Motion Extrapolation at the Pixel Level

John P. Costella
School of Physics, The University of Melbourne, Parkville Vic. 8052, Australia

(14 January 1993)

Abstract

In this paper, considerations for the implementation of motion extrapolation on a
pixel-by-pixel basis are discussed.

1. Introduction

The emerging field of Virtual Reality (VR) has focussed attention on the increasingly
onerous performance requirements that are being placed on graphical display architectures
by modern applications. In many implementations of VR, the sensing of the head posi-
tion and orientation of the participant allows the system to change the view presented on
head-mounted displays, in real time, to more or less convince the participant that they are
exploring a virtual world with similar space-time properties to the real world. But this act
places the participant into the closed-loop system of the application in a vastly higher band-
width way than most conventional computer-human interfaces. The ubiquitous mouse of
today, for example, relies on the power of eye-hand coordination for its great utility, which
in turn requires that the mouse’s effect on the display follows the movements of the physical
mouse smoothly, accurately and without delay. This is achievable in today’s applications
because the mouse is usually considered as a pointer; thus, only small pixmaps representing
its position and operation need be animated around the display. In contrast, VR requires
that the entire display be updated with this same high degree of fidelity, to reflect changes
in the three translational and three rotational degrees of freedom of the viewer’s head, in
addition to any inherent changes taking place in the scene being depicted. It is this promise
of high-quality, high-bandwidth interaction that is both motivating advancements in this
field, and causing persistent headaches for computer graphics engineers.

For most practical purposes, temporal frequencies greater than about 100 Hz may be
considered to be insensible to the human visual system. Everyday acts of visual perception,
however, frequently stretch towards this 100 Hz mark. Thus, a naive approach would be
to simply design a graphical display system capable of rendering a complete scene every
ten milliseconds; this would give a temporal visual equivalent of “hi-fi”. But this naive
approach is unnecessarily wasteful of computational resources: the information rate of the
human visual system is nowhere near 100 times the information discernable in a single
static image, by some orders of magnitude. The conventional response to this fact is to
“de-tune” a system design from 100 Hz to some lower update rate, such as 10 or 5 Hz.
At such rates, visual information is still being presented at a rate sufficient to convey some



sense of “presence” in the virtual world; for example, navigational capabilities are not usually
thrown into instability at such rates. But the convinceability of a virtual world is, in general,
markedly degraded by such design decisions: the world appears to “clunk along” to the beat
of a hidden drum; motion is no longer smooth.

It is clear that, at an abstract level, all that needs to be done to get the best of both
of these worlds is to somehow “impedance-match” graphical display architectures to the
capabilities of the human visual system. Carrying out this task in practice, however, is
not exactly trivial. It is obvious that the higher-frequency sensitivities of the visual system
are linked to motion recognition, rather than any recognition of fine detail. Thus, some
sort of motion compression is clearly in order. (This must be motion eztrapolation, of
course, since the goal is to reduce the latency of the closed-loop system to as close to
zero as is practicable.) In this task, VR and related applications have a vast advantage over
conventional applications using techniques such as MPEG to effect such compression. Firstly,
the locations, velocities, accelerations, etc., of objects in the virtual world are, by definition,
already known to the system generating that world; thus, motion estimation via graphical
algorithmical means is not needed at all. Secondly, there are essentially no low-bandwidth
communications bottlenecks between each VR engine and its connected participant: the
purpose of motion compression is not to “squeeze” information over a low-bandwidth link,
as it is with MPEG-like compression applications, but rather to relieve the computational
and graphical load on the generating system itself. In fact, one may achieve great benefit
from highly parallelising the motion-encoded data, rather than serialising it.

The ultimate in graphical parallelism is to be able to implement it right down to the
pixel level. Thus, one might choose to avoid the small-talk completely, and immediately ask
whether it is feasible to perform motion extrapolation on a pizel-by-pizel basis with current
hardware. On the surface of it, such an idea seems to imply an unwieldy and completely
impractical demand for storage and processing capabilities—indeed, almost rivalling the
complexity of the original graphical system that it is intending to supplement. However,
we shall now discuss the precise practical requirements of such a system explicitly (but
nevertheless briefly), and shall show that the required overhead is vastly less than what one
might otherwise expect.

