US 20150269212A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0269212 A1

Kramer et al. (43) Pub. Date: Sep. 24, 2015
(54) DATA LOGGING FRAMEWORK (52) US.CL
CPC .o, GO6F 17/30368 (2013.01)
(71) Applicant: Facebook, Inc., Menlo Park, CA (US)
(57) ABSTRACT
(72) - Inventors: é}isa)l.nlg.lll;grﬁz)ﬁeel;l,nSasnaErFa?;zfé OCA A data-logging framework (“logger™) includes a configura-
CA (,US)' Thomas M. Lento. Menlo tion file in which an application can define various data fields
Park, C A’ (US): John Paul C;)stell a, San and locatior}s at Which.the Adata ﬁe]@s are to be logged. Some
Francisco, CA (US) data fields include validating functions that are used by the
’ logger to determine whether a value of a data field is valid.
(21) Appl. No.: 14/218,323 The application can also define (a) canonical data fields using
the logger and (b) derived data fields. Upon receiving the data
(22) Filed: Mar. 18, 2014 fields and their values from the application, the logger can
determine whether the data fields are defined in the configu-
Publication Classification ration file, validate the values, and log the values at the speci-
fied locations. Values of any canonical and/or derived data
(51) Int. CL fields are obtained by the logger and logged at the specified
GO6F 17/30 (2006.01) locations.

12/13/2022 15:18:44

/— 100
/ 105

110

Application

115

125 [~ ——"—=""""—""""""""""-
‘ Application ’ Application

1 30\/_\|

Data logging Framework

}— 135

140 -\

First Data

Second
Data Store

Third Data
Store

Store

N" Data
Store

Fourth Data)
Store

Page 1 of 20

Patent Application Publication Sep. 24,2015 Sheet 1 of 10 US 2015/0269212 A1l

/ 100

/ 105

/‘1 10
Application

115

125 -

130_/\ Data logging Framework

First Data Second Third Data
Store Data Store Store

Fourth Data
Store

FIG. 1

12/13/2022 15:18:44 Page 2 of 20

Patent Application Publication

12/13/2022 15:18:44

Sep. 24,2015 Sheet2 of 10 US 2015/0269212 A1l

130
135
205 210
First Data Field Second Data ... Data Field
Field

... Data Field .. Data Field ... Data Field
... Data Field .. Data Field . N Data Field

Configuration File

Data logging Framework

FIG. 2

Page 3 of 20

Patent Application Publication Sep. 24,2015 Sheet 3 of 10 US 2015/0269212 A1l

f- 300

I 305

Simple Data Field

——3» Name
—» Type
— > Description

310 <

—— > Validation Function

—— > Log location

FIG. 3(A)

12/13/2022 15:18:44 Page 4 of 20

Patent Application Publication Sep. 24,2015 Sheet 4 of 10 US 2015/0269212 A1l

/- 300

I 325

Canonical Data Field

—F--—-—————-

———3 Canonical.Name

— > Type — “Canonical”

330 < - » Log location

[)

[J

[)
e =

FIG. 3(B)

12/13/2022 15:18:44 Page 5 of 20

Patent Application Publication Sep. 24,2015 Sheet 5 of 10 US 2015/0269212 A1

(- 300

I 350

Derived Data Field

———» Name
—— > Type — “Derived”
— > Description

355 < —— > Validation Computing Function

—— > Log location

FIG. 3(C)

12/13/2022 15:18:44 Page 6 of 20

US 2015/0269212 A1l

Sep. 24,2015 Sheet 6 of 10

Patent Application Publication

v OId

a|npopy Buibbo eyeq

144

ainpoy Buiaieoay eyeq 607

—~

STA4

8|npon
uonesuas))omewel buibbo eyeq

a|npoy Buinaiey ejeq 6o

\I\

oey

\I\

1134

SINPOA UOKBIOUDS) B|qe]

—

ocy

8|Npojy uonelauas) |4 uoleinbiyuo)

\I\

oLy

sor |

108899014

ooy .\

Page 7 of 20

12/13/2022 15:18:44

Patent Application Publication Sep. 24,2015 Sheet 7 of 10 US 2015/0269212 A1

12/13/2022 15:18:44

f 500
f 505

(Creating a Data Logging Framework >

/ 510

Provide a configuration file of a data logging framework

r 515
Define the data fields to be logged by the data logging framework in the
configuration file, the data including one or more of an identification (ID) or name
of a data field which the client application intends to log, a validation function for
the data field for validating a value of the data field and a location of a data store
where the value is to be logged, an ID or name of canonical and/or derived data
fields, functions for computing the values of derived data fields

/ 520

Generate an instance of the data logging framework based on the configuration file,
wherein the generated instance of the data logging framework is configured to log
multiple data fields and their corresponding values received from the client application
at one or more data stores associated with the corresponding data fields after verifying
that (a) the data fields are defined in a configuration file and (b) the values of the
corresponding data fields are valid based on validation functions associated with the
corresponding data fields

(Return " 525

FIG. 5

Page 8 of 20

Patent Application Publication

12/13/2022 15:18:44

Sep. 24,2015 Sheet 8 0of 10

/ 605

C Logging Data using a Data Logging Framework)

Receive, at a data logging framework, data including multiple key-value pairs
from a client application, the key-value pairs corresponding to data fields and
their values to be logged by the data logging framework

615

US 2015/0269212 A1l

/- 600

610
/

Are the data
fields defined in a
configuration file of the
data logging
framework?

Log the data fields in a / 620

No | column corresponding
to the extra_data data —>®
field defined in the

configuration file

Determine whether the corresponding values of the data fields are valid by
executing validate functions associated with the corresponding data fields that
are defined in the configuration file

/ 625

630

Are the
corresponding values of
the data fields valid?

application

Log the values of data 635
fields that are not valid [

No |and/or the data fields in
an error table and/or |—p(:)
raise an exception to

the notify the client

640

Are
there any
canonical data fields
and/or derived data fields
defined in the
configuration

FIG. 6

Page 9 of 20

Patent Application Publication Sep. 24,2015 Sheet 9 of 10 US 2015/0269212 A1l

/ 645

Obtain, via the data logging framework, the values associated with the canonical
data fields and/or the derived data fields

A

®

/ 650

Log the values of the data fields, including values of any canonical and/or
derived data fields, in one or more data stores associated with the
corresponding data fields, the data stores defined in the configuration file of the
data logging framework

655

Return

FIG. 6 (continued)

12/13/2022 15:18:44 Page 10 of 20

Patent Application Publication Sep. 24,2015 Sheet 10 of 10 US 2015/0269212 A1l

730

715

71
o
Network Adapter

Memory

725

-
FIG. 7

705
I/O Device(s)

Processor(s)

720

Storage
Device(s)

12/13/2022 15:18:44 Page 11 of 20

US 2015/0269212 Al

DATA LOGGING FRAMEWORK

TECHNICAL FIELD

[0001] Several of the disclosed embodiments relate to log-
ging data, and more particularly, to a data-logging framework
that facilitates logging data in a structured manner.

