}{105}(e.g)(e.h)(f.g)a*b

+\f{1}{105}(i.j)(k.l)(m.o)a*b

+\f{1}{105}(i.j)(k.m)(l.o)a*b

+\f{1}{105}(i.j)(k.o)(l.m)a*b

+\f{1}{105}(i.k)(j.l)(m.o)a*b

+\f{1}{105}(i.k)(j.m)(l.o)a*b

+\f{1}{105}(i.k)(j.o)(l.m)a*b

+\f{1}{105}(i.l)(j.k)(m.o)a*b

+\f{1}{105}(i.l)(j.m)(k.o)a*b

+\f{1}{105}(i.l)(j.o)(k.m)a*b

+\f{1}{105}(i.m)(j.k)(l.o)a*b

+\f{1}{105}(i.m)(j.l)(k.o)a*b

+\f{1}{105}(i.m)(j.o)(k.l)a*b

+\f{1}{105}(i.o)(j.k)(l.m)a*b

+\f{1}{105}(i.o)(j.l)(k.m)a*b

+\f{1}{105}(i.o)(j.m)(k.l)a*b

+\f{2}{21}(p.q)(r.s)(t.u)a*b

-\f{1}{210}(p.q)(r.t)(s.u)a*b

-\f{1}{210}(p.q)(r.u)(s.t)a*b

+\f{2}{21}(p.r)(q.s)(t.u)a*b

-\f{1}{210}(p.r)(q.t)(s.u)a*b

-\f{1}{210}(p.r)(q.u)(s.t)a*b

+\f{2}{21}(p.s)(q.r)(t.u)a*b

-\f{1}{210}(p.s)(q.t)(r.u)a*b

-\f{1}{210}(p.s)(q.u)(r.t)a*b

-\f{1}{210}(p.t)(q.r)(s.u)a*b

-\f{1}{210}(p.t)(q.s)(r.u)a*b

-\f{1}{210}(p.t)(q.u)(r.s)a*b

-\f{1}{210}(p.u)(q.r)(s.t)a*b

-\f{1}{210}(p.u)(q.s)(r.t)a*b

-\f{1}{210}(p.u)(q.t)(r.s)a*b

-\f{1}{7}p^4b*p

-\f{1}{35}q^2r^2b*q

-\f{2}{35}(q.r)^2b*q

-\f{2}{35}q^2(q.r)b*r

-\f{1}{105}s^2(t.u)b*v

-\f{1}{105}s^2(t.v)b*u

-\f{1}{105}s^2(u.v)b*t

-\f{2}{105}(s.t)(s.u)b*v

-\f{2}{105}(s.t)(s.v)b*u

-\f{2}{105}(s.t)(u.v)b*s

-\f{2}{105}(s.u)(s.v)b*t
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-\f{2}{105}(s.u)(t.v)b*s