2. Discussion

It is worthwhile to have a name to describe a pixel that in some sense has inertial
properties—that, in between updates, does not simply sit still on the display (as with con-
ventional sample-and-hold rasterised displays), but rather continues to move of its own ac-
cord. A worthy name, honouring the discoverer of inertia, is a Galilean pixel, or galpizel for
short. A pixmap made up of independently-propagating galpixels is therefore most simply
referred to as a galpixmap.

The first choice that one must make in implementing motion extrapolation is just how
many derivatives of the galpixel’s apparent motion should be stored. (By “apparent” we
mean the motion as projected onto the plane of the display, with an appropriate depth
measure.) Often only the velocity is considered as a candidate for such tasks. But in general
we can extrapolate any object’s apparent motion r(t) = (x(t),y(t), 2(t)) about some given



time t = ¢y to arbitrary accuracy (given enough initial information) via its Taylor series:
1 2 1. 3

where 7(ty) is its position at time ¢y, v(to) its velocity, a(to) its acceleration, j(to) its jerk,
and so on. Of course, it becomes more and more difficult to get a meaningful estimation of
these derivatives using physical transducers as their order becomes higher—and even the jerk
could, in practical situations, be riddled with delta function dependencies that would make its
evaluation very error-prone. However, the apparent acceleration a(ty) is a quantity that may
in practice be computed or measured quite reasonably; moreover, without the acceleration it
is impossible to depict with any degree of fidelity an object that is rotating (since a straight
line is a very poor approximation to the peak of a sinusoid, whereas a parabola is a much
better fit). In addition to this, one may note that the human visual system (in distinction
to some other animals’) is rather adept at transforming away the effects of velocity (you can
watch a slowly moving car as easily as if it were still) and acceleration (you can catch a ball),
but is rather poor when it comes to derivatives greater than the second. Thus, in practice,
it is worthwhile to aim to include velocity and acceleration information with each galpixel,
but not (in the usual case) any higher derivatives.

Let us now examine (1) in a little more detail. Retaining terms up to second order, we
then have

r(t) = r(to) + v(to) (t — to) + ;a(to) (t—10)? )

where we shall pretend, for simplicity, that the higher derivatives of the motion do in fact
vanish. Now, (2) seems to imply that we will need to perform a number of floating point
multiplications for every pixel-—not impossible, but also not exactly desirable. However, this
is, of course, an illusion. The only times that are of relevance to us are the times that each
frame is placed onto the display device. But the frame rate, frame, is in general a constant;
therefore the time of frame n is (with a suitable choice of origin) given by ¢, = n7, where
T = 1/ frrame is the frame period. Thus, equation (2) becomes

2_2
Tntm = Ty +U,MT + ianm T

But since we wish to propagate the galpixel forward anew for each frame, we need never
worry about any m except m = 1, which propagates us from frame n to frame n + 1:

Tpil = Ty + V.7 + ianTQ. (3)
Together with (3), we need to propagate forward the velocity:
Vi1 = U, + @,T, (4)
and the acceleration,

Qpy1 = Qp. (5)



(Note carefully that these are convective quantities; in other words, the velocity and acceler-
ation are carried along with a particular galpixel, not “left behind” in the pixel location that
the galpixel is leaving.) Equation (5) is of course trivial. However, equations (3) and (4) still
imply that multiplications are required. Consider, then, choosing our (a priori arbitrary)
units of time such that 7 = 1, i.e., so that time is measured as integral multiples of the
frame period; equations (3) and (4) then become

Tnil = Tn +Up + ian (6)
and

respectively. But these equations involve no more complicated operations than addition and
a division by two (shift right), and are thus trivially implemented in either hardware or
machine code.

We must, however, still consider how the components of the velocity and acceleration
values are to be stored for each galpixel. The naive approach would be to store floating
point values. But this is of course excessively wasteful. Consider a practical graphical
system. First of all, for a given frame rate and display dimensions, there will be a maximum
apparent velocity in the x or y direction beyond which the human visual system will be
unable to detect the fleeting object at all. If we call the minimum recognisability time Tyecog,
measured in units of frame periods, and if the typical dimension of the display is of order D
pixels, then the fastest apparent velocity we need store is of the order of D /T;ecoq in magnitude
(in units of pixels per frame period). However, since we are also allowing accelerations to
be carried by our galpixels, we must cater for the scenario in which a galpixel starts on
one extremity of the display, moving rapidly towards the opposite extremity, but is “pulled
back” by the acceleration just sufficiently that it stops at the other side, and accelerates
back to the first extremity. If we take the minimum recognisability time to be the total time
that such a galpixel is on the display, then it is trivial to verify that the maximum velocity
magnitude we must consider is in fact of order 4D /Tiecoq, and the maximum acceleration
magnitude 8D/ Tfecog. Thus, the number of integral bits we need to store each component of
the velocity and acceleration of each galpixel is