BACKGROUND

[0002] Current data-logging techniques generally require a
framework for logging data. If a system executes multiple
applications, then each of the applications can have their own
framework. For example, each of the applications would cre-
ate tables or files that can store data in one or more formats,
and the formats can differ between applications. Moreover,
different applications can use different names for logging
identical or similar data. For example, one application may
log a user’s name whereas a different application may log the
user’s identifier. Applications may also use different field-
names for data. For example, an application, “App A” in the
system can log an identification (ID) of a user as “ID No.” and
another application, “App B” can log the same user 1D as
“User ID.” Conversely, the applications can use the same
names to log data that can mean different things. For example,
the “App A” can log an ID of a device as “ID No.” and the
“App B” can log a user ID as “ID No.”. These inconsistencies
can create problems in analyzing and understanding the
logged data.

[0003] Further, current data logging techniques generally
lack error handling and/or data validation capabilities. They
do not ensure that data being logged for a particular field is
valid. For example, they may not validate that a date of birth
is logged (accidentally) in place of a gender for a gender field.
Furthermore, current data logging techniques sometimes
require applications to create and maintain the infrastructure
necessary for logging the data. This can not only give rise to
potential data inconsistency problems which might evade
notice, but also create a significant overhead for the system in
terms of computing resources, e.g., space and processor time.
If there are multiple applications in the system, each of them
can consume computing resources to create and maintain the
necessary infrastructure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a block diagram illustrating an environ-
ment in which a data logging framework (“logger”) can be
implemented.

[0005] FIG. 2 is a block diagram of the configuration file
used to define a behavior of the logger, consistent with various
embodiments of the disclosed technology.

[0006] FIGS. 3A, 3B and 3C, collectively referred to as
FIG. 3, illustrate examples of various data fields that can be
defined in the configuration file, consistent with various
embodiments of the disclosed technology.

[0007] FIG.4isablockdiagram ofa system for implement-
ing the logger, consistent with various embodiments of the
disclosed technology.

[0008] FIG.5is a flow diagram of a process for creating the
logger, consistent with various embodiments of the disclosed
technology.

[0009] FIG. 6is aflow diagram of a process for logging data
using the logger, consistent with various embodiments of the
disclosed technology.

12/13/2022 15:18:44

Sep. 24, 2015

[0010] FIG. 7 is a block diagram of a computer system as
may be used to implement features of some embodiments of
the disclosed technology.

DETAILED DESCRIPTION

[0011] Technology is disclosed for logging data using a
data-logging framework (“the technology”). The data-log-
ging framework (hereinafter referred to as “logger”) can be
used by one or more applications for logging data in a struc-
tured manner. Various embodiments of the logger provide
features including schema level validation, field validation,
routing of values of data fields to different data stores, error
handling, sampling and gating of log data and seamless inte-
gration of the logger code with code of the applications con-
figured for use with the logger.

[0012] The logger includes a configuration file in which an
application can define various data fields that are to be logged.
The data fields can be of various types, e.g., a simple data
field, a canonical data field and a derived data field. The data
fields can have various properties, e.g., a name, a description,
a data type and a log location indicating one or more desti-
nations where the data fields are to be logged. One or more of
the above properties can be optional. In some embodiments,
a simple data field can also include a validating function that
enables the logger to determine whether the value provided
by the application for a particular data field is valid. In some
embodiments, the canonical data fields are data fields that
have the same meaning across multiple applications using the
logger. That is, the canonical data fields have a “single source
of truth” and the values of these data fields can be guaranteed
to actually conform to what they mean. In some embodi-
ments, the derived data fields are data fields whose values are
computed by the logger on behalf of the application using a
value computing function defined by the application.

[0013] Applications typically provide the data fields and
their corresponding values as a set of key-value pairs to the
logger. However, in some embodiments, the values of canoni-
cal and/or derived data fields are computed or retrieved by the
logger on behalf of the application (into a “canonical data
field” or a “derived data field,” as defined below). The logger
accesses a configuration file to determine how to handle
logged data. Details of the configuration file are described in
further detail below. Upon receiving the key-value pairs, the
logger determines whether the received data fields are defined
in the configuration file. If the data fields are defined in the
configuration file, the logger validates the values and logs the
valid values at specified data stores. In some embodiments,
invalid values are logged in a separate location, e.g., a sepa-
rate error table (for each logger), and/or the corresponding
application is notified, e.g., via an exception. In some
embodiments, data fields that are not defined in the configu-
ration file may be logged in a separate location, e.g., an
“extra_data” column of a particular table.

[0014] It should be noted that unless specified otherwise,
reference to “a data field” in the entire document can mean
one or more of “a simple data field,” “a canonical data field,”
or “a derived data field”.

Environment

[0015] FIG. 1 is a block diagram illustrating an environ-
ment 100 in which a logger 130 can be implemented. The
environment 100 includes a client 105 that communicates
with a server 120 via a communication network 115 for

Page 12 of 20

US 2015/0269212 Al

performing various tasks, e.g., tasks related to social network-
ing. The environment 100 includes a logger 130 that can
provide data logging functionalities to various applications,
e.g., application 110 executing on a client device 105 and
applications 125 executing on the server 120. In some
embodiments, the logger 130 executes on the server 120.
However, the logger 130 can be configured to execute on a
server different from the server 120 and work with the appli-
cations and/or the server 120 to provide data logging func-
tionalities. The logger 130 facilitates the applications to log
data at multiple data stores 140. In some embodiments, the
environment 100 can be a social networking environment the
applications 125 can be part of a social networking applica-
tion, e.g., FACEBOOK of Menlo Park Calif., application 110
can be a FACEBOOK “App.”