-\f{2}{105}(s.v)(t.u)b*s

-\f{1}{105}(a.w)(x.y)b*z

-\f{1}{105}(a.w)(x.z)b*y

-\f{1}{105}(a.w)(y.z)b*x

-\f{1}{105}(a.x)(w.y)b*z

-\f{1}{105}(a.x)(w.z)b*y

-\f{1}{105}(a.x)(y.z)b*w

-\f{1}{105}(a.y)(w.x)b*z

-\f{1}{105}(a.y)(w.z)b*x

-\f{1}{105}(a.y)(x.z)b*w

-\f{1}{105}(a.z)(w.x)b*y

-\f{1}{105}(a.z)(w.y)b*x

-\f{1}{105}(a.z)(x.y)b*w

+\f{1}{105}(w.x)(y.z)a*b

+\f{1}{105}(w.y)(x.z)a*b

+\f{1}{105}(w.z)(x.y)a*b

+\f{1}{210}(b.c)(d.e)b*f

+\f{1}{210}(b.c)(d.f)b*e

-\f{2}{21}(b.c)(e.f)b*d

+\f{1}{210}(b.d)(c.e)b*f

+\f{1}{210}(b.d)(c.f)b*e

-\f{2}{21}(b.d)(e.f)b*c

+\f{1}{210}(b.e)(c.d)b*f

+\f{1}{210}(b.e)(c.f)b*d

+\f{1}{210}(b.e)(d.f)b*c

+\f{1}{210}(b.f)(c.d)b*e

+\f{1}{210}(b.f)(c.e)b*d

+\f{1}{210}(b.f)(d.e)b*c

+\f{1}{7}p^4a’*p

+\f{1}{35}q^2r^2a’*q

+\f{2}{35}(q.r)^2a’*q

+\f{2}{35}q^2(q.r)a’*r

+\f{1}{105}s^2(t.u)a’*v

+\f{1}{105}s^2(t.v)a’*u

+\f{1}{105}s^2(u.v)a’*t

+\f{2}{105}(s.t)(s.u)a’*v

+\f{2}{105}(s.t)(s.v)a’*u

+\f{2}{105}(s.t)(u.v)a’*s

+\f{2}{105}(s.u)(s.v)a’*t

+\f{2}{105}(s.u)(t.v)a’*s

+\f{2}{105}(s.v)(t.u)a’*s

+\f{1}{105}(a.w)(x.y)a’*z

+\f{1}{105}(a.w)(x.z)a’*y

+\f{1}{105}(a.w)(y.z)a’*x

+\f{1}{105}(a.x)(w.y)a’*z

+\f{1}{105}(a.x)(w.z)a’*y

+\f{1}{105}(a.x)(y.z)a’*w

+\f{1}{105}(a.y)(w.x)a’*z

+\f{1}{105}(a.y)(w.z)a’*x

+\f{1}{105}(a.y)(x.z)a’*w

+\f{1}{105}(a.z)(w.x)a’*y

+\f{1}{105}(a.z)(w.y)a’*x

+\f{1}{105}(a.z)(x.y)a’*w

+\f{1}{105}(w.x)(y.z)a’*a
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+\f{1}{105}(w.y)(x.z)a’*a

+\f{1}{105}(w.z)(x.y)a’*a

-\f{1}{210}(b.c)(d.e)a’*f

-\f{1}{210}(b.c)(d.f)a’*e

+\f{2}{21}(b.c)(e.f)a’*d

-\f{1}{210}(b.d)(c.e)a’*f

-\f{1}{210}(b.d)(c.f)a’*e

+\f{2}{21}(b.d)(e.f)a’*c

-\f{1}{210}(b.e)(c.d)a’*f

-\f{1}{210}(b.e)(c.f)a’*d

-\f{1}{210}(b.e)(d.f)a’*c

-\f{1}{210}(b.f)(c.d)a’*e

-\f{1}{210}(b.f)(c.e)a’*d

-\f{1}{210}(b.f)(d.e)a’*c

+\f{2}{21}(c.d)(e.f)a’*b

-\f{1}{210}(c.e)(d.f)a’*b

-\f{1}{210}(c.f)(d.e)a’*b.

This is the initial triple expression:

a.b*c

+n.d*e

+(n.i)n.g*h

+(n.j)n.j*k

+(n.o)n.o*p.

This is the triple expression with odd terms deleted:

a.b*c

+(n.i)n.g*h

+(n.j)n.j*k

+(n.o)n.o*p.

This is the integrated triple expression:

a.b*c

+\third g.h*i.

%

% (C) Copyright 1992, 1993, 1994 John P. Costella.

%

% End of file.

G.8 checkrs: Checking of inner integrals
% crsoutth.txt

%

% (C) Copyright 1992, 1993, 1994 John P. Costella.

%

% Output from C program.

% ID string: Checking inner integrals.

%

Steps = 10:

Computations = 10000
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Integral = 4.048742

Normalisation = 1.011783

Steps = 20:

Computations = 160000

Integral = 4.019799

Normalisation = 1.003951

Steps = 30:

Computations = 810000

Integral = 4.011310

Normalisation = 1.002102

Steps = 40:

Computations = 2560000

Integral = 4.007539

Normalisation = 1.001347

Steps = 50:

Computations = 6250000

Integral = 4.005485

Normalisation = 1.000955

%

% (C) Copyright 1992, 1993, 1994 John P. Costella.

%

% End of file.
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