Ny = logy D — 10gs Trecog + 3 (8)
and
N =10gyD — 2108 Trecog + 4 9)

respectively (where i = x or y), where we have added one bit for the sign to each expression.
The requirements of the velocities and accelerations of the z-buffer information, on the other
hand, are not so clear-cut, but nor are they quite so important visually. If the z-buffer
bins are of roughly the same spatial size as the pixel bins in the x and y directions, then a
good first approximation is to use the same values (8) and (9) for the integral bits of the z
component values also, i.e., we may reasonably consider ¢ = x, y or z.



Turning, now, to the fractional part of the velocity and acceleration components, it will
be noted that the x and y components of a galpixel’s position are implicitly recorded in its
pixel position in the matrix of the galpixmap. But such a position in a matrix carries no
“fractional” part at all; thus, it might appear that all velocities and accelerations (which
ultimately manifest themselves by shifting galpixel positions) must be integral. However,
this would lead to intolerable quantisation errors: the minimum velocity of any compont
of a galpixel’s motion (of which all velocities would be a multiple) would then be 1 pixel
per frame, or frame pixels per second: an untenably large quantum in almost all practical
situations. Thus, we must also store a fractional position for each of the x and y components
of a galpixel’s position, which, when added to the components of its matrix position, gives
its “true” position. (In propagation, of course, each galpixel “snaps” into the best-fitting
pixel location that it finds.) If we allocate Ny . bits for each component of such a fractional

frac
position, where ¢ = x or y, then the minimum velocity magnitude will then be

. AT
Ulmm =9 Nfrac,

We can reinterpret this level of quantisation accuracy by stating that the motion of the
galpixel will be accurate to the single-pizel level for propagation times up to

Tprop = % = 2N§ac (10)
Y
(again in units of frame periods). We can now turn this argument around, and specify the
propagation time that we wish to “rate” our system for: for example, 70, = 16 or 32
frames, which would allow (say) a 100 Hz frame rate system to require galpixmap updates
at only 3 or 6 Hz, and still depict smooth motion at the 100 Hz level of fidelity. With such
a specification of 7,,0p, we then invert (10) to yield
Neiae = 1085Tprop, (11)
where it is again stressed that we only need i = x or y here. (Fractional z positions are
in principle unnecessary; the required accuracy can be obtained by simply increasing the
number of bits allocated to the z-buffer, since the z position is not matricised.)

We can now proceed to compute how many fractional bits are required for the velocity
and acceleration data of each galpixel. It is important to start with the acceleration and
work back down the differential hierarchy to the position, to avoid round-off errors in the
conceptual argument. To maintain accuracy of the propagated galpixel position to within
one pixel over T, frame periods, we must note (from (2)) that the effect of the initial
acceleration on the position is quadratic with time, but contains a factor of one-half. Thus,
the number of fractional bits required for the acceleration is just

. |
Nfr;c = 10g2 <27—1§r0p) )
or, in other words,

Nii. = 2108y Tprop — 1. (12)

frac



We now must worry about how this level of accuracy is to be propagated through to the
position component using the frame-by-frame propagation equations (6) and (7). Clearly,
from (7), the velocity v must contain at least N . fractional bits per component also;
otherwise, we would simply be throwing away bits of a every time we invoked (7). But our
earlier requirement of a minimum velocity yielded a minimum number of fractional bits given
by (11). However, this is always less than or equal to (12) since Tyy0p must be 2 or more for
the technique to be worthwhile at all. Thus, each of the x and y velocity components must
also have the number of fractional bits specified by (12); in other words,

Nt = Nt = 2108y Tprop — 1. (13)