[0016] Thelogger 130 includes a configuration file 135 that
defines the behavior of the logger 130. An application can
define, configure or customize the configuration file 135 to
suit its data logging needs. For example, the application 110
may define in the configuration file 135 the data fields, includ-
ing simple data fields, canonical data fields and/or derived
data fields, to be logged by the logger. The application 110
may define a log location indicating one or more data stores
140 at which the data fields have to be logged. The application
110 may define, for simple data fields, validating functions
that determine whether or not a given value of the data field is
valid. The application 110 may define value-computing func-
tions for the derived data fields for computing the value of the
derived data fields. The application 110 may also indicate in
the configuration file 135 whether to log the data fields that
are not defined in the configuration file 135, etc.

[0017] The applications provide the data to be logged to the
logger 130. In some embodiments, the data is provided as a
set of key-value pairs that correspond to data fields and their
respective values. For example, the application 110 can pro-
vide a key-value pair “User ID::Iron Man21”, where “User
ID” is a data field and “Iron Man21” is the value of the data
field. The logger 130 performs a number of verifications on
the data, including determining whether the data fields are
defined in the configuration file 135, if the values of those data
fields are valid, etc., before the data is logged. After the
verifications are completed successfully, the logger 130 pro-
ceeds to log the values in the one or more locations specified
in the configuration file 135. In some embodiments, the log-
ger 130 can also log the data fields to which the values
correspond. If the application has defined any canonical data
fields or derived data fields, the logger 130 obtains the values
of'those data fields and logs them at the specified location as
well. In some embodiments, the values of the canonical and
derived data fields may not be validated. In some embodi-
ments, the invalid values are logged in a separate location,
e.g., an error table, and/or notified, e.g., via an exception, to
the application. In some embodiments, the data fields that are
not defined in the configuration file may be logged in a sepa-
rate location, e.g., an “extra_data” column of a particular
table.

[0018] A datafield may be logged in one or more locations,
e.g., different data stores 140. Further, different data fields
may be stored at different locations. For example, a first data
field may be logged in a “fourth data store,” a second data field
may be logged in a “third data store” a third data field may be
logged in a “second data store,” an “Nth data store,” and so on.
The application 100 can define the log location for the data
fields in the configuration file 135. In some embodiments, a

12/13/2022 15:18:44

Sep. 24, 2015

default data store may be chosen by the logger 130 if no log
location is specified in the configuration file 135.

[0019] In some embodiments, a consumer may consume
the data logged in the data stores 140 for various purposes,
including analyzing the data or the environment 100. Also, a
consumer of a particular data store can expect a specified set
of data to be available at the data store. In some embodiments,
the logger 130 performs a schema-level validation to ensure
that the schema defined by the application 110 in the configu-
ration file 135, e.g., data fields for a particular data store
which can correspond to columns of a table to be generated at
the particular data store, matches with a schema of the par-
ticular data store. In some embodiments, the logger 130 inter-
acts with a metadata store (not illustrated) that contains meta-
data of schemas of the data stores, to compare the schemas
defined by the application 110 with the schemas of the data
stores. For example, if a consumer of a “First data store”
expects a data field “random_text” to be available, the logger
130 ensures that the application 110 logs the “random_text”
data field to the “First data store.” If the configuration file 135
does not include “First data store” as one of the destination
log locations for the “random_text” data field, the logger 130
will determine whether such an absence is allowed, or may
raise an exception, e.g., when the configuration file 135 is
validated during the generation of an instance of the logger
130.

[0020] Accordingly, by having the application 110 log data
in accordance with schema definition of the destination data
stores and also by providing a flexibility to log data at a data
store of the application’s choice and with the specified fields,
as validated; the logger 130 routes the values of the data fields
to the appropriate data stores 140. The logger 130 also ensures
that the data is logged in the data stores 140 in a format
expected by the consumers of the data stores 140.

[0021] Insome embodiments, a data store is a logical con-
tainer for data and can be implemented in various forms, e.g.,
a database, a file, a data structure, etc. Examples of the data
store can include databases or database management systems
such as Apache Hive, Scuba from Facebook of Menlo Park
Calif., Operational Data Store (ODS), Scribe, etc.

[0022] Insomeembodiments, the applications may interact
with the logger 130 via an application-programming interface
(API) provided by the logger 130. For example, the logger
130 includes APIs for generating a default configuration file
and APIs for further customizing the default configuration file
to a configuration file 135 as per the data logging needs of the
application 110. The logger 130 can also include APIs for
defining data fields, setting validating functions, generating
an instance of the logger 130 based on the configuration file
135, etc. The logger 130 can also include a data logging API
which the application 110 can use for logging data. For
example, “log ($data),” where “$data” is a set of data field
names and their corresponding values provided by the appli-
cation 110 as key-value pairs. The logger 130 can be imple-
mented in various programming languages, including PHP
(Personal Home Page or PHP: Hypertext Preprocessor), but
via the API is not limited to one programming language.
[0023] Referring back to the configuration file 135, differ-
ent applications may define the configuration file 135 in dif-
ferent ways. For example, while application 110 configures
the configuration file 135 to log three data fields, a first data
field at the “fourth data store,” a second data field at the “third
data store” and a third data field at the “second data store” and
“Nth data store,” one of the applications 125 may configure

Page 13 of 20

US 2015/0269212 Al

the configuration file 135 to log five data fields, all at “first
data store.” Further details regarding the configuration file
135 are discussed at least with reference to FIGS. 2 and 3.
[0024] FIG. 2 is a block diagram of the configuration file
135 used to define a behavior of the logger 130, consistent
with various embodiments of the disclosed technology. The
configuration file 135 can store information regarding the
data fields, including simple data fields, canonical data fields,
and/or a derived data fields, that an application is configured
to log using the logger 130, a location at which the data fields
should be logged, validating functions for simple data fields
to determine whether or not a given value of a data field is
valid, functions for computing the value of the derived data
fields, an indication regarding whether to log the data fields
that are not defined in the configuration file 135, etc.

[0025] Theapplications can configure the configuration file
135 to suit their data logging needs. For example, the appli-
cation 110 may define in the configuration file 135 a number
of data fields, including a first data field 205 and a second data
field 210, to be logged at the data stores 140. The data fields
can include a number of properties that describe various
aspects of the data fields. FIGS. 3A, 3B and 3C illustrate an
example 300 of various data fields that can be defined in the
configuration file 135.

