
UM–P–92/42

Relativistic Corrections to the Neutron Electric

Dipole Moment in Valence Quark Models

John P. Costella and Bruce H. J. McKellar

School of Physics, The University of Melbourne, Parkville 3052, Australia

and

Institute for Nuclear Theory, University of Washington, Seattle WA 98195, U. S. A.

Abstract

We show that, in valence quark models, the relativistic corrections to the

SU(6) relation for the contribution of the electric dipole moments of the

quarks to the electric dipole moment of the neutron can be expressed as a

multiplicative correction factor. The correction factor is evaluated in light

cone wavefunction models, in the bag model, and in relativistic mean-field

models, and is found to lie between 1/3 and 1.

We also show that, in these models, there is a linear relation between the

correction to the SU(6) value for gA and that for the electric dipole moment.
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I. INTRODUCTION

The neutron electric dipole moment (EDM), Dn, is non-zero only when symmetry under

both parity and time-reversal are broken. That P and CP violation have been observed in

KL → 2π makes it plausible that the neutron EDM (i.e. a term Dψγ5σµνψ in the electro-

magnetic current) will be observed, although only an upper limit

|Dn| < 1.1× 10−25 e cm (1)

is currently available [1]. Theoretically, the value of Dn is determined by contributions from

the electric dipole moments of the quarks (Dq), the colour electric dipole moments of the

quarks and gluons, P and T violating q–q interactions and long distance effects [2]. In this

paper we concentrate on the contribution from the EDMs of the valence quarks. Dn is

generally calculated from the Dq using the non-relativistic SU(6) relation:

D(V )
n =

1

3
(4Dd −Du) (2)

Ellis [3] has emphasised the need for the examination of relativistic corrections to (2). We

will refer to the SU(6) value of D(V )
n as D0, i.e.

D0 ≡ 1

3
(4Dd −Du)

and the relativistic value of D(V )
n as D. The ratio D/D0 will be referred to as κD.

It is reasonable to expect that relativistic effects should be significant. Even one of the key

papers establishing the non-relativistic constituent quark model [4] required a constituent

quark mass of order 300 MeV and a radius of the hadron of order 0.6 fm ≈ 330 MeV−1.

Thus p/m ≈ 1, and relativistic corrections cannot be expected to be negligible.

We can get some idea of what to expect by examining the magnetic dipole moments,

where relativistic corrections to the SU(6) relations are known to be important [5–9]. Indeed,

in that case the relativistic corrections destroy the agreement between theory and experiment

for the octet magnetic moments. We will give the results of an analogous calculation for the

electic dipole moments in section II.
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Other relativistic models of the valence quark wavefunctions of the hadron are the bag

model [10], and the mean-field potential model [11]. The bag model, which does not respect

translation invariance, has been criticised as a model of the magnetic dipole moments [12].

In the case of the electric dipole moment there is no contribution from the γµ, so that the

corrections from the spurious centre of mass motion in bag models may not be so important.

Results from these models are similar and are discussed in section III.

In all of these models we find the same relationship between the relativistic corrections to

the EDM and the relativistic corrections to gA. This relationship is discussed in section IV.

Our analysis may be regarded as analogous to the relation between magnetic moments and

the axial vector matrix elements discussed by Karl [9].

II. LIGHT CONE WAVEFUNCTION MODELS

In this section, we use the light-front formalism as developed by Berestetskii and Ter-

ent’ev [5], in a completely analogous way to their calculation of the nucleon magnetic mo-

ments [6]. (The correction to the three-body Melosh transformation [13] is not required

for nucleon calculations.) We extend equation (23) of reference [6], which gives the hadron

electromagnetic form factors in terms of the electromagnetic interactions of the quarks, to

include the electric dipole moment terms:

{
FΛ

1 δλλ′ + iFΛ
2 (k ·ε ·σλλ′) + DΛ (k ·σλλ′)

}
δΛΛ′

= 3
∫

dΓψ∗Λ′λ′
{
F

(c)
1 + iF

(c)
2

(
k ·ε ·σ(c)

)
+ D(c)

(
k ·σ(c)

)}
e−ikρ(c)

ψΛλ

Application of the Melosh transformation following the analysis of references [6] and [7]

yields the result

κD ≡ D

D0

= 1− ζ (3)

where ζ is a complicated integral over the quark relative momenta, that depends on the

chosen form of the quark wavefunction. The calculation of κD is almost identical to the
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calculation of the contribution of the quark anomalous magnetic moments to the anomalous

magnetic moment of the nucleon, which is no surprise since

γ5σµν =
i

2
εµνρλσ

ρλ

One can evaluate the correction factor κD above by using some specific choice for the wave-

function; for example, with the gaussian form Φ ∼ exp(−M2
0 /α2) (where M0 is the effective

mass, which is a function of the momenta of the constituent quarks; see [5]), a constituent

quark mass of 300 MeV, and a choice of the free parameter α that correctly reproduces the

neutron magnetic moment [7], this model gives κD = 0.993, which is a very small variation

from the non-relativistic value. For this form of wave function it is possible to demonstrate

that κD is a monotonically decreasing function of α/m, which approaches the value κD = 1/2

as α/m →∞ (the extreme relativistic limit).