1
frac frac

We are now in a place to consider how expensive it would be in terms of storage to
convert a standard pixmap into a galpixmap. (Implementing the propagation hardware is
a different question, of course, to which we shall return.) Assume we start with a pixmap
in which some sort of colour information (e.g., 24-bit RGB) as well as sufficient z-buffer
information is already implemented. To append motional information to each pixel, we must
add the various quantities considered above. Fractional position information is in general
only required for the x and y directions, but if we are adding to an existing implementation
then it is desirable to add the same number of “fractional” bits onto the z-buffer data also.
Likewise, for simplicity, let us consider D to be of the same order of magnitude for all three
directions; the velocity and acceleration components then require the same number of bits
for each. We can then simply add the bits up for one component,

tiotal = Ny +N'ai + Nf”

int int rac

rac rac’

using the explicit formulee (8), (9), (11), (12) and (13):

Niotal = (108D — 108, Trecog + 3) + (108,D — 21085 Trecog + 4)
+ <10g2Tprop) + (2 1Og27—prop - 1) + (2 1Og27—prop - 1) ;

or, on simplifying,

7
Ntota

1 = 2logy D — 31089 Trecog + 51085 Tprop + 5. (14)

Let us now plug some real-world numbers into (14) to evaluate its feasibility. Take, for
example, D = 1024, Tyecog = 8 and Tpop = 16. Equation (14) then tells us that we need
to add 36 bits of storage per Cartesian component for each pixel to convert it into a fully-
fledged galpixel, or in other words 13.5 additional bytes all up. (We of course need at least
two galpixmaps in order to compute the propagation algorithm.) This is not at all excessive
by 1993 standards; it will appear less excessive as technology advances. Even in cases where
it does seem beyond reach, one can always “shave” bits off this estimate by settling for
a somewhat smaller degree of position accuracy, a larger minimum recognition time, or a
smaller maximum velocity or acceleration.

So far, we have only considered the motional components of a galpixel’s required addi-
tional storage. Clearly, for additional fidelity, the derivatives of the colour data should be
stored also, so that “shading inertia” may be automatically implemented by the hardware.
The largest number of bits for this purpose should be dedicated to changes in the luminosity

6



of each galpixel; a simple estimate of luminosity (not involving floating-point arithmetic)
such as simply the sum or red, green and blue values, or perhaps using the fractions 1/2
and 1/4, would be in order, so that a simple hardware demultiplexer into RGB values would
suffice. However, we shall not discuss this topic in detail in this paper, but merely continue
to consider the issues involved in implementing pixel-level motion extrapolation (or Galilean
spatio-temporal antialiasing) in a minimal system.

The major concern for the implemention of the propagation algorithm is that there is
no a priori reason why a galpixmap full of arbitrarily-moving galpixels at frame n should
happen to rearrange itself via a one-to-one mapping into a complete galpixmap at frame
n + 1. Clearly, in the general case, some galpixels will propagate out of the display area,
some will want to occupy the same z—y pixmap position as other galpixels, and (as a result
of these two phenomena) some pixmap positions will be left unoccupied. The propagation
algorithm must cater for these events, but it must do so in a way that can be implemented in
the simplest possible hardware (or machine code), with a running time that is independent
of the image being propagated.

Firstly, consider galpixels that propagate right out of the display area. There could be
two reasons for this: the image as a whole is being panned (because the participant is moving
her head), or because the object that that galpixel belongs to happens to be departing the
scene. We shall treat the latter case in more detail shortly. In either case, one may simply clip
the galpixmap so that galpixels moving out of its bounds are discarded. But in the former
case (where the image is being panned), the disappearance of galpixels off one boundary will
be accompanied by a need for new galpixels on the opposite boundary. A simple way to
alleviate this problem somewhat is to render a galpixmap area that is larger than the display
area—with perhaps the precise areas of greatest “margins” decided on-the-fly on the basis
of participant-motion data—so that galpixels expected to enter the display area before the
next update are “in the wings” at update time, waiting for their grand entrance.

Next, consider two galpixels in the galpixmap at frame n which the propagation algorithm
decides should occupy the same position in the galpixmap at frame n + 1. For a minimal
implementation, we might simplify matters by assuming that partially-transparent objects,
shadows, etc., are to be ignored for this purpose. (Extensions of the technique to include such
qualities as these are simple, if somewhat more demanding in terms of storage requirements.)
With such an assumption, the propagation algorithm need only use the stored z-buffer
information to decide which galpixel should be displayed; the other is discarded.