[0026] A simple data field, e.g., data field 305 has a number
of properties 310, including a name of the data field 305, a
type of the data field 305, a description the data field 305, a
validation function of the data field 305, a log location, etc. In
some embodiments, the name could be an identification (ID)
of the data field. The type of the data field can be a data type,
e.g., integer, string, array, float, Boolean, user defined data
types, complex data types, e.g., vector, set, map, etc. The
description can be a set of words that describe the data field
305. The validating function can be a function that determines
whether a value provided by the application for the data field
305 is valid. In some embodiments, the validating function
can be added to a data field using a validator API, e.g.,
addValidator(SomeClass::validatorMethod), where “Some-
Class” is a programming language class having a method
“validatorMethod” which includes the logic for determining
whether or not a value is valid. The log location can include
information regarding one or more of a data store, a table of a
data store, a column in a table of a data store etc. where the
value of the data field is to be logged.

[0027] An example of a data field 305 can be an “age” data
field of a social networking application. The name or ID of the
“age” data field can be “_age,” a type can be integer, the
description can be “age of the user,” the validating function
can include a function that determines that null values and/or
values that are not greater than “0” are invalid for the “age”
data field. The validating functions can be provided by the
application 110, the logger 130, or by some unrelated data
evaluation system. In some embodiments, the application 110
may customize a validating function provided by the logger
130.

[0028] The logger 130 also supports a “canonical data”
field 325. In some embodiments, a canonical data field is a
data field that has a same meaning and is of a same data type
across multiple applications that are using the logger 130. For
example, consider that the server 120 of FIG. 1 is a social
networking server executing various social networking appli-
cations 125 of a social network, e.g., FACEBOOK of Menlo
Park Calif. The applications 125 can include a photo upload-
ing application, a photo sharing application, a timeline updat-

12/13/2022 15:18:44

Sep. 24, 2015

ing application, a status notification application etc. The
application 110 can be a FACEBOOK “App” executing on a
mobile device 105 of a user. One or more applications 125
receive data from the application 110, process the data if
necessary, and log the data via the logger 130.

[0029] An example of a canonical data field in the social
networking application can be a user ID data field, a times-
tamp data field, a browser type of the client 105, etc. The user
ID data field should mean and be the same across all of the
applications 125. That is, if a user ID in the social networking
application is defined as a string and is defined in a certain
fashion for a user, e.g., name of the user appended with a
non-repeating random number, the user ID data field should
be of the same type across the social networking applications
125. No individual application in the applications 125 may
define the user ID data field as an integer or any other data
type. It may not be different for different applications. That is,
the canonical data fields have a single source of truth and the
values of these data fields actually conform to what they mean
and is consistent with what is defined by the social network-
ing application.

[0030] To log a value of the canonical data field 325, an
application can specify the name of the canonical data field
325 in the configuration file 135. The application may not
provide data to the canonical data field 325, nor the value of
the canonical data field 325, as the canonical data field 325
means the same and is consistent across multiple applica-
tions: the logger 130 obtains the value of the canonical data
field 325 from a predefined source of truth and logs the value
accordingly. For example, to log a user ID of a current user of
an application 110, the application 110 adds the user ID
canonical data field to the configuration file 135, and when the
logger 130 is invoked by the application to log the values of
other data fields, e.g., via “log ($data)” API, the logger 130
identifies the user ID canonical data field defined in the con-
figuration file 135 and obtains the value of the current user ID
from a predefined source and logs it (along with values of
other data fields specified in “$data”), at a specified data store.
[0031] Insomeembodiments, by defining some of the data
fields as canonical data fields, a potential inconsistency that
may be caused by different applications 125 defining data
fields that have the same meaning across the applications 125
in different ways is eliminated.

[0032] Since a value of the canonical data field 325 is
obtained by the logger 130 instead of the applications 125
providing the value to the logger 130, in some embodiments,
it is beneficial to developers of the applications 125 since they
do not have to include the code for obtaining the value. This
can reduce the size of the code of the applications 125 sig-
nificantly, especially if the canonical data field 325 is logged
at multiple places in the code or if multiple applications are
logging the canonical data field.

[0033] Further, an additional advantage can include that the
value of certain canonical data fields is more current when the
logger 130 obtains the value rather than the applications 125
providing the value. For example, consider a timestamp
canonical data field that indicates a time at which the times-
tamp data field is used. An application, e.g., application 110,
intending to log the time at which a particular data field is
logged can log the time in at least two ways: (1) by obtaining
the time from the timestamp field and passing the time to the
data logging APL e.g., log ($data); or (2) by having the
timestamp data field defined as a canonical data field in the
configuration file 135, in which case the logger 130 obtains

Page 14 of 20

US 2015/0269212 Al

the value at the time of logging the “$data” to the specified
data stores 140. If there is a delay between the application 110
obtaining the time and when the logger actually logs the
“$data,” then the time provided by the application 110 may
not be current. Accordingly, the values of certain canonical
data fields can be more precise or current when obtained by
the logger 130 as compared with the application 110 provid-
ing the values, as the application 110 may delay logging until
some later time.

[0034] A user, e.g., an administrator of logger 130, can
define a set of data fields in the applications 125 and applica-
tion 110 as a canonical data field 325. An application can add
a canonical data field 325 to the configuration file 135, by
specifying a name, a type and a log location of the canonical
data field 325, as shown by the properties 330 of the canonical
data field 325. In some embodiments, the logger 130 may
include a tool that provides a list of canonical data fields that
are available for logging. The application 110 can select one
or more canonical data fields from the list and add them to
configuration file 135. In some embodiments, the logger 130
provides an API for adding canonical data fields to the con-
figuration file 135. An example API for adding canonical data
fields can include “fd->canonical($data_field)”, where “fd”
indicates “field definition,” “$data_field” can be user 1D,
timestamp etc. A canonical data field can be represented in the
configuration file 135 in various ways, e.g., a name of the
canonical data field can include “canonical,” a type can be
“canonical” etc., or in any other suitable way that indicates to
the logger 130 that the data field is a canonical data field.
[0035] The logger 130 also supports a derived data field
350. A derived data field is a data field whose value is com-
puted using a value computing function. The value computing
function may be defined by the logger 130 or by the applica-
tion 110. Further, the application 110 can customize or
modify the value computing function provided by the logger
130 to suit its data logging needs. An example of a derived
data field 350 can include an age data field whose value
indicates an age of a user of the application 110, even if the
user’s identifier, but not their age, is not specified by the
application 110. A value computing function can be defined
to compute/derive the value of the age using a current date and
a date of birth of the user, even if said user’s identifier is not
recorded. In some embodiments, the value of a derived data
field is computed by the logger 130.