It is instructive to apply the same technique to the axial vector charged current A(+)
µ .

It is well known [4] that the nonrelativistic quark model gives the SU(6) value gA(0) = 5/3.

The lightcone wavefunction methods applied to A(+)
µ give

gA

gA(0)

= 1− 2ζ (4)

where ζ is the same complicated integral as in (3). (It is amusing to note that the extreme

relativistic limit discussed above gives gA → 0 — we do not have any physical interpretation

of this extreme relativistic quenching of gA, which seems to be a peculiarity of the light cone

wavefunction model.)

Eliminating ζ from equations (3) and (4) gives us

κD ≡ D

D0

=
1

2

{
1 +

gA

gA(0)

}
(5)

One might then, as an improved estimate, use the experimental nucleon axial coupling

constant [14]

gA = 1.261 ± 0.004

in equation (5) to obtain
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κD ≈ 0.878

which indicates that the relativistic corrections to the EDM of the hadrons are on the order

of 10%.

III. BAG AND MEAN-FIELD POTENTIAL MODELS

For our purposes the bag model may be regarded as equivalent to a potential model,

since the essential feature we require is the structure of the single particle relativistic wave

function, viz.

ψ =




fj(r)
√

j+mj

2j
Yj−1/2,mj−1/2

−fj(r)
√

j−mj

2j
Yj−1/2,mj+1/2

gj(r)
√

j+1−mj

2(j+1)
Yj+1/2,mj−1/2

gj(r)
√

j+1+mj

2(j+1)
Yj+1/2,mj+1/2




where j is the total angular momentum, mj its projection, fj(r) and gj(r) the solutions

of the (coupled) radial equations, and we are using the Dirac–Pauli representation of the

gamma matrices.

That the bag model determines the radial wavefunctions fj(r) and gj(r) by imposing

boundary conditions, and that mean-field potential models determine them from an assumed

or calculated mean-field potential in the Dirac equation, is not important for our calculation.

Using the P and T violating electromagnetic current

J 6P 6Tµ = Dqψγ5σµνψ

and the axial vector current

A(+)
µ = gAψγµγ5ψ

one readily obtains

D

D0

= F 2
j +

1

3
G2

j (6)
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and

gA

gA(0)

= F 2
j −

1

3
G2

j (7)

where we have defined the quantities

F 2
j ≡

∫ ∞

0
r2dr |fj(r)|2

and

G2
j ≡

∫ ∞

0
r2dr |gj(r)|2

In addition to (6) and (7), normalisation of the wavefunction requires

F 2
j + G2

j = 1 (8)

Elimination of F 2
j and G2

j from (6) and (7) using (8) gives the relation:

κD =
1

2

{
1 +

gA

gA(0)

}

just as before.

In this case, using equations (6), (7) and (8), and the fact that F 2
j and G2

j are by

definition positive-indefinite, one can also see that the relativistic modification to the valence

quark contribution to to gA and D, regardless of the bag boundary conditions or potentials

assumed, must be in the range

1

3
≤ D

D0

≤ 1

and

−1

3
≤ gA

gA(0)

≤ 1

respectively.
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IV. DISCUSSION

The most significant result of our calculations is that in all the models considered, we

find that the relativistic wavefunction corrections to D and gA are related by

κD ≡ D

D0

=
1

2

{
1 +

gA

gA(0)

}
(9)

We emphasise that all of the models we have considered are independent quark models,

which ignore interactions between the quarks, and which ignore QCD except through the

“mean field” seen by the quarks. Many contributions to D (e.g. quark and gluon electric

dipole moments, P and T violating quark–quark interactions, long distance effects), and

to gA (e.g. gluonic contributions, anomalous contributions, sea quark effects, long distance

effects) have been omitted from our considerations, so that strictly speaking equation (9)

applies only to the valence quark contributions to both D and gA.

However, equation (9) does answer Ellis’s call for an estimate of the relativistic corrections

to the valence quark contribution to Dn. It shows that the relativistic effects alter the valence

quark contributions to D by about 10% — and in the most extreme and unrealistic models

by no more than a factor of 3. Given that the level of uncertainty in the estimates of Dq can

be as much as a factor of 10, as can the uncertainties in the other effects which can contribute

to D [2], we must regard the relativistic corrections considered here as well controlled.
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