The most troublesome problem is what to do when there are empty positions in the new
galpixmap. Clearly, they must be filled with something. A minimal approach is to simply
follow the conventional sample-and-hold frame buffer philosophy, and leave “debris” behind
that is just an RGB copy of what occupied that pixel location in the previous frame. This
trick (and indeed any conventional rasterised display device simply employing a frame buffer)
relies on the visual system’s integration properties for its effectiveness: if the debris is not
lying around for too long, the “jerkiness” of the resulting motion is, to a greater or lesser
extent, integrated out. In the current case, we are using this property in only those areas
of the display for which we have no information, rather than for the entire display plane.
This debris would of course need to be flagged in some way, so that if in a later frame a
fully-fledged galpixel were to be validly propagated to that point, it would “win out” over
any debris.



However, this approach is rather poor, and can be improved for little cost. One reason it
is poor is that objects that are approaching the participant will (by the perspective transfor-
mation) appear to ezpand; with only a debris approach, such an object would (in the general
case) be riddled with holes, through which the background could be seen, since the fixed
number of galpixels constituting the original rendering cannot possible fill the now-larger
area covered by the object’s image. To repair this “bullet-hole” problem, however, we need
some way to determine, on the fly, whether an empty galpixmap location is in the interior
of a surface, or whether it is in an area that has been “uncovered” by the bulk motion
of an object that previously occupied that position. To determine, at the galpixmap level,
whether a hole is indeed interior to a surface, we can simply consider the z-buffer information
(stored in the galpixmap) as a function of x and y, namely, z = z(z,y). Now compute the
two-dimensional Laplacian of this function:

V22(r,y) = {88:2 + ;;} z(z,y). (15)

For any function z(x,y) of x and y that is continuous and has a continuous first derivative
at some point (zg,yo) (such as that describing a smooth surface with a continuous first
derivative), the Laplacian vanishes. (This is most intuitively verified by considering that, as
one shrinks one’s attention to a smaller and smaller surface area around (g, yo), the surface
approximates a plane better and better; and a plane’s x—y Laplacian vanishes trivially.) On
the other hand, if, on the x—y image plane, the images of two objects at different distances
abut each other, then the step-function in the z-distance data (which is not smooth) will
lead to a source term in (15), i.e., we will find

V2z(z,y) = p(wo,Y0) # 0. (16)

(z0,y0)

Thus, we can find the edges of all surfaces in the original galpixmap by computing equation
(16)—Poisson’s equation—at each pixel location, and then testing whether the source term is
zero or non-zero. The Laplacian (15) is of course trivially estimated for a discrete rectangular
grid, being simply given by

vc21isc. z (.Z', y)

= 2(zo + 1,%0) + 2(zo — 1,0)
+ z(xo, yo + 1) + 2(x0, yo — 1) — 42(z0, yo),

(z0,%0)

(17)

which, involving only addition, subtraction and multiplication by 4 (shift left two bits) is
trivially implemented in hardware or machine code. With the assumption that the surfaces
are approximately flat over distances of the order of a single pixel (without which the “in-
terior” would not be discernable anyway), we can then use the discrete Laplacian (17) to
estimate the value of Poisson’s equation (16), which can be compared to zero, within some
suitably-chosen bound to account for the approximate nature of the discrete derivative.
With such an analysis of the original galpixmap (with the results stored in a 1-bit-deep
map of flags denoting either “in surface” or “on edge of surface”), we can proceed to fill the
gaps in the new galpixmap after we have propagated the old galpixmap into it. Scanning
through the new galpixmap, we look for any empty locations; when we find one, we propagate
backwards the positions of any of its neighbours that happen to be filled, back to their original

8



galpixmap locations. If any of them are inside a surface, according to the Poisson map, then
the chances are that the given empty galpixel location is inside the same surface. Thus,
the galpixel properties (colour, velocities, etc.) of these surrounding filled galpixels may be
averaged (or copied, if there is only one) to provide a reasonable interpolation to “fill in the
bullet-holes”.