[0036] Insome embodiments, the value of the derived data
field 350 can be dependent on one or more of the values of
other data fields defined in the configuration file 135. When
the logger 130 receives those values of the other data fields,
e.g., via the data logging API “log ($data),” the logger 130
computes the value of the derived data field 350 based on the
values provided in the “$data” and using the value computing
function specified in the configuration file 135.

[0037] The derived data filed 350 has a set of properties
355, including a name, a type, a description, a value comput-
ing function to compute the value of the derived data field
350, a log location that indicates the location of a data store
where the value has to be logged. A derived data field 350 can
be represented in the configuration file 135 in many ways,
including denoting the type of the data field as “derived.”
[0038] Referring back to the configuration file 135 in FIG.
2, an application, e.g., application may define various data
fields in the configuration file 135 as described above. For
example, the first data field 205 can be a “photo ID” of'a photo
uploaded by a user in the social networking application, the

12/13/2022 15:18:44

Sep. 24, 2015

second data field 210 can be a canonical data field such as a
user ID, etc. After successfully configuring the configuration
file 135, the application 110 can create an instance of the
logger 130 based on the configuration file 135. The applica-
tion 110 can then use the logger 130 to log the data at the data
stores 140 via the data logging API, e.g., log ($data).

[0039] When the logger 130 receives the data form the
application 110, the logger 130 determines whether the data
fields in the received “$data” are defined in the configuration
file 135. For the data fields that are defined in the configura-
tion file 135, the logger 130 determines if the values of those
data fields are valid, e.g., using a validating function specified
in the properties of the data field, and if they are valid, pro-
ceeds to log the values in the location specified in the prop-
erties of the data fields. If the application has defined any
canonical data fields and/or derived data fields in the configu-
ration file 135, the logger 130 obtains the values of those data
fields and logs them at the specified location as well.

[0040] If the logger 130 determines that the data fields in
the received “$data” are not defined in the configuration file
135, the logger 130 can either drop those data fields, that is,
not log those data fields, or log them at a separate location
meant for storing the data fields that are not defined in the
configuration file 135. In some embodiments, the logger 130
determines whether to drop the data field or log it in a separate
location based on whether the application 110 has indicated
in the configuration file 135 to store the undefined data fields.
For example, the application 100 may indicate to store the
undefined data fields in a separate location by specifying or
defining an “extra_data” canonical data field. The logger 130
considers any data field that is not defined in the configuration
file 135 as an extra_data data field and logs at a predetermined
location meant for storing the contents of extra_data field.
The location where extra_data field is stored can be of a
number of types, including a separate data store, a separate
table in a particular data store, or a separate column in a
particular table.

[0041] FIG. 4is a block diagram of'a system 400 for imple-
menting a logger 130, consistent with various embodiments
of the disclosed technology. The system 400 has various
components, including a configuration file generation mod-
ule 410, a logger generation module 415, a table generation
module 420, a log data receiving module 425, a log data
retrieving module 430 and a data logging module 435 that
work in cooperation with the processor 405 to perform vari-
ous functions, including generating the logger 130 based on
the configuration file 135 and logging the data provided by an
application.

[0042] The configuration file generation module 410 gen-
erates a configuration file, e.g., configuration file 135, which
can define the behavior of a logger, e.g., logger 130. The
configuration file generation module 410 can be configured to
generate a default configuration file that includes a set of
default data fields that a particular application, e.g., applica-
tion 110, may generally prefer to log. The data fields can be of
various types and can include various properties as described
at least with reference to FIG. 3. The application 110 can
further customize or configure the default configuration file to
suit its data logging needs to generate the configuration file
135.

[0043] The configuration file generation module 410 also
generates APIs that can be used by the application 110 to
configure the configuration file 135 appropriately. For
example, the APIs can include APIs for setting the owner of

Page 15 of 20

US 2015/0269212 Al

the configuration file 135, setting a specific sub-database
where the data is stored, e.g., for tables in a large-scale data-
base which sub-part of the database the data will be stored in,
setting the table names, defining the data fields, etc. The
configuration file 135 can be generated in various program-
ming languages, such as PHP.

[0044] The logger generation module 415 creates an
instance of the logger 130 based on the generated configura-
tion file 135. In some embodiments, generating an instance of
the logger 130 includes generating an object of the program-
ming language classes forming the logger 130. The configu-
ration file 135 is an integral part of the logger and plays a
significant role in defining the behavior of the created
instance of the logger. Once an instance of the logger 130 is
created, the application 110 may use the instance to invoke
the data logging APL, e.g., “log ($data)” where “log” is a
method to log the data and “$data” includes the data fields and
their corresponding values as key-value pairs.

[0045] A particular data field is logged at one or more
locations specified in the properties of the data field in the
configuration file 135. The logger 130 ensures that the data
fields and their values are logged in the right location and in
the right format at the data stores 140. The table generation
module 420 sets up the data stores 140, including generating
data containers, e.g., tables, to log the values of the data fields
provided by the application 110. In some embodiments, gen-
erating a table to store the provided values of the data fields
include generating a column in the table for each of the data
fields that are to be logged at a particular data store. For
example, if the configuration file 135 includes two data fields
“User ID” and “Gender” that are to be logged at “First data
store,” and two data fields “Age” and “Relationship Status™ at
“Second data store,” the table generation module 420 can
create a table at “First data store” having columns “User ID”
and “Gender” and a table at “Second data store” having
columns “Relationship Status” and “Age.” The values of the
data fields are logged at the respective columns of the table at
the respective data stores.

[0046] Insome embodiments, the table generation module
420 may also create additional columns. These additional
columns may be created for various reasons, including to
comply with the table creation rules of the destination data
store. An example of an additional column can include a
“date” column, or an anonymized version of a User ID.
[0047] Insome embodiments, the table generation module
420 validates the configuration file 135 by performing a
schema-level validation. The schema-level validation can
include determining whether the schema defined by the appli-
cation 110 in the configuration file 135 matches with a
schema definition of a particular data store where the data
fields are logged. In some embodiments, the schema defini-
tion includes names of the tables, columns, data types of the
data stored at the particular data store, schema rules, e.g., a
format of a name of a table, the number of columns in the
table, possible data types of a column, mandatory columns,
etc. The table generation module 420 obtains the schema
definition defined by the application 110 in the configuration
file 135, e.g., columns of a table to be generated at the par-
ticular data store for storing the values of the corresponding
data fields, and verifies if the schema definition is compliant
with the schema definition of the particular data store. In
some embodiments, the logger 130 may obtain the schema
definition of the particular data store from a metadata store
(not illustrated). If the schema definition is compliant, the

12/13/2022 15:18:44

Sep. 24, 2015

table generation module 420 generates the necessary tables
and columns at the data stores 140; if it is not compliant, the
data are stored In a separate data store, i.e.,, an error table.
[0048] In some embodiments, the schema-level validation
is performed before an instance of the logger 130 is created.
[0049] Thelog data-receiving module 425 receives the data
sent from the application 110, e.g., via “log ($data)” API. In
some embodiments, the “$data” can be a set of key-value
pairs that represent the data fields and their corresponding
values. The log-data receiving module 425 parses the
received data to extract the various data fields and their cor-
responding values, and passes them to the data logging mod-
ule 435 for logging the values. The data logging module 435
logs the values at one or more data stores associated with the
data fields, for example, in the tables created by the table
generation module 420 at the data stores 140.

[0050] Insomeembodiments, the application 110 does not
provide the values for certain data fields, e.g., derived data
fields and canonical data fields. The log-data retrieving mod-
ule 430 retrieves or computes the values for those data fields
on behalf of the application 110. The log data retrieving
module 430 computes those values based on the value com-
puting functions associated with the respective data fields that
are defined in the configuration file 135. After computing the
values, the log-data retrieving module 430 passes the values
to the data logging module 435 which logs the values at one or
more data stores associated with the data fields.

[0051] FIG.5isaflow diagram ofa process 500 for creating
a logger, consistent with various embodiments. The process
500 may be executed in a system such as system 400 of FIG.
4 and can be used in an environment such as environment 100
of FIG. 1. The process 500 beings at block 505, and at block
510, a configuration file generation module 410 provides a
configuration file of a logger to a client application. In some
embodiments, the configuration file defines the behavior of
the logger, including specifying where and what data fields
are logged.

[0052] At block 515, the client application can define the
data fields to be logged by the logger in the configuration file.
The client application may use the API of the configuration
file to define the data fields. In some embodiments, defining
any of the simple, canonical, or derived data field includes
defining one or more of an ID or name of the data field which
the client application intends to log, a description of the data
field and a log location that indicates one or more data stores
where the value of the data field is to be logged.

[0053] Insomeembodiments, definingthe simple data field
further includes defining a data type of the data field, a vali-
dation function for determining whether or not a value of the
data field is valid.

[0054] In some embodiments, defining the canonical data
field includes adding a canonical data field in the configura-
tion file 135 from a given set of canonical data fields. A
canonical data field is a data field that has a same meaning and
is of same data type across multiple client applications that
are using the logger. In some embodiments, the logger 130
may provide a list of canonical data fields that are available
for logging and the client application can select one or more
canonical data fields from the list and add to the configuration
file 135.

[0055] In some embodiments, defining the derived data
field includes defining a value computing function for the
derived data filed which can be used to compute the value of
the derived data field. The value-computing function may be

Page 16 of 20

US 2015/0269212 Al

provided by the client application or the logger 130. In some
embodiments, the value of the derived data field can be
dependent on one or more of the values of other data fields
defined in the configuration file 135. The logger 130 com-
putes the value of the derived data field based on those values,
which are provided by the client application via the “log
($data)” API, and using the value computing function asso-
ciated with derived data field.

[0056] At block 520, the logger generation module 415
generates an instance of the logger 130 based on the configu-
ration file 135, and the process returns at block 525. The
generated instance of the logger 130 is configured to log
values of multiple data fields received from the client appli-
cation at one or more data stores associated with the corre-
sponding data fields. In some embodiments, the logger 130
verifies that (a) the data fields are defined in a configuration
file and (b) the values of the corresponding data fields are
valid based on validation functions associated with the cor-
responding data fields before logging the values.

[0057] In some embodiments, prior to generation of the
instance of the logger, the table generation module 420 per-
forms a schema level validation to confirm if a schema
defined by the client application for a particular data store is
compliant with schema definition of the particular data store,
and upon confirmation, creates the necessary tables at the
particular data store.

[0058] Those skilled in the art will appreciate that the logic
illustrated in FIG. 5 and described above, and in each of the
flow diagrams discussed below, may be altered in various
ways. For example, the order of the logic may be rearranged,
substeps may be performed in parallel, illustrated logic may
be omitted where unnecessary, other logic may be included in
order to render the process more efficient, etc.

[0059] FIG. 6 isaflow diagram of a process 600 for logging
data using a logger, consistent with various embodiments. In
some embodiments, the process 600 may be implemented
using a system such as system 400 of FIG. 4 and in an
environment such as environment 100 of FIG. 1. The process
600 begins at block 605, and at block 610, the log data-
receiving module 425 receives data, including multiple data
fields and their corresponding values from a client applica-
tion, e.g., application 110 to be logged at one or more data
stores.

[0060] Insome embodiments, the data fields and their cor-
responding values are sent as key-value pairs to the logger
130. The log data-receiving module 425 parses the key-value
pairs to obtain the data fields and their corresponding values.
[0061] Atdecision block 615, the data-logging module 435
determines whether the data fields are defined in the configu-
ration file 135. Responsive to a determination that the data
fields are not defined in the configuration file 135, at block
620, the data logging module 435 logs the values of those data
fields that are not defined in the configuration file 135 in a
location corresponding to the extra_data canonical data field
defined in the configuration file. The extra_data canonical
datafield can be generated as a column in a table, as a separate
table etc. in one or more data stores.

[0062] In some embodiments, if the extra_data canonical
data field is not defined in the configuration file 135, the
values of the data fields that are not defined in the configura-
tion file 135 are dropped by the data-logging module 135.
That is, those values are not logged at any of the data stores.
[0063] Insome embodiments, the values stored in the data
stores are anonymized. That is, if the values stored contain

12/13/2022 15:18:44

Sep. 24, 2015

any user identifiable information, e.g., user ID, IP addresses,
browser cookies, email addresses, full names, phone num-
bers, etc. are deleted or transformed before they are logged.
The anonymization process may be configured to delete spe-
cific user identifiable information while retaining other user
identifiable information. In some embodiments, fields may
self-destruct, that is, the field has a predefined data retention
period, e.g., up to 3 months. The contents of the field are
deleted at the expiry of the retention period. Further, the
retention period can be different for different data stores.

[0064] Referring back to decision block 615, responsive to
a determination that the data fields are defined in the configu-
ration file 135, at block 625, the data-logging module 435
proceeds to determine whether the values of the data fields are
valid. The data-logging module 435 determines whether the
value of a particular data field is valid by using the validation
function of the data field defined in the configuration file 135.