The above procedure, however, seems to treat the interiors of just-unobscured areas (due
to the bulk motion of an object to reveal what was behind it) in the same way as the
interiors of the surfaces of objects themselves. This does not, on the surface of it, seem to be
correct: we need to come up with a different technique to deal with areas for which we have
no information. However, the answer to this comes from the boundary conditions of just-
unobscured areas. Consider the top-left corner of a just-unobscured area (which for simplicity
we take to be roughly square, although the argument holds true for arbitrary shapes). The
galpixel to the left of this top-left corner is (by necessity) at the edge of a surface (the one
to the left of the unobscured area), as will be discovered when it is propagated back to the
original Poisson map. So too is the galpixel above. The galpixels to the right and below, on
the other hand, are themselves empty. Thus, the algorithm at this point decides that the
empty galpixel location is in fact just-unobscured, and invokes its procedure to deal with this
case (to be discussed shortly). Such a galpixel is then flagged as having been just-unobscured.
As the algorithm proceeds to the pixel to the right (and, later, the pixel below), it continues
to find that there are no “interior” (and not just-unobscured) galpixels surrounding empty
galpixel locations, and so continues to invoke the just-unobscured algorithm. In this way,
the interiors of just-unobscured areas are built up by virtue of their boundaries’ lack of
“interiorness”.

Finally, we are left with the problem of filling regions that are just-unobscured in some
intelligent and non-visually-offensive way. It is towards this end that there is most scope
for an individual system designer to implement as simple or as sophisticated an approach
as their hardware resources will allow them. The simplest approach is a more sophisticated
version of the above simple “debris” aproach. Rather than just leaving behind static debris,
which would simply remain there until the next update, or until another galpixel arrives to
fill the void, one can copy across the galpixel occupying that pixel location in the previous
galpixmap but including motional information. It is then flagged as debris: if it (in a future
propagation) clashes with a non-debris galpixel, then the latter will always “win”. This
form of “galdebris” is implementable by copying the original galpixmap across to the new
galpixmap without propagation, flagging all galpixels as “galdebris”, and then propagating
the galpixmap proper, overwriting galdebris where it occurs. The “copied” galpixels that
survive are now delayed behind their correct positions by one frame period; if a piece of
galdebris is subsequently required to again be delayed, then it will be two frames behind,
and so on. The net effect is a “smudging” of the edge of the object that is moving out of
the way, if there is nothing else that moves in to fill the breach—mnot unlike the back edge
of the USS Enterprise when it hits warp speed. This approach has the advantage over the
static-debris approach that its relative effects are the same regardless of the object’s velocity
or acceleration, a relativity property that the static debris approach does not share.

Clearly, an even better solution to the unobscuration problem would be to somehow
“summon” an image of the object that was previously obscured, rather than simply filling the
area with the least-visually-offensive junk that can be created from the remaining galpixmap.



However, the whole aim of the motion extrapolation technique is to allow the graphical
system to mot have to generate updates within a single frame period; thus, the display
hardware cannot demand such an update to be created in time to be worthwhile. One
approach is to cache galpixmaps, so that an object that is obscured and then obscured
could be summoned back from the cache. However, to gather the greatest benefit from this
approach, one must remove the “global-update” philosophy of most current VR rendering
systems (namely, that the whole scene must be churned out at once), and implement display
buffers that allow individual objects’ images to be grafted onto the existing (propagating)
galpixmap. This may necessitate the use of object tags in the galpixmap structure, so
that the object’s previous rendering (which might be becoming reasonably inaccurate by
that stage) can be deleted by the propagation hardware as it grafts on the new rendering.
Such an approach also implies a much higher level of object-orientation in the graphical
architecture: each object in the virtual world must be responsible for maintaining its own
graphical representation on the display, and “knowing” when its Galileanly-propagating
image has become out-of-date, rather than just having a single rendering process traverse the
entire virtual-world database at regular intervals, spitting out global updates. This implies
a much more sophisticated approach to real-time graphics, integrated with the operating
system and display hardware in a highly intimate way, but it promises to yield the highest
amount of leverage, for a given level of inherent graphical power, from the technique of
motion extrapolation.

3. Acknowledgments

Helpful discussions with readers of the Usenet newsgroup Sci.virtual-worlds, following
the posting of a long paper on this topic to that group, are gratefully acknowledged.

This work was supported in part by an Australian Postgraduate Research Allowance.

Copyright (©) 1993 John P. Costella (jpc@physics.unimelb.edu.au). The author retains
copyright to this document.

10