[0065] Atdecision block 630, the data-logging module 435
determines whether the values are valid. Responsive to a
determination that the values of one or more data fields are not
valid, at block 635, the data logging module 435 logs the
values of those one or more data fields in an error table and/or
raises an exception to the notify the client application.

[0066] Responsive to a determination that the values of the
data fields are valid, at decision block 640, the data-logging
module 435 determines whether there are any canonical data
fields and/or derived data fields defined in the configuration
file 135. Responsive to a determination that there are no
canonical data fields and/or derived data fields defined in the
configuration file 135, the process 600 proceeds to block 650
to log the values of the data fields.

[0067] On the other hand, responsive to a determination
that the configuration file 135 includes canonical data fields
and/or derived data fields, at block 645, the log-data retrieving
module 430 obtains the values associated with the canonical
data fields and/or the derived data fields. For obtaining or
computing the values of the derived data fields, the log data
retrieving module 430 uses the value computing function
defined for the corresponding derived data fields.

[0068] At block 650, the data logging module 435 logs the
values of the data fields, including any canonical and/or
derived data fields, in one or more data stores associated with
the corresponding data fields, and the process returns at block
655. In some embodiments, a particular data field may be
stored in one or more data stores.

[0069] Insome embodiments, the logger 130 also provides
additional features such as sampling and gating. In some
embodiments, sampling is a process that specifies the rate at
which data is logged at a particular data store. For example, a
sampling rate can specify that 1% of all rows are logged at
“Data Store A,” 2% of all rows are logged at “Data Store B,”
etc. The configuration file 135 provides APIs that enables the
client application to specify the sampling rate. The sampling
rate can also be specified as a function of various user defined
parameters.

[0070] Insomeembodiments, gating is a process that deter-
mines whether a particular data field is to be logged. For
example, gating process can specify that a user ID data field
should not be logged if the value of the user ID data field is or
contains “Darth Vader.” The configuration file 135 provides
APIs that enables the client application to specify the gating
values or systems. The gating values can also be specified as
a function of various user-defined parameters.

Page 17 of 20

US 2015/0269212 Al

[0071] FIG. 7 is a block diagram of a computer system as
may be used to implement features of some embodiments of
the disclosed technology. The computing system 700 may be
used to implement any of the entities, components or services
depicted in the examples of FIGS. 1-6 (and any other com-
ponents described in this specification). The computing sys-
tem 700 may include one or more central processing units
(“processors”) 705, memory 710, input/output devices 725
(e.g., keyboard and pointing devices, display devices), stor-
age devices 720 (e.g., disk drives), and network adapters 730
(e.g., network interfaces) that are connected to an intercon-
nect 715. The interconnect 715 is illustrated as an abstraction
that represents any one or more separate physical buses, point
to point connections, or both connected by appropriate
bridges, adapters, or controllers. The interconnect 715, there-
fore, may include, for example, a system bus, a Peripheral
Component Interconnect (PCI) bus or PCI-Express bus, a
HyperTransport or industry standard architecture (ISA) bus, a
small computer system interface (SCSI) bus, a universal
serial bus (USB), IIC (I12C) bus, or an Institute of Electrical
and Electronics Engineers (IEEE) standard 1394 bus, also
called “Firewire”.

[0072] The memory 710 and storage devices 720 are com-
puter-readable storage media that may store instructions that
implement at least portions of the described technology. In
addition, the data structures and message structures may be
stored or transmitted via a data transmission medium, such as
a signal on a communications link. Various communications
links may be used, such as the Internet, a local area network,
a wide area network, or a point-to-point dial-up connection.
Thus, computer-readable media can include computer-read-
able storage media (e.g., “non-transitory” media) and com-
puter-readable transmission media.

[0073] The instructions stored in memory 710 can be
implemented as software and/or firmware to program the
processor(s) 705 to carry out actions described above. In
some embodiments, such software or firmware may be ini-
tially provided to the processing system 700 by downloading
it from a remote system through the computing system 700
(e.g., via network adapter 730).

[0074] The technology introduced herein can be imple-
mented by, for example, programmable circuitry (e.g., one or
more microprocessors) programmed with software and/or
firmware, or entirely in special-purpose hardwired (non-pro-
grammable) circuitry, or in a combination of such forms.
Special-purpose hardwired circuitry may be in the form of,
for example, one or more ASICs, PLDs, FPGAs, etc.

Remarks

[0075] The above description and drawings are illustrative
and are not to be construed as limiting. Numerous specific
details are described to provide a thorough understanding of
the disclosure. However, in certain instances, well-known
details are not described in order to avoid obscuring the
description. Further, various modifications may be made
without deviating from the scope of the embodiments.
Accordingly, the embodiments are not limited except as by
the appended claims.

[0076] Reference inthis specification to “one embodiment™
or “an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ment is included in at least one embodiment of the disclosure.
The appearances of the phrase “in one embodiment” in vari-
ous places in the specification are not necessarily all referring

12/13/2022 15:18:44

Sep. 24, 2015

to the same embodiment, nor are separate or alternative
embodiments mutually exclusive of other embodiments.
Moreover, various features are described which may be
exhibited by some embodiments and not by others. Similarly,
various requirements are described which may be require-
ments for some embodiments but not for other embodiments.
[0077] The terms used in this specification generally have
their ordinary meanings in the art, within the context of the
disclosure, and in the specific context where each term is
used. Certain terms that are used to describe the disclosure are
discussed below, or elsewhere in the specification, to provide
additional guidance to the practitioner regarding the descrip-
tion of the disclosure. For convenience, certain terms may be
highlighted, for example using italics and/or quotation marks.
The use of highlighting has no influence on the scope and
meaning of a term; the scope and meaning of a term is the
same, in the same context, whether or not it is highlighted. It
will be appreciated that the same thing can be said in more
than one way. One will recognize that “memory” is one form
of a “storage” and that the terms may on occasion be used
interchangeably.
[0078] Consequently, alternative language and synonyms
may be used for any one or more of the terms discussed
herein, nor is any special significance to be placed upon
whether or not a term is elaborated or discussed herein. Syn-
onyms for certain terms are provided. A recital of one or more
synonyms does not exclude the use of other synonyms. The
use of examples anywhere in this specification including
examples of any term discussed herein is illustrative only, and
is not intended to further limit the scope and meaning of the
disclosure or of any exemplified term. Likewise, the disclo-
sure is not limited to various embodiments given in this speci-
fication.
[0079] Those skilled in the art will appreciate that the logic
illustrated in each of the flow diagrams discussed above, may
be altered in various ways. For example, the order of the logic
may be rearranged, substeps may be performed in parallel,
illustrated logic may be omitted; other logic may be included,
etc.
[0080] Without intent to further limit the scope of the dis-
closure, examples of instruments, apparatus, methods and
their related results according to the embodiments of the
present disclosure are given below. Note that titles or subtitles
may be used in the examples for convenience of a reader,
which in no way should limit the scope of the disclosure.
Unless otherwise defined, all technical and scientific terms
used herein have the same meaning as commonly understood
by one of ordinary skill in the art to which this disclosure
pertains. In the case of conflict, the present document, includ-
ing definitions will control.
I/we claim:
1. A method performed by a computing device, compris-
ing:
receiving, at a data logging framework executing at the
computing device, data including multiple key-value
pairs from a client application;
determining, by the data logging framework, whether mul-
tiple data fields corresponding to multiple keys of the
key-value pairs are defined in a configuration file of the
data logging framework;
responsive to a determination that the data fields are
defined in the configuration file, determining, by the data
logging framework, whether values of the correspond-
ing data fields are valid, the determining including

Page 18 of 20

US 2015/0269212 Al

executing validator functions associated with the corre-
sponding data fields, the validator functions defined in
the configuration file of the data logging framework; and

responsive to a determination that the values of the corre-
sponding data fields are valid, logging the values in a
data store associated with the corresponding data fields,
the data store defined in the configuration file of the data
logging framework.
2. The method of claim 1, wherein the configuration file
includes a canonical data field, the canonical data field being
a global data field having the same meaning across multiple
client applications using the data logging framework.
3. The method of claim 1, wherein logging the values and
the corresponding data fields further includes:
determining, by the data logging framework, whether the
configuration file includes a canonical data field,

responsive to a determination that the configuration file
includes the canonical data field, obtaining, by the data
logging framework, the value of the canonical data field,
and

logging the value of the canonical field in the data store

associated with the canonical field.
4. The method of claim 1, wherein the configuration file
includes a derived data field, the derived data field being a
data field whose value is computed via a function defined by
the client application to generate a derived value.
5. The method of claim 4, wherein the function computes
the derived value as a function of one or more of the data
fields.
6. The method of claim 4, wherein the function computes
the derived value at the time of logging the values.
7. The method of claim 1, wherein logging the values
further includes:
determining, by the data logging framework, whether the
configuration file includes a derived data field,

responsive to a determination that the configuration file
includes the canonical data field, computing, by the data
logging framework, a value of the derived data field via
a function associated with the derived data field to gen-
erate a derived value, and

logging the derived value of the derived data field in the

data store associated with the derived data field.

8. The method of claim 1, wherein the configuration file
includes an extra data field, the extra data field configured to
create an extra data column in a table at the data store to store
and the values of the data fields that are not defined in the
configuration file.

9. The method of claim 8 further comprising:

responsive to a determination that the data fields are not

defined in the configuration file, logging the values in the
extra data column of the table at the data store.

10. The method of claim 1 further comprising:

responsive to a determination that the values of the corre-

sponding data fields are invalid, logging the values in an
error table at the data store.

11. The method of claim 1 further comprising:

responsive to a determination that the values of the corre-

sponding data fields are invalid, generating, by the data
logging framework, an exception indicating the values
are invalid; and

notifying, by the data logging framework, the client appli-

cation of the exception.

12. The method of claim 1, wherein logging the values and
the corresponding data fields includes:

12/13/2022 15:18:44

Sep. 24, 2015

determining, by the data logging framework, whether the
configuration file conforms to a schema definition, the
schema definition including at least (a) names of the data
fields to be logged and (b) specific data stores where the
data fields are to be logged, and

responsive to a determination that the configuration file

conforms to the schema definition, creating tables at the
specific data stores, the tables containing columns cor-
responding to the data fields.

13. The method of claim 1, wherein the validation func-
tions are defined by the client application.

14. The method of claim 1, wherein the validation func-
tions are defined by the data logging framework.

15. A computer-readable storage medium storing instruc-
tions, comprising:

instructions for providing a configuration file to a client

application, the configuration file configured to receive

from the client application

an identification (ID) of a data field which the client
application intends to log,

a validation function for the data field for validating a
value of the data field, and

a location of a data store where the data field and the
value are logged; and

instructions for generating a data logging framework based

on the configuration file, the data logging framework

configured to

log values of multiple data fields received from the client
application at one or more data stores associated with
the corresponding data fields after verifying that (a)
the data fields are defined in a configuration file and
(b) the values of the corresponding data fields are
valid based on validation functions associated with
the corresponding data fields.

16. The computer-readable storage medium of claim 15,
wherein the configuration file is further configured to receive
at least one of a canonical data field or a derived data field, the
canonical data field being a global data field having the same
meaning across multiple client applications using the data
logging framework, the derived data field being a data field
whose value is computed via a function defined by the client
application.

17. A system, comprising:

a processor;

a configuration file generation module that works in coop-

eration with the processor to generate a configuration

file, the configuration file configured to receive from a

client application:

an identification of a data field which the client applica-
tion intends to log,

a validation function for the data field for validating a
value of the data field, and

a location of a data store where the data field and the
value are logged; and

a data logging framework generation module that works in

cooperation with the processor to generate a data log-
ging framework based on the configuration file, the data
logging framework configured to log values of multiple
data fields received from the client application at one or
more data stores associated with the corresponding data
fields after verifying that (a) the data fields are defined in
the configuration file and (b) the values of the corre-
sponding data fields are valid based on validation func-
tions associated with the corresponding data fields.

Page 19 of 20

US 2015/0269212 Al Sep. 24, 2015

18. The system of claim 17 further comprising:

a log data receiving module to receive the data fields and
their corresponding values from the client application.

19. The system of claim 17 further comprising:

atable generation module to generate one or more tables at
one or more of the data stores based on the configuration
file.

20. The system of claim 17 further comprising:

a data retrieving module to retrieve a value associated with
at least one of a canonical data field or a derived data
field, the canonical data field being a global data field
having the same meaning across multiple client applica-
tions using the data logging framework, the derived data
field being a data field whose value is computed via a
function defined by the client application.

#* #* * #* *

12/13/2022 15:18:44 Page 20 of 20

